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Abstract In this work we propose algorithms to learn the
locations of static occlusions and reason about both static
and dynamic occlusion scenarios in multi-camera scenes
for 3D surveillance (e.g., reconstruction, tracking). We will
show that this leads to a computer system which is able to
more effectively track (follow) objects in video when they
are obstructed from some of the views. Because of the na-
ture of the application area, our algorithm will be under
the constraints of using few cameras (no more than 3) that
are configured wide-baseline. Our algorithm consists of a
learning phase, where a 3D probabilistic model of occlu-
sions is estimated per-voxel, per-view over time via an iter-
ative framework. In this framework, at each frame the visual
hull of each foreground object (person) is computed via a
Markov Random Field that integrates the occlusion model.
The model is then updated at each frame using this solution,
providing an iterative process that can accurately estimate
the occlusion model over time and overcome the few-camera
constraint. We demonstrate the application of such a model
to a number of areas, including visual hull reconstruction,
the reconstruction of the occluding structures themselves,
and 3D tracking.
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1 Introduction

It has been shown in the computer vision literature that
occlusion reduces the performance of many vision algo-
rithms (e.g., detection and tracking). Because of this, ap-
proaches have been proposed that attempt to either implic-
itly or explicitly deal with this phenomenon in either of its
two forms: static occlusions, which are unmoving objects
in the scene (e.g., trees), and dynamic or inter-object occlu-
sions (e.g., people).

Further, because of the growing popularity of multi-
camera surveillance systems, there is a push in the commu-
nity not only to model these occlusions in the image space,
but to have some 3D representation of these occlusions. For
instance, in an ideal situation, one would place a large num-
ber of cameras in the scene, and perform a full 3D recon-
struction via a multi-view stereo algorithm. With the full 3D
structure of the scene known, the static occlusion problem
can be appropriately handled for the 3D reconstruction and
3D tracking problems.

Unfortunately, many practical scenarios (e.g., surveil-
lance) cannot employ standard multi-view stereo algorithms
to estimate occluded areas due to practical constraints. First,
surveillance scenarios are usually required to run at, or near,
real-time. Most multi-view stereo algorithms take many sec-
onds just to process a single frame/set of frames from a cam-
era. Second, multi-view stereo usually requires many views
to get an accurate estimate of the depth of the scene; more-
over, most multi-view stereo algorithms require relatively
small baselines between these cameras. Real-world scenar-
ios will often be constrained to having few cameras which
are spread far apart (i.e., wide-baseline configuration).

In this work we propose an activity-based method that
learns the locations of static (unmoving) occluding struc-
tures in a scene given that we only have a small number of
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cameras and that they are configured wide-baseline, which
is an extension to our previous work in Keck and Davis
(2008). The method works in two stages. The first stage
learns which areas (voxels) in the scene are likely occluded
by computing a probabilistic per-voxel, per-view model with
an iterative, recurrent procedure. While this model is able
to capture which areas are occluded in each view, it does
not give an explicit 3D model of the static occlusions them-
selves. Therefore, in this extension we include a second
stage of the algorithm which combines the per-view mod-
els to produce such an explicit model. There are multiple
advantages to using this method over standard multi-view
stereo algorithms: first, the method is fast relative to most
stereo algorithms; second, because the temporal dimension
is used to learn from static views, fewer cameras are needed
to recover the occluding structures; and finally, the cameras
may be configured wide-baseline. Each of these address the
practical issues related to surveillance scenarios.

The novel contributions of the framework are (1) a
method for learning the occluded areas of a scene even
when the number of distinct views are few, (2) a new en-
ergy functional for visual hull reconstruction via a Markov
Random Field (MRF) that incorporates both spatial and tem-
poral constraints as well as a technique for post-processing
these results that significantly improves visual hull results,
and (3) a method for combining occlusion models across
views to recover the 3D occluding structures. We also point
out that the primary application of this framework is to aid
in computing the visual hulls of foreground objects and im-
proving the results of tracking these objects when under oc-
clusion, and not creating highly accurate 3D models; thus
tracking performance will be the primary metric by which
we evaluate our system.

The remainder of this manuscript is organized as fol-
lows. We will review related work in Sect. 2 and give a full
overview to our system in Sect. 3. In Sect. 4 we will present
our iterative occlusion learning algorithm, which is able to
adaptively learn the occluded areas in the scene, resulting in
a per-voxel, per-view model of occlusion. After the learning
algorithm completes, we describe a method by which the
per-view models can be combined to recover a 3D represen-
tation of the occlusions themselves in Sect. 5. We will test
these algorithms on multiple datasets in Sect. 6, and then
show an application of these 3D occlusion models to track-
ing algorithms in Sect. 7. Finally we will give concluding
remarks in Sect. 8.

