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Abstract We present several novel techniques to summa-
rize the high-level behavior in surveillance video. Our pro-
posed methods can employ either optical flow or trajectories
as input, and incorporate spatial and temporal information
together, which improve upon existing approaches for sum-
marization. To begin, we extract common pathway regions
by performing graph-based clustering on similarity matri-
ces describing the relationships between location/orientation
states. We then employ the activities along the pathway
regions to extract the aggregate behavioral patterns through-
out scenes. We show how our summarization methods can
be applied to detect anomalies, retrieve video clips of inter-
est, and generate adaptive-speed summary videos. We exam-
ine our approaches on multiple complex urban scenes and
present experimental results.

Keywords Behavioral summarization · Activity analysis ·
Video surveillance applications

1 Introduction

Over the past few decades, the number of surveillance cam-
eras being deployed has increased substantially. Unfortu-
nately, the number of security operators responsible for mon-
itoring those sensors has not grown at a proportional rate. As
a result, security operators are often tasked with simultane-
ously monitoring videos from hundreds of surveillance cam-
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eras and are often overloaded by the amount of data being
received.

Recently, several algorithms have been proposed to auto-
matically summarize videos in some manner to help alleviate
this workload. For instance, object trajectories have been be
employed to detect common pathways throughout a scene.
Videos have also been separated into short clips and clus-
tered together to determine common scene activity patterns.
Moreover, multiple techniques have been proposed to recog-
nize anomalous activity, provide shortened representations
of long videos, and retrieve segments of video that resemble
a given query.

Throughout this paper, we explore various ways to sum-
marize the behavior in surveillance video. In the surveillance
domain, the term “behavior” is somewhat ambiguous. In this
paper, we are more interested in the high-level (scene-based)
behavior—the when, where, and how objects move through-
out the scene.

To summarize the high-level behavior of a scene, we
present novel behavior analysis techniques to extract com-
mon pathway regions and aggregate behavioral patterns from
complex scenes. Instead of following the recent trend of
employing complicated and computationally expensive clus-
tering algorithms to summarize behavior, e.g., [32,30], we
develop sufficient proximity measurements and employ sim-
pler, more efficient, clustering algorithms to achieve strong
performance. We then show how our approaches can be
employed to aid operators through various applications.

We begin by extracting the behavioral superpixels of the
scene, which we define as groups of adjacent pixels which
are essentially uniform in the number and speed of tracks at
various orientations throughout time. Next, we map the scene
activity to superpixel/orientation states and then extract the
common pathway regions by clustering a state-wise similar-
ity matrix. By mapping activity to local states, our approach is
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applicable to both motion flow and trajectories. Furthermore,
by incorporating spatial and temporal information into our
proximity metric, our approach emulates the main advan-
tages of utilizing trajectories for activity analysis without
actually needing trajectories (which are difficult to obtain in
complex scenes).

After extracting the pathway regions, we map the activities
from short, non-overlapping, video clips to the regions, and
then extract the temporal behavioral patterns from a clip-
wise similarity matrix. In addition to employing the stan-
dard approach of assuming each video clip is an independent
entity, we also present a more appropriate grouping method
that incorporates temporal information from surrounding
clips. Furthermore, we examine the results of multiple prox-
imity metrics when computing the similarity between clips.
Finally, we demonstrate further usefulness of our techniques
through applications in detecting anomalies, retrieving video
clips of interest, and creating speed-adaptive playback of
videos.

2 Related work

Scene-based behavior analysis is typically performed by uti-
lizing motion or appearance features [5,11,16,30,33], or by
utilizing trajectories [14,22,26,28,32,29]. The benefit of the
approaches using motion or appearance features is that they
analyze activities without relying on tracking. The major-
ity of these papers employ features based on optical flow
[5,16,30,33], or combinations of optical flow and appear-
ance metrics [11]. Furthermore, instead of working at a pixel
level, many approaches [5,16,30,33] use features extracted
from small cells or spatiotemporal volumes where behavior
patterns are generally more consistent.

Many different approaches have been developed which
perform scene activity analysis via trajectories. An envelope
approach is used in [14] to determine if tracks should be
assigned to existing or form new routes. In [29] spectral
clustering is employed on pair-wise trajectory-based sim-
ilarity matrices to extract trajectory clusters. Kernel Den-
sity Estimation is employed in [22] to learn a model for
the joint probability of a transition between any two image
points and the time taken to complete the transition. Vec-
tor quantization is used in [26] to reduce trajectories to a
set of prototypes. In [32], observations are treated as words
and trajectories as documents, which are clustered via lan-
guage processing algorithms. Tracks are quantized into sets
of location/orientation states and spectral clustering is used to
extract pathlets from similarity matrices combining temporal
and scene entry/exit information in [28].

In addition to the aforementioned algorithms, several tech-
niques have been proposed to analyze videos temporally. In
[5,30] videos are separated into short, non-overlapping clips,

and document clustering approaches are employed to group
clips together. In adaptive fast-forward techniques [15,4],
the playback speed of the initial video is adapted based on a
given criteria. Among the criteria employed thus far are the
similarity of the video to a given query [15] and the amount
of temporal information present in the video [4].

Unlike adaptive fast-forward algorithms, video summa-
rization techniques attempt to provide a summary of a video
by creating smaller videos containing descriptive sections of
the original video. Typically, these techniques employ static
representations such as key-frames [3,34], or motion video
representations [1,7,8,17–19,21,25]. In [3] frames are clus-
tered, key-frames are selected as the centroids of the clusters,
and video shots containing the key-frames are concatenated
to form a video summary. Key-frames are extracted and mul-
tiple clustering stages are employed to produce a summary
in [34].

Several of the summarization algorithms utilize space–
time volumes of actions. In [21] space–time “worms” are cor-
related with a user-specified query to find actions of interest,
which are then condensed by optimizing their temporal shift,
allowing simultaneous display of multiple instances of rele-
vant activity. In [17,19] activities of objects are represented
via space–time tubes, and an energy function is minimized to
create a video synopsis containing a stroboscopic effect. In
[18] a video summary is generated with minimal length and
minimum collision between activities that are found by clus-
tering “tubelets” via their appearance and motion features.
Objects are detected and tracked in [8], resulting in “tun-
nels” that are shifted using a proposed direct shift collision
detection algorithm, yielding a video containing multiple,
originally temporally disjoint, tunnels appearing simultane-
ously.