2 Related Work

2.1 Occlusion Handling

Occlusion had long been known to reduce the performance
of many vision algorithms. For instance, in object detection

in 2D (image space), many algorithms are based on learn-
ing a person template and finding all locations in an in-
spection image that are similar to the template (Dalal and
Triggs 2005; Oren et al. 1997; Papageorgiou et al. 1998).
When holistic templates are used and parts of the object
are not present due to occlusion (e.g., a person’s legs are
blocked from view), the detection performance tends to
degrade quickly. Some recent algorithms have implicitly
given occlusion support to detection algorithms by combin-
ing multiple features intelligently (Davis and Keck 2005;
Mohan et al. 2004; Tuzel et al. 2007; Viola et al. 2003;
Wu and Nevatia 2005) from the training data. We say that
occlusions are implicitly handled here because the response
of the classifier is a set of weighted component detec-
tors, and as long as the most important features are found
(e.g., head and torso in the case of humans), the classifica-
tion can still be correct even if other components are not
present (occluded).

More recent advances in detection not only localize the
object, but also allow for the segmentation of the object
as well (Gavrila 2000; Sharma and Davis 2007; Wu and
Nevatia 2007). These state-of-the-art methods will have a
degradation (specifically shown in Sharma and Davis 2007)
in performance as the object of interest is occluded more
severely and both detection rates and the quality of the final
silhouette will gradually worsen.

Implicitly handling occlusion has also been done for
tracking algorithms. We consider the effects of occlusion
on two broad classes of algorithms: appearance-based algo-
rithms and data associative algorithms. Appearance-based
algorithms are characterized by the building of a candidate
model of the appearance of an object in an initial frame,
and in successive frames search for the object’s location
by matching to this model. Data associative trackers on the
other hand attempt to find frame-to-frame correspondences
of observations. In 2D tracking, appearance-based meth-
ods deal implicitly with static occlusion by allowing large
jumps in frames, as in Porikli et al. (2006), but have inher-
ent difficulty with dynamic occlusions. Algorithms that are
data associative in nature also handle static occlusion im-
plicitly (Dellaert and Thorpe 1997; Dockstader and Tekalp
2001; Huang and Essa 2005; Rosales and Sclaroff 1998;
Senior et al. 2001), but are usually more concerned with han-
dling dynamic occlusions properly.

Tracking algorithms in 3D have begun to become popular
lately, which also offer some implicit handling of occlusion.
Algorithms such as Isard and MacCormick (2001), Mittal
and Davis (2002) are early 3D tracking systems which em-
ploy 3D human body models to aid in the tracking process,
which may provide some robustness to occlusion. Other ap-
proaches fuse information from multiple single view track-
ers and triangulate the results in 3D. In Zhou and Aggar-
wal (2006), shape features are extracted from blobs in each
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camera view and they are associated from frame to frame.
The individual tracks from each view are then fused into
3D tracks using an Extended Kalman filter. In Zhang et al.
(2005) multiple color mean shift trackers in different views
were combined to obtain a 3D output. These trackers, be-
cause they fuse information at the decision level, tend to
suffer decreases in performance any time a single tracker
fails. To this end, feature-level fusion approaches have been
proposed to be more tolerant to faulty information in a
single view. Approaches including (Black and Ellis 2006;
Keck et al. 2006; Khan and Shah 2006) make assumptions
about the scene’s planar structure in order to obtain ob-
ject correspondence across multiple views and finally use
Kalman filters or clustering to track objects. Very recently
a multi-view kernel-based 3D tracker (Tyagi et al. 2007)
was proposed which extracted color features from all cam-
eras and combined them into a single feature for mean-shift
tracking directly in 3D. This implicitly handles some feature
corruption that may occur due to static and dynamic occlu-
sions.

Some explicit occlusion handling methods exist. In 2D,
occlusions have classically been found via T-junctions, pop-
ularized by Biederman (1987). Some systems exist that
employ T-junctions for occlusion finding (Apostoloff and
Fitzgibbon 2005; Broadhurst and Cipolla 1999), but prac-
tically these features are difficult to extract. Other image
space methods exist (Guan et al. 2006; Zhou and Tao 2003),
but more recently the focus has shifted to 3D. Guan et al.
(2008) recover static occlusions by maximizing a posterior,
p(O|I, B), the probability of a voxel belonging to an oc-
cluding structure given a video sequence and background
model and are able to track via the same method. The moti-
vation of their method is similar to that of our work: tracking
effectively through occlusion. However, their method still
requires many cameras to operate effectively and takes many
seconds to process a single frame. The intent of our pro-
posed work is to provide an algorithm that can accurately
extract the occlusions in the scene in 3D in a more practical
scenario, with few cameras configured with wide-baselines.

2.2 Scene Reconstruction

One way to explicitly model the occlusions in 3D is to use
a multi-view stereo method, reviews of which can be found
in Seitz et al. (2006), Strecha et al. (2008). The motivation
of these methods is to create a high-resolution surface of
the objects imaged in multiple distinct views. Many of these
methods usually require a very large number of cameras (10
or more) for reasonable results as well as often taking min-
utes per frame to process, both of which are impractical for
surveillance scenarios. These methods also do not formally
capture the concept of occlusions that transition from static
to dynamic over time (e.g., cars parked in/exiting a parking
lot).