Other summarization methods work without utilizing
space–time volumes of actions. In [7] visually informative
space–time layers are extracted and packed together so the
total amount of information in the output video volume is
maximized. The technique for extracting epitomes intro-
duced in [6] was extended to videos in [1], resulting in a
smaller video containing many of the spatial and temporal
patterns present in the input video. In [25] a patch-based
bidirectional similarity is employed to determine if a video
summary is both complete and coherent with respect to the
video it is summarizing. Finally, ribbons are carved out of
videos by minimizing an activity-aware cost function in [12]
using a model that tunes the compromise between temporal
condensation and anachronism of events.

In this paper, we propose novel techniques to extract the
common pathway regions and aggregate behavioral patterns
that exist throughout a scene. Unlike the aforementioned
approaches, we combine temporal information and spatial
constraints with local motion information to emulate the ben-
efits of trajectories (which may difficult to collect). Moreover,
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our approaches enable employing computationally efficient
clustering algorithms to summarize video of complicated
scenes. After extracting the common pathway regions and
aggregate behavioral patterns that exist throughout a scene,
we demonstrate how our techniques can be exploited to detect
anomalies, retrieve video clips of interest, and create adaptive
fast-forward videos.

3 Behavioral superpixels

Our first step in summarizing scene behavior is to track mov-
ing objects. To track objects, we use a modified Kanade–
Lucas–Tomasi (KLT) feature tracker [24], which is able to
track hundreds of simultaneously moving feature points in
real time. The base tracker employs the OpenCV implemen-
tation of the KLT feature tracker. Moreover, the tracker limits
features/tracks to moving objects and limits any erroneous
drift or feature matching during tracking by only accepting
features that lie in a motion mask and move in a continuous
direction. We refer to the KLT tracker as a “weak” tracker
because multiple short/broken tracklets per target are typi-
cally produced. However, we show how our algorithms can
accommodate such data. Figure 1 shows example of weak
tracks.

When extracting long pathways traversed throughout a
scene, it is common to divide scenes into small square cells,
where activity patterns are assumed to be more consistent
than at the pixel level [30,28]. However, square cells are
susceptible to encompassing regions of the scene that exhibit
varying activity patterns (e.g., a road and a sidewalk), and can
cause a staircase effect on the borders of resulting pathway
regions.

As opposed to simply gridding the scene, we partition
the scene using a more adaptive approach. Our motivation
comes from the approach presented in [20], which seeks to
group adjacent pixels that are essentially uniform in color
and texture into superpixels. Instead of grouping pixels based
on their color and texture, we group adjacent pixels which
are essentially uniform in the number and speed of tracks

Fig. 1 Example tracks for multiple moving objects in an urban envi-
ronment

through the pixels at each orientation throughout time. We
call the resulting regions (groups) the behavioral superpixels.

To extract the behavioral superpixels of a scene, we first
map the tracks into location/orientation states, where track
orientations are quantized into eight bins. We then create
an activity mask by removing pixels containing negligible
activity. Next, we separate the input video into N non-
overlapping temporal clips and compute two 8N × 1 vec-
tors for each pixel within the activity mask containing tem-
poral traces of the number and average speed of tracks at
each orientation, respectively. We then build count-based
and speed-based similarity matrices using Gaussian ker-
nels (W = exp(−d2/σ 2)), where the distance d between
pixels is computed as the χ2 statistic between traces, and
σ = 0.05 · max(d) for the respective measurements (count
or speed). After the two similarity matrices are built, we
combine them by computing their point-wise product, which
ensures two pixels are only highly similar when both their
count and speed traces are similar. Finally, we extract the
behavioral superpixels from the combined similarity matrix
using the normalized cuts algorithm [23].

4 Extracting common pathway regions

After mapping the observed activities to the behavioral super-
pixels, we extract the common pathway regions in the scene.
In this paper, we define common pathway regions as areas
where the temporal traces of the speed and number of tracks
are locally similar. Thus, given this definition, entire paths
may be composed of one or more pathway regions. For exam-
ple, the two paths in the ‘Y’ junction shown in Fig. 2a con-
tain the three pathway regions shown in Fig. 2b. We desire to
extract pathway regions instead of extracting entire paths as
pathway regions enable a more local, yet descriptive, map-
ping of tracks (or motion flow), and hence enable instanta-
neous behavioral analysis.

Even though we employ weak tracks throughout our
experiments, we recognize that either motion flow or stronger
tracks may be desirable in certain scenarios. Consequently,

(a) (b)

Fig. 2 An example of a a ‘Y’ junction and b the corresponding path-
way regions
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we designed our approach to be applicable when employing
motion flow, weak tracks, or strong tracks.

To begin, we separate videos into short, non-overlapping,
clips. We then map the track observations (or motion) to
superpixel/orientation “states”, where we continue to quan-
tize track orientations into eight bins, yielding temporal
traces of the count and average speed of tracks for each state.

Since we desire to extract the common pathway regions,
we remove states that are not sufficiently traveled. More
specifically, we remove states that do not contain at least 5 %
of the maximum number of observations in a single state
throughout a single clip in at least 2 % of the video clips.
Next, we compute a similarity matrix to represent the behav-
ioral similarity of the kept states. In this paper, we define
two states as being behaviorally similar if (1) the speed of
objects throughout the states are similar, (2) their track count
traces are similar, and (3) they are spatially close and oriented
in a similar direction. Once the similarity matrix is built,
we employ a graph-based clustering algorithm to extract the
common pathway regions. We will now explain our approach
in creating the behavioral similarity matrix through a series
of progressive steps.

4.1 Speed similarity

For a given clip duration T , we compute the proximity of the
speed of two tracks using the Mahalanobis distance. More
formally, we define the similarity of the speed of tracks
between two states x and y as

Ws (x, y, T ) = exp

⎛
⎝−

(
xsμ − ysμ

min
(
xsσ , ysσ

)
)2

⎞
⎠ , (1)

where xs corresponds to the speed component of state x ,
and xsμ and xsσ are the mean and standard deviation of the
average speed of the tracks through x for clips which contain
activity, respectively.

4.2 Activity count similarity

For two states to have similar activity count traces, they
should be “on” and “off” simultaneously, as well as have
similar levels of activity when they are “on”. Let Ix be an
indicator vector where the i th element of Ix is 1 if there is
activity on state x within clip i , and 0 otherwise. We compute
the proximity of the activity count traces for x and y for a
given T as

dz
(
x
∣∣y, T

) =
∑NT

i=1 Iy(i) · (xz(i) − yz(i))2

∑NT
i=1 Iy(i)

, (2)

where xz corresponds to the track count component of state
x and NT is the number of video clips given T . Conceptu-
ally, dz

(
x
∣∣y, T

)
is the average squared “intensity” difference

between states x and y when there is activity on state y. We
then compute the similarity of the activity count traces for x
and y for a given T as

Wz (x, y, T )=exp

(
−max

(
dz

(
x
∣∣y, T

)

y2
zσ

,
dz

(
y
∣∣x, T

)

x2
zσ

))
,

(3)

where xzσ is the standard deviation of the count of tracks
through x across the clips where activity exists on x .

4.3 Incorporating temporal shifts

Intuitively, Wz will be high between two states x and y if the
track count within the two states is similar across time (i.e., in
each video clip). However, since video clips are short, objects
may not traverse the entirety of a pathway region within a
single video clip. For example, consider the two-clip case
where a single object moves across the scene. In this scenario,
there will be no similarity in Wz between the states the object
traverses in the first clip with those it traverses in the second
clip.

To rectify this situation, we incorporate a temporal shift
into the activity count proximity measurement shown in Eq.
(2). More specifically, for a set of temporal shifts Υxy , we

compute d
Υxy
z

(
x
∣∣y, T

)
as

d
Υxy
z

(
x
∣∣y, T

)=
minτ∈Υxy

(∑NT
i=1 Iy(i) · (xz(i −τ)−yz(i))2

)

∑NT
i=1 Iy(i)

.

(4)

Thus, d
Υxy
z

(
x
∣∣y, T

)
quantifies the activity count proxim-

ity between x and y using the temporally shifted trace from
x that is most similar to the trace from y, where Υxy contains
the set of feasible temporal shifts.

Intuitively, the set of temporal shifts Υxy for two states x
and y should reflect the location and orientation of the two
states. For example, if x and y are both orientated upward,
and x is located directly below y, then x can be envisioned as
flowing into y. Hence, the activity of x and y should either be
similar in clip i , or the activity of x in a clip i −τ prior to clip
i should be similar to the activity of y in clip i . More specifi-
cally, if a line through y is drawn perpendicular to the orien-
tation of y, then states on the opposite side of the line as the
orientation vector should have values of τ ≥ 0 (i.e., compare
current and previous clips). Conversely, states on the same
side of the line as the orientation vector should have values of
τ ≤ 0 (i.e., compare current and future clips). In this paper,
we only consider first order temporal shifts (|τ | ≤ 1), as
they are sufficient to build proper similarities between local
states. We then rely on the clustering algorithm to propa-
gate local similarities throughout the pathway regions. Thus,
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Υxy = {0, 1} if x flows into y, and Υxy = {−1, 0} if y flows
into x .

The temporal shifts are then incorporated into the activity

trace similarity by substituting d
Υxy
z

(
x
∣∣y, T

)
for dz

(
x
∣∣y, T

)
in Eq. (3), yielding WzΥxy (x, y, T ).

4.4 Incorporating multiple temporal scales

In crowded scenes with widespread activity, it is conceiv-
able that the activity traces will appear similar for states that
do not belong to the same path for a given clip duration T .
This problem could be alleviated by choosing an appropriate
clip duration based on the scene, but this requires a priori
knowledge of how objects move throughout the scene. How-
ever, since we are automatically analyzing how objects move
throughout the scene, this knowledge does not exist, and it is
difficult to specify a single correct clip duration for a scene.

Intuitively, if two states truly belong to the same pathway
region, then their activity traces should be similar through-
out multiple clip durations. Conversely, if two states do not
belong to the same pathway region, we would expect their
traces to be dissimilar throughout certain clip durations.
Motivated by scale-space techniques [10,31] and pyramid
match kernels [2,9], we propose a pyramid-based approach
to compute the similarity between states at multiple temporal
scales (clip durations).

For an L-level pyramid, we examine the similarity
between the speed and count of tracks through two states
using clips of duration T = {

T0, 2 · T0, . . . , 2L−1 · T0
}
.

Since the likelihood that activity on nearby states corresponds
to objects traversing the same pathway region increases as
clip duration decreases, we weight the similarity of activity
traces for short clip durations more highly. More specifically,
the j th level of the pyramid is weighted as

ω j =
{ 1

2 j+1 j = 0, 1, . . . , L − 2

1
2 j j = L − 1

, (5)

where j = 0 corresponds to the finest layer of the pyra-
mid (i.e., a clip duration of T = T0). We then compute the
speed and intensity-based similarity values for two states in
a weighted fashion.

For an L-level pyramid, the weighted speed and activity
count similarities are computed as

W L
s (x, y, T0) =

L−1∑
j=0

ω j · Ws

(
x, y, 2 j · T0

)
(6)

and

W L
zΥxy (x, y, T0) =

L−1∑
j=0

ω j · WzΥxy

(
x, y, 2 j · T0

)
, (7)

respectively, where T0 is the duration of the shortest clip.
Using the two similarity matrices, we define the behavioral
proximity of two states as

d L
b (x, y, T0)=1−

(
W L

s (x, y, T0) · W L
zΥxy (x, y, T0)

)
. (8)

We set L = 4 and T0 = 1 s. throughout our experiments.