However, as we will present a probabilistic, voxel-based
method for finding occluding structures, one relevant frame-
work to compare against would be the space carving frame-
work, introduced in Kutulakos and Seitz (2000) as a non-
Bayesian model and extended in Broadhurst et al. (2001) to
provide a probabilistic interpretation to each voxel. In the
original method, a plane sweep is performed in each of the
principal directions (x-, y- and z-axes) starting from both
the positive and negative ends of the axes (six total sweeps)
to determine which voxels are photo-consistent across cam-
eras. The photo-consistent voxels are chosen as the recon-
struction of the scene, called the photo-hull. In the extension,
the authors introduce a Bayesian model for determining the
photo-hull. Here the appearance of each voxel is modeled
and then used to estimate the probability that a voxel is oc-
cupied given the data, similar to our MRF model. The goal
is to estimate the probability that a voxel is occupied:

P(∃j = 1|D)

= P(D|∃j = 1)P (∃j = 1)

P (D|∃j = 1)P (∃j = 1) + P(D|∃j = 0)P (∃j = 0)
(1)

The authors also include occlusion probabilities at each
voxel by reasoning along rays. The authors extend the orig-
inal plane sweep method to deal with these occlusion prob-
abilities, and are able generate more photo-realistic results
without some of the issues (e.g. local hole carving) from the
original algorithm.

Both this method and our method produce a probabilistic
model at each voxel for each frame. However, we discuss
some of the key differences between our method and that of
Broadhurst et al. (2001).

Probabilistic Occupancy vs. Probabilistic Occlusion Both
approaches provide probabilistic occupancy models over a
voxel space. The method from Broadhurst et al. (2001) com-
putes the probability that each voxel is occupied by some
object in the scene. We provide a probabilistic reconstruc-
tion method that reconstructs only the foreground objects at
each frame. However, what is finally learned is a probabilis-
tic model of occlusion, not of occupancy. This is a subtle but
important point.

Full Reconstruction vs. Occlusion Reconstruction The
previous work provides a method for full reconstruction of
any object occupying a scene; that is, any object that ap-
pears in view of all cameras can be reconstructed given that
it is photoconsistent across the views. In our proposal, we
will use the learned probabilistic occlusion model to get a
reconstruction of the occluding objects in the scene. This is
a key difference in the two approaches as our algorithm can-
not reconstruct any areas that are not occluding structures,
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which is symptomatic of the differing motivations of the
two approaches. Our approach is looking for a reconstruc-
tion for the sole purpose of aiding in tracking applications
(Sect. 7), while the previous approaches are concerned with
photo-realistic reconstructions of a scene.

Many Small-baseline Views vs. Few Wide-baseline Views
Perhaps the most interesting difference between the two ap-
proaches is the set of conditions in which each can operate.
We have designed our approach to take advantage of tem-
poral information, using a long sequence of frames to learn
what areas in the scene are occluded. Because we fuse infor-
mation over time, it is not as important for our approach to
have as many views, which is what effectively allows us to
overcome the few camera constraint. Not only that, we will
show in Sect. 6 that our approach actually works best when
the cameras are well spread. These again are all artifacts of a
system designed to be used in practical surveillance scenar-
ios. On the other hand, multi-view stereo approaches usu-
ally do not fuse information across time, as is the case in
Broadhurst et al. (2001). Here more views are needed to
produce reasonable results. The main reason is that the ap-
proach is built on examining the variation of the colors onto
which each voxel projects. If there are only three views, for
example, carving away voxels becomes more difficult as it
is much more likely that the projection of a voxel in three
views has low variation in the color space, even if the voxel
is not occupied. We will show an example of this behavior
in Sect. 6.1 when we compare space carving to our approach
for reconstruction on a synthetic dataset. What will be seen
is that even when many views are used, there may be voxels
which cannot be carved away, simply because the projection
of those voxels happens to line up in each view with a very
similar color, even though the voxel is not occupied.

Furthermore, the space carving approach assumes that all
cameras are on one side of the voxel space. This assumption
is what allows the efficient plane-sweep implementation to
work; otherwise, reasoning about inter-voxel occlusion be-
comes computationally infeasible. Though this assumption
can be relaxed via the six-plane sweep method from Kutu-
lakos and Seitz (2000) and allow cameras to be on multiple
sides of the space, this would partition the voxel space into
six non-interacting areas. Thus in each of these six parti-
tions, a minimum of two cameras would be needed to carve
any voxels away during a sweep, and even more would be
needed in each partition to get a faithful reconstruction. Our
approach has no such constraints.

In summary, multi-view stereo approaches like space
carving are designed to produce photorealistic reconstruc-
tions of a scene viewed by many cameras, and perform better
than the proposed method for such purposes. Our method,
on the other hand, is designed to work under surveillance
conditions, producing reconstruction of only the occluding

structures given only three cameras at wide-baseline con-
figurations, and provides advantages over multi-view stereo
algorithms when used in this capacity.

3 System Overview and Motivation

We present a diagram of our overall system architecture in
Fig. 1. From this diagram, one can see that the system begins
in the learning procedure that will be described in Sect. 4
(the box labeled “Occlusion Model Learning”). A number
of subprocesses occur during the learning algorithm. First,
background modeling occurs, where a background model
is learned over time, and a set of background likelihoods
is produced. These likelihoods are then passed forward to
the MRF reconstruction module, producing a foreground re-
construction. This foreground reconstruction is then post-
processed to remove shadows, etc. Finally, the foreground
reconstruction is used to update the occlusion model, and
this updated occlusion model feeds back to the reconstruc-
tion module for processing the frames at the next timestep.
The learning process operates continuously on a video se-
quence, performing these subprocesses for the set of images
at each timestep, building a per-voxel, per-view probabilistic
model of occlusion over time. It is this temporal processing
that allows the algorithm to identify occluded areas even in
the presence of only few cameras.

When processing on a video sequence is complete, the
occlusion model learned can either be used by the tracking
algorithm or be passed to the “Occluder Reconstruction”
routine, which is described in Sect. 5. This procedure will
convert the per-voxel, per-view learned model into an actual
reconstructed 3D object. It begins by smoothing the learned
background images from each camera, and then segment-
ing them via mean shift clustering. These segments are then
matched across views, and matching segments that corre-
spond to regions that have been learned to be occluded are
reconstructed. Using the occlusion model as a cue for the re-
construction is another element that allows the algorithm to
operate with few cameras. This new 3D model of occlusion,
which is no longer per-view and only per-voxel, can also be
incorporated by a tracker.

Finally, we will evaluate the performance of our tracking
algorithm with and without each of these models. We do so
by integrating the occlusion model into both a 3D Kalman
filter and a 3D mean shift tracker, the details of which are
given in Sect. 7. Note that only one of the two occlusion
models (either the probabilistic model from Sect. 4 or the
binary model from Sect. 5) is used at a given time.

4 Learning of a Probabilistic Occlusion Model

In this section we introduce the foundation of our algo-
rithm, which is a method to learn which areas in a scene are
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Fig. 1 A diagram of our system, with corresponding section numbers.
Processing starts on the upper-left, where images feed into the system.
The top-most large box encapsulates the occlusion learning procedure,
which produces a 3D probabilistic model of occlusion. This model can

then be passed to directly to a 3D tracker (bottom-most box), or may be
processed further (middle box) to produce a visual hull of the occluding
objects themselves, which may also be leveraged by the tracker

occluded by static structures. The method is able to learn
a per-voxel, per-view model of occlusion even when the
number of cameras is small. The learning is done by uti-
lizing a 2-phase procedure that is applied to each frame.
The first phase (Sect. 4.2) solves the voxel occupancy prob-
lem at a given frame with a Markov Random Field (MRF)
which utilizes the probabilistic occlusion model. The sec-
ond phase (Sect. 4.5) employs this solution to update the
occlusion model for the following frame. The resulting pro-
cedure overcomes the problem of having few cameras by
accumulating information over time. We consider this the
foundation of the architecture as it will be used as input to
the reconstruction method introduced in Sect. 5 as well as
the tracking algorithms proposed in Sect. 7.

We will start by presenting the voxel occupancy problem
to the reader in Sect. 4.1 and our solution to the problem
using an MRF that incorporates constraints for both spatial
coherency and temporal consistency. We will then discuss in
following subsections how a probabilistic occlusion model
can be incorporated directly into the MRF, covering the first
phase of the iterative procedure. We will then describe the

second phase, discussing how to update the occlusion model
at each frame given the voxel occupancy solution.

4.1 The Voxel Occupancy Problem

The voxel occupancy problem is a 3D problem that is anal-
ogous to 2D background subtraction. It can be stated as fol-
lows: given a scene viewed simultaneously by M calibrated
cameras and a 3D voxel lattice defined in that space (de-
noted V where |V | = N ), determine which voxels are oc-
cupied by foreground objects and which are not. This can
be interpreted as finding a function f : V → {0,1}, where
mapping a voxel vj ∈ V to 0/1 means that vj is unoccu-
pied/occupied, respectively. For example, f (vj ) = 1 at time
t would indicate that voxel vj is occupied by a foreground
object (person) at time t . The problem then comes down to
determining the optimal function f ∗ (which can be thought
of as a binary labeling of V ) for a set of images taken at
time t . We will first discuss the most basic solution to this
problem, followed by a description of our approach, which
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takes advantage of this convenient labeling interpretation by
casting the problem into an MRF framework.

The basic approach to solving the voxel occupancy prob-
lem is a voting scheme. First, assume that the M calibrated
cameras are represented by their projection matrices, which
we denote Pi for i ∈ [1, . . . ,M]. The pixel location in cam-
era i for any voxel vj will be referred to with the shorthand
notation pi

j = (xi
j , y

i
j ).

The basic algorithm begins by computing a foreground
image for each of the input views. Any approach that gener-
ates a foreground mask can be used, such as Elgammal et al.
(2001), Kim et al. (2005), Stauffer and Grimson (1999). We
will denote the foreground silhouette image from each cam-
era as F i . The solution to the voxel occupancy problem (or
equivalently the computation of the visual hull of the fore-
ground objects) is then computed by projecting each voxel
in V into each of the foreground images, and tallying a vote
count:

nj =
M∑

i

F i (pi
j ) (2)

The visual hull is then the set of voxels T ⊂ V such that
nj = M . That is, it is the set of voxels that can be “seen” in
the foreground of each view.