4.5 Pathway region extraction

Using the behavioral proximity defined in Eq. (8), we com-
pute the proximity between states and form a state-wise
behavioral proximity matrix. We then input the behavioral
proximity matrix into the algorithm to build automatically
tuned similarity matrices based on local point distributions
presented in [27]. Next, we remove connections between
states in the resulting similarity matrix that are not spatially
close and oriented in a similar direction. Throughout our
experiments, we define x and y to be spatially close if the
minimum infinity norm between pixels from x and y is at
most 20 pixels, and define x and y to be oriented in a sim-
ilar direction if their orientations are within 45◦ (i.e., one
quantization bin).

We cluster the final similarity matrix using the graph-
based hierarchical clustering algorithm presented in [27],
which merges clusters together in a manner that is analogous
to solving a jigsaw puzzle piece-by-piece by utilizing local
connection strengths. Motivated by the common Eigen-gap
approaches [13], we automatically determine which layer
of the hierarchy to keep using a hysteresis thresholding
approach. Namely, we use the cost incurred to merge the
clusters at a given level as a “score” for that level. We then
compute the percent change between scores of successive
levels, find the level lmin with the smallest number of clus-
ters that results in at least a 20 % change, and search for the
highest level l∗ (containing more clusters than lmin) such that
there is at least a 20 % change between score values for all
levels between lmin and l∗. Intuitively, a high percent change
means it was costly to merge the clusters at a given level. This
approach provides a method to automatically choose which
hierarchy level to maintain.

5 Extracting behavioral patterns

In addition to extracting common pathway regions, another
important task in visual surveillance is determining the
behavioral patterns that appear throughout the day (e.g., once
or periodic). In this section, we describe approaches to group
video clips together based on their aggregate scene behav-
ior. In each of the proposed methods, we focus solely on the
location and count of tracks throughout the scene, and do not
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incorporate the speed of the tracks. However, the speed of
the tracks could be included in our approaches, if desired.

5.1 Instantaneous proximity

Letting P be the number of pathway regions, we represent
each clip via a P × 1 vector, whose elements contain the
count of tracks along each pathway region within the clip.
The video clips can then be grouped by clustering similar vec-
tors together. Intuitively, multiple proximity measurements
can be employed to group the video clips, where varying
measurements utilize different properties to determine the
similarity between two clips.

Throughout this paper, we will explore grouping clips
together using two different proximity metrics. First, we will
employ the χ2 statistic

dχ2 (a, b) = 1

2

n∑
i=1

(ai − bi )
2

(ai + bi )
, (9)

a popular statistical measurement which weights the indi-
vidual dimension differences by the sum of the dimension
values.

When employed to measure the proximity of video clips,
the χ2 statistic will focus more on the total amount of activity
(aggregate) throughout the scene than it does on specifically
where the activity occurs. The differences between dimen-
sions with larger values are penalized so they do not dominate
the proximity measurement (as is the case with Euclidean
distance). For example, consider a scenario with three video
clips of a scene with two pathway regions X and Y . Further-
more, let the count of the tracks on pathway regions X and Y
be 10 and 0, 1 and 0, and 0 and 1, throughout the first, second,
and third clips, respectively. Denoting the activity vector for
the i th video clip as νi , the proximity between the three pair-
wise combinations are dχ2 (ν1, ν2) = 3.68, dχ2 (ν1, ν3) =
5.5, and dχ2 (ν2, ν3) = 1. Thus, even though ν2 and ν3 do not
contain activity on the same pathway regions, ν2 will be con-
sidered closer to ν3 than it is to ν1 (which has activity on the
same pathway region as ν2) since the total activity between
ν2 and ν3 is more similar than the total activity between ν2

and ν1.
In certain scenarios, it may be more desirable to focus

more on where activity occurs throughout the scene than the
total amount of activity within the scene. For example, in the
aforementioned example with three video clips from a scene
with two pathway regions, it may be desirable to group ν1

and ν2 together, since they contain activity on the same path-
way region, and keep ν3 in a group by itself, since it contains
activity on a different pathway region. To accomplish this
task, we normalize the activity vector for each clip (by divid-
ing by the total activity within the clip), and measure the
proximity of two clips using the Jeffrey divergence

dJ (a, b)=
∑

i

ai log

(
ai

(ai +bi ) /2

)
+bi log

(
bi

(ai +bi ) /2

)
,

(10)

a symmetric metric to compare distributions that employs the
KL divergence.

Clustering the clips together using the Jeffrey divergence
results in groups whose clips contain similar distributions of
activity throughout the clips. However, it is often desirable
to separate periods of high traffic from those of low traf-
fic. Thus, after grouping clips using the Jeffrey divergence,
we further divide each cluster based on the total amount of
activity within the clips. To accomplish this task, for each
cluster, we model the count of tracks throughout the clips
within the cluster via a Gaussian mixture model, where the
number of Gaussians is selected as to minimize the Bayesian
Information Criterion. We then assign each clip the label of
the Gaussian with the highest likelihood.

5.2 Pyramidal proximity

While it is common to treat each clip as an independent entity
when grouping video clips together [30], the activity through-
out video clips is typically not independent. Instead, the activ-
ity throughout a video clip is often impacted by the activity
within the clips directly before and/or impacts the activity
within the clips directly after. Furthermore, many scenes are
periodic in nature and employing temporal information may
reduce spurious clip assignments caused by slight activity
fluctuations or the temporal quantization. In this section, we
present a method which computes the proximity between
video clips using a pyramidal approach that incorporates
information from clips temporally surrounding the two clips
of interest.

For an L-level pyramid, the proximity between video clips
a and b is computed as

d L
ν (νa, νb) =

L−1∑
j=0

ω j · d
(
υ

j
a , υ

j
b

)
, (11)

where ω j is computed as in Eq. (5), υ j
a is formed by concate-

nating νa− j through νa+ j (the activity vectors for clips a − j
through a + j , and d (·) is either the χ2 statistic or Jeffrey
divergence.