The major advantage to using such a simple approach is
its speed, which could easily achieve real-time performance
by harnessing the power of a single GPU. However, some
disadvantages do arise with this method. First, at each voxel
a difficult threshold decision must be made. That is, if a par-
ticular voxel is occluded from any view, then it will never be
seen in all M views, even if it is occupied. Although some
occlusion handling could be done by reducing the threshold
M to smaller number K , one still must choose K , which is
likely to vary from voxel to voxel. It would be more con-
venient to make a fuzzy decision at each voxel. A second
disadvantage to this voting scheme is that there is no spatial
coherence enforced on the voxels. That is to say, it is likely
that neighboring voxels will have the same label due to the
solid nature of most objects being considered (e.g., people),
and the scheme described above does not enforce this con-
straint.

We have developed a solution to the voxel occupancy
problem via an MRF that addresses these two concerns by
pushing the solution into a global energy minimization. This
approach also has the advantages of a fast min-cut solution,
and will be able to directly incorporate a probabilistic occlu-
sion model.

4.2 MRF Solution

Computing the visual hull via an MRF has been attempted
previously in the literature, originally in Snow et al. (2000),

where the authors lay out a simple system, but do not de-
velop their approach theoretically from a statistical stand-
point. We address that issue in this section, where we model
our MRF by combining information from statistical back-
ground models in each image. We also prove that our formu-
lation is regular and in the class of F 2 functionals, meaning
that it can be solved via a min-cut algorithm.

When solving a labeling problem with an MRF, the typ-
ical approach (e.g., Sheikh and Shah 2005) is to maximize
the posterior distribution of the labeling given the data, de-
noted P(f |D), by recognizing that it is proportional to the
likelihood of the data times the prior of the labeling. The
optimal labeling f ∗ is defined as the labeling which max-
imizes this product, but is often transformed into negative
log-likelihood space for numerical stability:

f ∗ = arg min
f

− lnP(D|f ) − lnP(f ) (3)

The heart of the problem then lies in modeling these two
distributions, the first being P(D|f ), the likelihood of the
data given the labeling, and the second being the prior of the
labeling P(f ). We will now discuss these two terms in our
formulation.

4.2.1 Voxel Likelihood

To estimate the likelihood of the observed data given a par-
ticular labeling f , we model both the foreground and back-
ground likelihoods in the images for each voxel projection.
We create a background model Bi (i = 1, . . . ,M) for each
camera view. In this work, we employ the approach from
Stauffer and Grimson (1999) where each pixel is modeled as
a mixture of Gaussians. Therefore the likelihood of a voxel
being generated by this distribution given that its label is 0
(i.e., f (vj ) = 0) is:

PB(di
j |Bi ) = max

k

1√
2π3|�ik

j |

× exp

(
−1

2
(di

j − bik
j )�

( ik∑

j

)−1

(di
j − bik

j )

)

(4)

where di
j is an RGB 3-vector in image i onto which voxel j

projects, bik
j is the RGB 3-vector to the corresponding pixel

in the background model for image i from component k of
the mixture model, and similarly �

ik
j is the covariance of

component k for the corresponding pixel in image i.
We model the likelihood that a voxel belongs to the fore-

ground as a uniform distribution, meaning that we assume
all colors are equally likely to appear as part of a foreground
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object (Sheikh and Shah 2005). We denote this uniform dis-
tribution as constant

PF (di
j ) = 1

R × G × B
(5)

where R, G, and B are the number of possible colors in
each of the bands. We will denote this constant as γ . More
sophisticated models such as mixtures of different appear-
ance distributions (e.g., Sheikh and Shah 2005; Strecha et
al. 2004) could be employed here. However, other works
have noted that these more complicated appearance mod-
els may increase performance only slightly (Gargallo and
Sturm 2005); thus we employed the uniform model for its
simplicity.

With these two likelihood functions, we can write the
data term as:

P(D|f ) =
N∏

j

M∏

i

PB(di
j |Bi )1−fj PF (di

j )
fj (6)

where fj = f (vj ).

4.2.2 Labeling Prior

We must also define a prior on labeling function f . We start
by introducing the standard Ising model (Sheikh and Shah
2005; Snow et al. 2000):

P(f ) = exp

[∑

j

∑

i∈NS(j)

λ(fi ⊗ fj )

]
(7)

where ⊗ denotes the XNOR operation and λ is a positive
constant which is a parameter to the system. The function
NS defines the spatial neighborhood of a voxel, and in our
implementation returns the set of voxels that are directly
next to vj in each of the x-, y-, and z-directions in lattice V
(i.e., 6-connected). This standard model captures the notion
that labelings which are spatially coherent (i.e., neighboring
voxels have the same label) are more likely than those that
do not.

Unfortunately, when using few cameras, visual hull re-
sults at each frame can still be poor. To improve the results
within the MRF, we impose an additional constraint that en-
forces temporal consistency. When processing video at high
frame rates (e.g., 30 Hz) it is likely that not only should the
labeling of voxels be coherent spatially, but they should also
have the same label over short temporal windows. This is
because foreground objects will not move far from frame
to frame when the video is coming in at a high frame rate
and the objects are moving at a normal speed. We can in-
corporate this into the labeling prior by adding an additional
parameter, μ, to the system that encodes how much we be-
lieve a voxel labeling should be persistent in time (μ will

be high for high frames rates, and near zero when the frame
rate is very low)

P(f ) = exp
∑

j

[ ∑

i∈NS(j)

λ(fti ⊗ ftj )

+
t+T∑

u=t−T

μ(fuj
⊗ ftj )

]
(8)

In this equation we let ftj = ft (vj ) be the labeling of
voxel vj at time t . The first sum in this term is the same
as the basic Ising model, while the second introduces the
bias toward temporally consistent labelings, giving a higher
prior to those which are consistent along temporal window
[t − T , t + T ]. In all of our experiments, we set T = 1.

Given the likelihood and prior terms defined above, the
optimal labeling f ∗ can be computed using the results from
Kolmogorov and Zabih (2004). In that work it was proven
that any energy functional of binary variables of the form

E(x1, . . . , xn) =
∑

i

E1(xi) +
n∑

i=1

n∑

j=i+1

E2(xi, xj ) (9)

can be minimized by performing a min-cut on a specially
constructed graph as long as that energy functional also sat-
isfies the regularity condition

E2(0,0) + E2(1,1) ≤ E2(0,1) + E2(1,0) (10)

In (9), E1 (often called the data term) denotes a function
of a single binary variable at a time, and E2 denotes a func-
tion of two variables at a time, where the double summation
ensures that the clique potential between any two nodes i

and j is only counted once in the total energy. The impor-
tant result from Kolmogorov and Zabih (2004) is that no
term in the energy function considers more than 2 binary
variables at a time. It is clear that (3) is exactly of this form.
The first term, the voxel likelihood, considers only one vari-
able at a time. The labeling prior has two independent terms
that each consider only two binary variables at a time. It is
also trivial to show that this equation satisfies the regular-
ity condition as long as λ and μ are positive. Thus, since
no single term in our energy functional considers more than
two binary variables at a time, we can directly solve our min-
imization problem via graph cuts. We thus construct graph
G according to Kolmogorov and Zabih (2004), effectively
partitioning V into two mutually exclusive subsets: S , the
unoccupied (label 0) voxels, and T , the occupied (label 1)
voxels.

4.3 Integration of the Occlusion Model

Up to this point we have ignored the information we have
from an occlusion model; here we integrate the concept of
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such a model into the MRF to allow for the reconstruction
of areas that are occluded. We begin by defining the occlu-
sion model per-voxel, per-view. We will denote the occlu-
sion model P(Oi

j ) for voxel vj in view i. The model will

vary between 0 and 1, with P(Oi
j ) = 0 meaning that vj can

without a doubt be seen from view i, and P(Oi
j ) = 1 mean-

ing it is certainly occluded from view i.
The estimate of the foreground likelihood can be im-

proved with this model. It is done by realizing that if it is
known that a voxel is very likely occluded in image i, then
it is also highly probable that the projection of that voxel
into image i will resemble the appearance of the background
model, even if the voxel is truly occupied. This notion is for-
malized in the following way:

PF (di
j |Oi ) = P(Oi

j )PB(di
j |Bi ) + [

1 − P(Oi
j )

]
γ (11)

where PB(di
j |Bi ) is given by (4). By the same reasoning,

the occlusion model will not alter the background likelihood
function PB . We incorporate this occlusion model expecting
that in cases where something is very likely to be occluded
in a given view, it can still be labeled as occupied if the other
views believe the voxel is likely to be in the foreground.

4.4 Shape-based Constraints

Due to the presence of shadows, and the small number of
cameras, some unoccupied voxels can still be labeled oc-
cupied by the MRF. For instance, in Fig. 2(a) we present
one of three views of a scene, and in Fig. 2(b) we show
the MRF reconstruction (without temporal constraints). Be-
cause of the shadow in front of the large, green occluding
structure, which is visible in all three views, a layer of vox-
els is reconstructed on the ground plane that can affect the
learning algorithm. It is important to remove these voxels
from the reconstruction. Similarly, due to the noisy nature
of the input and difference images, other non-human shapes
can be reconstructed like the free-floating blob in the lower
right area of the figure.

To relieve some of these issues, we post-process the vox-
els that are labeled as occupied by the MRF (the set T ). We
begin by clustering the voxels in the set T via the mean shift
algorithm (Comaniciu and Meer 2002). This results in a set
of K clusters {Ci}i=1,...,K that effectively partition the vox-
els in T into K disjoint sets. We then examine each cluster,
and if there is no voxel in a cluster that is very high off the
ground, it is assumed that the cluster belongs to a shadow.
Furthermore, we compute the orientation of the ellipse con-
taining the points in the cluster by computing the covariance
matrix of the points, and performing an eigenvalue decom-
position on the resulting 3 × 3 matrix, which will give the
axes of the 3D ellipsoid containing the points. We remove
unexpected shapes by eliminating clusters of voxels that do
not have an axis that aligns well with the ground normal. We
present an example of the results from this post-processing
procedure in Fig. 2(c). The addition of the temporal con-
straint on the MRF actually removes the large floating blob
on the lower right of Fig. 2(b) as this was generated in noise
from background subtraction. The shape constraints are able
to remove the shadow regions lying on the ground.