5.3 Behavioral pattern extraction

Once the proximity values between video clips are computed,
we build an automatically tuned similarity matrix to represent
the similarity between clips and extract the behavioral pat-
terns by clustering the similarity matrix using the approaches
presented in [27] as described in Sect. 4.5.
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6 Applications

The behavioral superpixels, common pathway regions, and
various proximity measurements presented can be employed
in several useful monitoring applications. In this section, we
present approaches to detect video clips containing anom-
alous behavior, retrieve video clips similar to a given query,
and generate adaptive fast-forward videos which adjust the
playback speed of videos clips based on the behavior they
contain.

6.1 Anomaly detection

A common task in visual surveillance is to detect the
anomalous behavior that occurs within a video. Although
widely used throughout the surveillance community, the term
“anomalous” is rather vague, and can refer to multiple con-
cepts. In this section, we present methods to detect video
clips which are anomalous based on four different criteria.
Namely, we propose methods to detect video clips contain-
ing rare activity, clips where the amount of activity or the
speed of objects on a pathway region are abnormal, and clips
where the aggregate scene behavior is abnormal. In all cases,
our anomalies are purely statistical and do not necessarily
correspond to an alarming event.

6.1.1 Rare activity

To detect video clips containing rare activity, we utilize the
uncommon states that do not belong to any pathway region
(i.e., those which do not contain at least 5 % of the maximum
number of tracks observed in a single state throughout a sin-
gle clip in at least 2 % of the video clips). For each clip, we
compute the rarity of the activity throughout the clip as the
sum of the likelihood of the activity along the uncommon
states throughout the clip. For each state, we compute the
likelihood as a function of (1) the count of tracks through the
state; (2) the directionality of tracks through the behavioral
superpixel to which the state belongs; and (3) how popular
the state is throughout the video.

Since the behavioral superpixels can contain varying num-
ber of pixels, we normalize the count of tracks through each
state by the number of pixels within the behavioral superpixel
to which the state belongs. Thus, we represent the count of
tracks through a state using the density of tracks throughout
the state. We will represent the density through state x during
video clip i as xzd (i).

Since we are employing a KLT-based tracker, we expect
the orientation of tracks to be somewhat noisy. Furthermore,
since we quantize the orientations into a small number of
angular bins, we expect the noise to cause the orientation of
some tracks to be quantized into bins adjacent to the true
underlying orientation of their corresponding objects. More-

over, we expect quantization errors to be more likely for
states belonging to superpixels where the activity is more
uniform across bins. To account for these expected errors,
we weight each state based on the activity in all of the other
states belonging to the same superpixel. Let state x belong to
superpixel A, and xzd be the intensity of tracks throughout x
across the entire video. We define the directionality weight
for x to be

xθ = 1 − xzd

maxy∈A yzd

. (12)

Finally, we weight how popular each state is throughout
the video relative to the other uncommon states. Mathemat-
ically, we define the popularity weight as

xπ = 1 − xzd

maxy∈X yzd

, (13)

where X is the set of all uncommon states.
Using the aforementioned measurements, we compute the

amount of rare activity in the i th video clip as

ζ(i) =
∑

x∈X xzd (i) · xθ · xπ∑
x∈X I (xzd (i))

, (14)

where I (xzd (i)) is a binary value which is 1 if xzd (i) > 0,
and 0 otherwise. Video clips with larger values of ζ contain
activity that is more rare. It is important to note that, since
our method employs solely the uncommon states, we are
able to detect video clips containing rare activity even when
they also contain large amounts of common activity (i.e., the
rare activity throughout a clip is not masked by the common
activity).

6.1.2 Abnormal activity on pathway regions

To detect abnormal behavior on the individual pathway
regions, for each pathway region, we model the count and
speed of tracks along the region using a Gaussian Mixture
Model (GMM), where the number of Gaussians in the model
is chosen as to minimize the Bayesian Information Criterion.
We then define the speed and count likelihoods for each clip
as the minimum of all of the individual pathway region like-
lihoods for the respective properties. Video clips which have
the lowest likelihoods are then tagged as having the most
anomalous activity along a pathway (a threshold could also
be set).

6.1.3 Abnormal aggregate scene behavior

To detect if the aggregate scene behavior is abnormal, we
employ the various proximity measurements used to group
the video clips. More specifically, for a given proximity met-
ric, we define those clips having the farthest nearest neighbors
to be the most abnormal (again, a threshold could also be set).
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6.2 Video clip retrieval

The next application we explore is retrieving video clips that
are similar to a given query (e.g., traffic is flowing in a spe-
cific location/direction). Motivated by the approach in [30],
we created a graphical user interface which enables users to
mask out regions of interest within a scene, and define their
corresponding orientations. We then create a query vector
where all pathway regions which overlap the specified areas
of interest are given a uniform weight which sums to 1, and
pathway regions which do not overlap the specified areas of
interest are given zero weight. Finally, we compute the sim-
ilarity of all of the video clips to the query vector using the
KL divergence, and return the clips yielding the lowest KL
divergence values.

In addition to searching for single video clips which
resemble a given query, it is conceivable that a user may wish
to retrieve sections of the video where sequences of behav-
ioral patterns occur. For example, if monitoring a structured
traffic environment where traffic usually flows leftward, then
rightward, and then vertically, a user may want to find sec-
tions of the video where traffic flows rightward and then
leftward, as they deviate from the standard cycle.

To retrieve desired sequences of clips, we begin by mak-
ing a query vector for each pattern using the same approach
described above. To explain our approach at retrieving
sequences of clips, we will assume the desired sequence is a
bigram (i.e., contains two clips). In this scenario, we generate
the vectors q1(i) and q2(i +1) containing the KL divergence
values between the i th and (i + 1)th video clips and the first
and second query vectors, respectively. To ensure the two
queries receive equal weight, we scale the values of q1 and
q2 so they range from 0 to 1. Next, we define the final bigram
score for the bigram beginning at clip i using the harmonic
mean between the two scores. Thus, the score for the clip i
is mathematically defined as

ξ(i) = 2 · q1(i) · q2(i + 1)

q1(i) + q2(i + 1)
. (15)

The bigrams with the smallest ξ values are then returned.
This approach could be extended to longer sequences of
behavioral patterns if desired.