4.5 Updating the Occlusion Model

To update the probabilistic occlusion model at each frame,
we first compute the foreground silhouette masks in each
view with the algorithm from Sheikh and Shah (2005)
(note that we previously used Stauffer and Grimson 1999
to model the background for the MRF, not to create fore-
ground masks). We chose this method because of its similar
energy minimization framework, but again any background
subtraction method will suffice. We project each voxel in T
into each of the multiple views. However, some care must
be taken in this projection. For instance, it is possible that a
second voxel behind vj projects to its same location in view
i (i.e., they are along the same line of sight). It is also possi-
ble that this second voxel is behind an occlusion, but that vj

is not. Therefore, one can only reason about voxels that are
not occluded by any other “on” voxels in each view.

Fig. 2 (a) One of three views of a scene. (b) Reconstruction without temporal and shape-based constraints provided. (c) Same views reconstructed
with our new method
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To remedy this, we project the eight corners of each voxel
into each view, and compute the convex hull of these eight
points via the gift wrapping algorithm (Jarvis 1973). We
then at each pixel pi keep track the closest voxel from T
for which pi was in the projection of its convex hull (i.e., vj

is the voxel closest to pi which is along pi ’s line of sight).
The voxels in this set are the only ones that are updated in
our system. Note that the same result could be accomplished
by doing a plane sweep through the voxels.

For these voxels, we then update the occlusion model by:

P(Oi
j ) =

{
P(Oi

j ) + α if F i (pi
j ) = 0

P(Oi
j ) − α otherwise

(12)

where α is the rate of the update. Note that we enforce that
the model stays in the range [0,1]. Although from frame-to-
frame, our update will be sensitive to the silhouettes in the
foreground masks, errors are smoothed out over time.

5 Reconstruction of Occluding Structures

In Sect. 4 we described an algorithm that is able to learn a
per-voxel, per-view model of occlusion. While this model
can aid in reconstructing and tracking in occluded areas,
it does not provide an explicit 3D model of the occlusions
themselves. Such a representation would be more com-
pact (no longer per-view) and would also allow reconstruc-
tion/tracking algorithms to reason about occluded areas that
were not learned (i.e., never occupied in the learning phase).

Thus in this section we will introduce a methodology
that simultaneously addresses both (1) the issue of incom-
plete/partial occlusion models for areas that have not been
completely learned due to lack of foreground activity in cer-
tain views, as well as (2) reconstructing the occluding struc-
tures in 3D by combining our per-voxel, per-view learned
occlusion models. This new methodology will take advan-
tage of the learned occlusion model (that is, this is per-
formed after learning is complete).

This 3D reconstruction is achieved by first segmenting
the input images (Sect. 5.1). This segmentation is then used

in a matching framework (Sect. 5.2) which finds segment
matches across views using the learned occlusion model as
a seed. A 3D representation is generated by computing the
visual hull of the segment matches. We wish to stress here
that the goal of the reconstruction is not the same as in multi-
view stereo, where the objective is to reproduce a 3D object
as perfectly as possible, including all concavities. We sim-
ply wish to “fill in the gaps” in our occlusion model and
reduce the parameter space of the model from N × M (the
number of voxels by the number of cameras) to simply N .
This type of model will facilitate the improvement of 3D re-
construction and tracking algorithms which incorporate the
occlusion reconstruction while still giving some 3D repre-
sentation of the scene.

5.1 Segmentation

The process of reconstructing the static occluding structures
begins with a segmentation step. The intuition here is that
such structures are going to be solid in each image, and
that by segmenting the image properly we can match seg-
ments across views to reconstruct the object. The segmen-
tation step begins with a nonlinear, isotropic smoothing of
the image (Perona and Malik 1990). We use this type of
smoother to merge similar colors, while preserving edges in
the smoothed images. An example of this smoother on an
image from our dataset is shown in Fig. 3(b).

Once the image has been smoothed, it is segmented via
mean shift clustering (Comaniciu and Meer 2002). Example
results from this operation are shown in Fig. 3(c) where each
segment of the mean shift clustering of Fig. 3(b) is given a
different color. One can see that mean shift will tend to over-
segment large objects in the image, due to the bandwidth
of the domain (i.e., (x, y) locations). Because of this, we
follow mean shift with a one-pass merging operation where
segments that share an edge in the image that are roughly
the same color, which is determined by testing the colors
with the kernel from mean shift. We show the final result in
Fig. 3(d).

Fig. 3 Clustering results. (a) Original image. (b) Nonlinear filtering. (c) Mean shift clustering. (d) Final clustered image after merging (best
viewed in color)
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5.2 Segment Matching

With a segmentation for all images, the goal is now to find a
correspondence between segments in these views. We now
present a novel voting scheme to find these matches, which
uses the learned occlusion model as a seed in each image.

The process begins by choosing a base image i. The
voxels that are highly likely to be occluded from this view
are projected into the corresponding segmented image, de-
noted Si . For each other view j of the scene, a two-
dimensional histogram Hij is constructed. The histogram
is subscripted by the segments in each image, for instance
Hij (a, b) is the bin corresponding to segment a from image
i and segment b from image j , and all bins are initialized
to 0.