6.3 Creating adaptive fast-forward videos

The final application we explore is creating adaptive fast-
forward videos. Watching long durations of surveillance
video of an area can be a tedious and, given the number of
cameras in existence today, an impossible task. In this sec-
tion, we present methods to summarize videos using adaptive
fast-forward techniques based on a given objective function,
where the playback speeds of the videos are adjusted such
that clips resembling target behaviors are played closer to

real time, and clips that do not resemble the target behaviors
are played faster than real time. While any given objective
function could be employed, throughout our experiments we
will focus on adapting the playback speed of the video based
on (1) its similarity to a user query and (2) the amount of rare
activity it contains.

To compute the playback speed for a clip, we employ a
given objective function c, where a higher value of c(i) for
the i th clip denotes the clip should be played slower (i.e.,
closer to real time). First, we scale the values of c so the
range of values is between 0 and 1. Then, we compute the
playback frame rate for the i th clip as

fi = fmin + (1 − c(i)) · ( fmax − fmin), (16)

where fmin and fmax are the minimum and maximum desired
frame rates for the summary video, respectively. While we
employ a linear function to compute the playback speed
for each clip, a sigmoid or other functions could also be
employed.

7 Experiments

We test our approaches on the three complex urban scenes
shown in Fig. 3. The Roundabout and Junction scenes are
from [11], while the Smith scene is from our campus area
camera network. The video from the Roundabout scene is
62 min long and depicts a roundabout where traffic enters
from either the left, bottom, or top of the image, and exits
in the bottom-left, top, and right of the image. The video
from the Junction scene is 50 min long and contains bidirec-
tional traffic moving vertically and horizontally, along with
several pedestrians crossing the roads and walking on the
adjacent sidewalks. Both of these videos have resolutions of
360 × 288 pixels. Finally, the video from the Smith scene
has a resolution of 704 × 480 pixels, is 45 min long, and
contains a one-way road with two less traveled connecting
roads, all surrounded by walkways containing large amounts
of pedestrian traffic.

Using the KLT-based tracker described in Sect. 3, we
extract behavioral superpixels that have an average area of
≈ 150 pixels and contain pixels which exhibit single behav-
ioral patterns (as opposed to square cells that result from
simply gridding the scene).

Fig. 3 Images from the Roundabout, Junction, and Smith scenes
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Fig. 4 Extracted pathway regions for the Roundabout scene

7.1 Common pathway regions

Figures 4, 5, 6 show the common pathway regions extracted
for the Roundabout, Junction, and Smith scenes. In all three
figures, the pathway regions are sorted in descending order
based on the popularity of the region throughout time (left
to right, top to bottom). Furthermore, the pathway regions
are color-coded based on their orientations using the legend
in Fig. 4, and the brightness for each state along the path-
way region is based on the count of tracks throughout the
state.

For the Roundabout scene (Fig. 4), we extract a pathway
region for traffic that enters from the bottom of the scene
and quickly exits at the bottom-left. Furthermore, both the
horizontal and vertical roads are split into multiple path-
way regions, where the breaks generally coincide with traffic
lights. This result is desired, as vehicles often wait at the traf-
fic lights for multiple clips.

In the Junction scene (Fig. 5), we correctly separate the
horizontal pedestrian crosswalks from the pathway regions
representing the vehicular motion. Furthermore, we correctly
divide the vertical road with upward motion into two pathway
regions, as there is an adjoining road towards the middle of
the image whose traffic merges with the traffic already on the
road. We also extract separate pathway regions for both turn
lanes. Ideally, we would have separated the individual lanes
of traffic. However, the combination of perspective effects
and similar traffic flow in each lane resulted in our approach
having difficulty separating the individual lanes (as would
and any other clip-based approach).

For the Smith scene (Fig. 6), we extract long pathway
regions for the main road and adjacent sidewalks. Further-
more, we are also able to extract pathway regions for the hor-
izontal sidewalk on the middle-left, the crosswalks towards
the middle of the image, and the horizontal motion in the
far-field of the scene. In addition to these primary path-
way regions, there are also a handful of secondary pathway

Fig. 5 Extracted pathway regions for the Junction scene

Fig. 6 Extracted pathway regions for the Smith scene
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regions which are spatially close to the primary regions, but
are composed of states that are less frequently traveled. These
secondary regions are partly a result of quantizing the track
orientations into a finite set of angular bins and employing
imperfect tracks.

7.1.1 Temporal shift and scale comparison and discussion

The above experiments employed our proximity metric
defined in Eq. (8), which compares the activity along states
at different temporal shifts and scales. However, to our
knowledge, existing flow-based algorithms (e.g., [30]) do
not include this information. Instead, they simply compare
simultaneously occurring activity at different states for a sin-
gle temporal scale.

Figure 7a shows example states from the Junction scene
and the 30 nearest states when using (b) our proximity metric
and (c) a traditional proximity metric that does not account
for temporal shifts or scales (i.e., our proximity metric with
τ = 0 and L = 1). The states remain color-coded based on
the map in Fig. 4. Based on these results, it is clear that our
proximity measurement is better suited for comparing the
activity along states than the traditional approaches, which
can define states in completely opposite directions as similar.

7.2 Behavioral patterns

We next separate the videos into clips of 5 s. duration and
employ the approaches discussed in Sect. 5 to extract the
behavioral patterns. Figure 8 shows the behavioral patterns
extracted for the Roundabout and Junction scenes using the
(top row) instantaneous proximity and (bottom row) pyra-
midal proximity with L = 3 based on the χ2 statistic.
Each scene/proximity measurement combination contains a
behavioral pattern image (top-left), timeline image (bottom-
left), and representative images from the primary clip within
each pattern (right).

(a) (b) (c)

Fig. 7 Examples of a target states and the 30 nearest neighbors using b
our proximity measurement and c a traditional proximity measurement

The top rows of each behavioral pattern image correspond
to the pathway regions and the columns correspond to indi-
vidual video clips, where the clips are sorted based on the
behavioral pattern to which they were assigned. The inten-
sity of an element (i, j) corresponds to the percentage of
activity in clip j that occurred on pathway region i (using
the same ordering for the pathway regions that they were
displayed in throughout Figs. 4 and 5). The bottom row of
the behavioral pattern image displays the color-coded label
of the pattern to which the clips were assigned. The timeline
images depict how the behavioral patterns vary throughout
time, where the x and y axes correspond to time and the labels
of the patterns to which the clips were assigned, respectively.
Finally, representative images from the primary clip within
each pattern, where we define the primary clip to be the clip
which is most similar to the other clips within its pattern (i.e.,
has the highest within-class similarity), are shown.

Using the instantaneous proximity based on the χ2 statis-
tic, the video clips from the Roundabout scene are divided
into five patterns, where each group corresponds to activity
along different combinations of the pathway regions. Based
on the timeline image, the scene appears to exhibit periodic
tendencies at the temporal scale examined, which is expected,
as the scene contains a road network governed by traffic
lights. Like the Roundabout scene, the Junction scene is also
highly periodic. The clips from the Junction scene are divided
into six patterns. Three of the patterns correspond to clips
containing different combinations of upward and downward
traffic. There are also patterns which are primarily composed
of leftward and rightward traffic, respectively. The remaining
pattern is made up of clips which are dominated by vehicles
moving from the turn lanes in the center of the scene.

The bottom row of Fig. 8 displays the behavioral pat-
terns extracted from the scenes when employing the χ2 sta-
tistic and a pyramid with L = 3 levels to compute the
proximity between clips. As when employing instantaneous
proximity, there are five patterns extracted from the Round-
about scene. By incorporating temporal information, the clips
are now primarily divided into two patterns (traffic flowing
upward and traffic flowing both rightward and downward).
For the Junction scene, incorporating temporal information
reduces the number of patterns extracted from six to three,
where the three patterns primarily consist of leftward, verti-
cal, and rightward traffic, respectively. Furthermore, the peri-
odic nature of the Junction scene is even more evident in
the timeline image when incorporating temporal information.
Overall, when employing the χ2 statistic, including temporal
information into the proximity metric seems to generalize the
behavioral patterns, enabling a more succinct summarization.

The top row of Fig. 9 displays the behavioral patterns
extracted from the scenes when employing the instantaneous
proximity between clips based on the Jeffrey divergence. The
Roundabout scene is divided into four patterns. One pattern
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Fig. 8 Behavioral patterns (clips are sorted by the pattern to which they were assigned), corresponding timelines, and representative frames from
each pattern for the (left) Roundabout and (right) Junction scenes using (top) instantaneous and (bottom) pyramidal (L = 3) proximity metrics
based on the χ2 statistic

corresponds to traffic traveling upward and a second pattern
represents clips where traffic is traveling rightward across the
scene. The remaining two patterns correspond to clips where
traffic is traveling downward, with one pattern also contain-
ing traffic traveling leftward at the bottom of the screen. The
Junction scene contains eight patterns. Five of the patterns
correspond to clips which contain varying combinations of
vertical traffic. Another pattern contains clips which are dom-
inated by rightward traffic. The remaining two patterns are
from clips which are composed primarily of leftward traffic.

The bottom row of Fig. 9 displays the behavioral pat-
terns extracted from the scenes when employing the Jeffrey
divergence and a pyramid with L = 3 levels to compute the
proximity between clips. Nine patterns are extracted from the
Roundabout scene. Three of the patterns correspond to clips
which contain primarily downward traffic. Another three pat-
terns represent clips that are dominated by upward motion.
There is also a pattern for clips that are mainly composed of
rightward motion. The remaining two patterns contain clips
with leftward traffic at the bottom of the scene. The Junction
scene is divided into ten patterns. Eight of the patterns con-

tain clips which are composed of various combinations of
activities that all contain vertical traffic. The remaining two
patterns are from clips dominated by leftward and rightward
traffic, respectively. Since the Jeffrey divergence is a distrib-
utional approach, incorporating temporal information tends
to result in more patterns being extracted.

7.2.1 Discussion

In the previous experiments, we employed vectors where
each element represented the number of tracks on a path-
way region. However, since pathway regions are of varying
sizes, this may cause certain pathway regions to dominate
simply because they are much larger. If desired, the activity
along each pathway region can be normalized by the number
of pixels within the region. In this case, the feature vectors
will correspond to the density of tracks along the pathway
regions.

Based on the results throughout this section, it is clear
that video clips can be grouped in several different ways. For
example, the χ2 statistic will focus more on the total amount
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Fig. 9 Behavioral patterns (clips are sorted by the pattern to which
they were assigned), corresponding timelines, and representative frames
from each pattern for the (left) Roundabout and (right) Junction scenes

using (top) instantaneous and (bottom) pyramidal (L = 3) proximity
metrics based on the Jeffrey divergence

of activity throughout the scene than it does on where the
activity occurs. Conversely, the Jeffrey divergence focuses
more on where activity occurs throughout the scene than
the total amount of activity within the scene, as it requires
normalizing the activity along each pathway region by the
total activity throughout the scene. Thus, it is important to
ensure the proximity measurement employed matches the
desired objective when grouping clips.

7.3 Anomaly detection

Once the pathway regions and various proximity measure-
ments are computed, they can be employed in several sur-

veillance monitoring applications. The first applications we
examine are the anomaly detection techniques described in
Sect. 6.1.

7.3.1 Rare anomalies

As described in Sect. 6.1.1, clips containing rare activity can
be detected by examining the activity along states that do
not belong to any of the pathway regions. The top of Fig. 10
shows images from clips of the Junction scene which contain
rare activity, where the highlighted areas correspond to the
locations where rare activity is occurring. The first and sec-
ond images correspond to clips where a vehicle is traveling
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Fig. 10 Images from video clips from the (top) Junction and (bottom) Smith scenes that have rare anomalies. The superpixels containing the rare
activities are highlighted

the wrong way down the vertical road on the right. The third
image is from a clip where a pedestrian crosses the street
in the far-field. In the fourth clip there is a vehicle turning
left higher in the scene than where most vehicles turn left.
Finally, in the last image there is a vehicle which enters from
a side street and directly crosses three lanes of traffic.

The bottom of Fig. 10 shows images from clips from
the Smith scene which contain rare activity. In the second
image there is a bicycle traveling the wrong way down a
one-way street. In the remaining images the corresponding
clips contain pedestrians crossing the street. Furthermore, the
last image depicts a scenario where there are multiple rare
activities within the same video clip.

7.3.2 Anomalies on individual pathway regions

As discussed in Sect. 6.1.2, models for the count and speed
of tracks along individual pathway regions can be employed
to detect anomalies on individual regions. Figure 11 displays
images from clips from the Smith scene where the count of
tracks along pathways is unlikely. In each image, the pathway
region on which the unlikely activity exists is highlighted.
The clips containing the images on the left and right are
unlikely, as they contain a large number of pedestrians tra-
versing the highlighted walkways. The clip containing the
image in the middle is abnormal, as it contains a delivery

Fig. 11 Images from video clips from the Smith scene where the total
count of tracks on a pathway region is anomalous. The pathway regions
containing the anomalous activities are highlighted

Fig. 12 Images from video clips from the Smith scene where the speed
of tracks on a pathway region is anomalous. The pathway regions con-
taining the anomalous activities are highlighted

Fig. 13 Images from video clips from the Junction scene whose aggre-
gate behavior is anomalous based on the χ2 statistic when also consid-
ering the two clips before and after the target clip

van driving over a walkway as it is exiting out from under a
building.

Figure 12 contains images from clips from the Smith scene
where the speed of tracks along a pathway region is unlikely.
In all three images, bicycles are traversing pathway regions
which are predominantly traveled by pedestrians walking.

7.3.3 Aggregate anomalies

As described in Sect. 6.1.3, the proximity measurements used
for grouping video clips can be employed to detect clips con-
taining aggregate anomalies. Figure 13 shows images from
video clips from the Junction scene whose aggregate behav-
ior is anomalous based on the pyramidal proximity using the
χ2 statistic. The image on the left corresponds to a clip where
vertical traffic must stop to let a fire truck pass through the
scene. The image in the middle is from a clip containing a
vehicle traveling the wrong way down a street. Finally, in the
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clip containing the image on the right, rightward traffic stops
for a police car traveling leftward.

When employing the Jeffrey divergence to detect aggre-
gate anomalies in the tested scenes, the most abnormal clips
are often those containing a comparatively low amount of
total activity, where that activity occurs on less frequently
traveled pathway regions (e.g., pedestrians crossing the street
in the Junction scene). This is a result of the Jeffrey diver-
gence being a distributional approach.

7.4 Video clip retrieval

The second applications we examine are the video clip
retrieval applications described in Sect. 6.2. Figure 14 shows
images from the first five clips retrieved from the Junction
scene with a query vector corresponding to traffic traveling
upwards on the road on the left. Each of the five clips consist
of predominantly upwards traffic on the road on the left, as
desired.

Figure 15 shows images from the first five bigrams
returned from the Junction scene when the user specified a
bigram of leftward traffic followed by rightward traffic. Each
column corresponds to a different bigram, with the top image
being from the first clip in the bigram, and the bottom image
being from the second clip. As shown in the figure, each of
the returned bigrams correctly exhibit the desired patterns.

7.5 Adaptive fast-forward videos

The final application we explore is creating adaptive fast-
forward videos using the technique described in Sect. 7.5.
Figure 16 shows the playback speed of the adaptive fast-

Fig. 14 Images from the first five clips retrieved from the Junction
scene when employing a query vector of traffic traveling upwards on
the road on the left

Fig. 15 Images from the first five bigrams retrieved from the Junc-
tion scene when employing a query of traffic going leftward and then
rightward

Fig. 16 Playback speed of video clips from the Junction scene when
generating adaptive fast-forward videos based on the proximity to a
query clip

forward video of the Junction scene when the cost metric c
corresponds to the negative KL divergence between the video
clip patterns and the initial query described in the previous
video retrieval section (upward motion on the left). The peri-
odicity in the Junction scene is evident by the periodic nature
of the adaptive frame rate curve.

Figure 17 shows the playback speeds of the adaptive fast-
forward videos of the Junction and Smith scenes when the
cost metric corresponds to the amount of rare activity in the
video (i.e., c(i) = ζ(i)). Based on the frame rate curve from
the Junction scene, it is evident that the most rare clip from
the scene is much more rare than the majority of the clips.
Conversely, in the Smith scene there are several clips that
contain similar amounts of rare activity as the most rare clip.

Overall, it is clear that the adaptive fast-forward videos
will be much shorter in duration than the original videos and
will enable security operators to focus on behavioral patterns
of interest. Furthermore, qualitative analysis of the adaptive
videos verified their playback was smooth and compelling to
watch.

8 Summary

Throughout this paper, we proposed novel techniques to sum-
marize the high-level behavior throughout scenes. First, we
presented an approach to compute the proximity between
location/orientation states that is applicable for motion flow
and trajectories. Furthermore, by employing activity infor-
mation from multiple temporal shifts and scales, we are able
to compare and emulate the benefits of strong tracks for all
input types.

Once the proximities between states were computed, we
performed graph-based clustering to extract the common
pathway regions. Next, we proposed methods to extract the
aggregate behavioral patterns using feature vectors contain-
ing the activities along pathway regions throughout video
clips. We then presented multiple useful mechanisms to fur-
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Fig. 17 Playback speed of
video clips from the Junction
and Smith scenes when
generating adaptive fast-forward
videos based on the amount of
rare activity within the clips

ther exploit our techniques which help alleviate the workload
of security operators. Namely, we presented approaches to
detect anomalies, retrieve video clips containing behaviors of
interest, and create adaptive fast-forward videos which adjust
the playback speed of clips based on their behavior content.
We tested our approaches on videos from multiple compli-
cated urban scenes containing both pedestrian and vehicular
traffic, and showed our methods were successful in summa-
rizing their behavior.
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