The weights of each bin are determined by a novel epipo-
lar matching algorithm. For each projected point (x, y) in
image i, we determine its segment by indexing Si(x, y). We
will denote this segment si . To find a matching segment in
image j , we use the well known fact from epipolar geome-
try that for any two calibrated cameras, we can find for any
point in one of the images the line along which its corre-
sponding point must lie in the second image (see Hartley
and Zisserman 2004). This method is often used to reduce
the search space for correspondences from 2D (the entire
image) to 1D (a single line in the image). This is done by
computing the fundamental matrix between the two views:

Fji = [PiCi]×PiPj† (13)

where † denotes the pseudo-inverse, Ci is the position of
the base camera, and [a]× is the 3 × 3 matrix that computes
the cross product of vector a. Then for any point (x, y) in
image i we can compute the corresponding epipolar line lj

in image j by

lj = Fji[x y 1]� (14)

We therefore know that the match for segment si in image
j must lie along the line lj . We use this fact to increment
our histogram bins. For each segment in s ∈ Sj that lj inter-
sects, the corresponding bin is incremented with the follow-
ing “vote”:

Hij (si , b) = Hij (si, b) + (1 − ‖csi − cb‖)
(

1 − Ab

r · c
)

(15)

Here we denote the color of segment x as cx , the area of seg-
ment x as Ax and the number of rows and columns in image
j as r and c, respectively. The colors in this formula are
normalized so that the maximum length of any color vector
is 1.

This rule formalizes two intuitive notions that we have
about matching segments across images. First, matching
segments should have similar color, thus the more similar

the color, the higher the weight will be. Second, we know
that if a segment in an image is very large, then it will natu-
rally be intersected many times based solely on its size. Thus
we normalize the weight based on the area of the segment in
the second image (smaller regions get higher weights).

Once the histogram is populated with values (i.e., all
highly likely to be occluded voxels from image i have been
considered), matching segments are chosen by examining
each row of histogram Hij . Each row k of the histogram,
which we refer to as h

ij
k , is first normalized into a probabil-

ity distribution p
ij
k

p
ij
k = h

ij
k /

∑

l

h
ij
k (l) (16)

The entropy of this probability distribution is then com-
puted. If the entropy is near 1, we assume that no match
exists (because the weight is spread evenly over many of
the possible matching segments). Otherwise, the segment
with the highest histogram value is chosen as the match-
ing segment. This process results in a set of matching seg-
ments across views that correspond to the occluded areas
(i.e., segments corresponding to unoccluded areas are not
matched/reconstructed).

This process is done from base image i to all images j ,
and for those images in which a match is found, the recon-
struction of the occluding object is found by computing the
visual hull of the matching segments. Another image is then
chosen as the base image, and the process of seeding this
new base image with its occlusion model is repeated, and
the visual hull of the matched segments is added to those the
previous image base computed. This process repeats until all
images have been used as the base image, and the union of
all these visual hulls is the final reconstruction of the occlud-
ing structures.

6 Occlusion Experiments: Modeling and
Reconstruction

In this section we will show through experimentation how
well the system we have presented can (1) learn a proba-
bilistic occlusion model and (2) employ that model to re-
construct the occluding structures in the scene. We will test
the method on multiple datasets, and provide both quantita-
tive and qualitative results. The datasets vary in content, with
both synthetic and real data in indoor and outdoor contexts.

We will first demonstrate the method on a synthetic
dataset in Sect. 6.1. The primary purpose of these experi-
ments is to validate our approach from a quantitative stand-
point with respect to how well the approach reconstructs
foreground objects and models/reconstructs the occlusions
in the scene. We will also show how these results vary with
the number of cameras. A minimum of 3 cameras is required
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Fig. 4 Synthetic dataset.
(a)–(c) Sample frames from the
dataset

because the learning method works by reconstructing ob-
jects that are seen in some views but occluded in others.
Reliable 3D information requires at least two unoccluded
cameras.

We then show the capabilities of the system on a real,
indoor dataset with 3 cameras to show that the learning
method extends well to real data. Finally, we will show the
results of the system on a difficult outdoor dataset.

We also note that we used the values λ = 1.5 and μ =
2.0 on all datasets, which were selected empirically, and
similarly chose the mean shift segmentation bandwidth in
the spatial domain (32) and the range domain (16) for all
datasets.

6.1 SYNTHETIC Dataset

We created a synthetic dataset observing a space with 3 large
pillars that act as occlusions from multiple camera angles.
We used OpenGL to create the dataset, which consists of
29 camera views all on a hemisphere pointed toward the
scene center (sample frames from the dataset are shown in
Fig. 4 (a)–(c)). The cameras capture other smaller cylindri-
cal objects moving around the scene for a duration of 300
frames at a resolution of 640 × 480. We also used a single
Gaussian background model in this experiment, as the back-
ground was stationary and we could render it perfectly.

One advantage of using such a dataset is that we can
quantitatively compare the results of the learning algorithm
while varying the number of cameras used in the proce-
dure. We expect that with more cameras, our algorithm will
be more reliable, while with fewer cameras we should en-
counter a bit more noise.

To quantify how well the system performs at learning oc-
cluded areas, we computed an F-measure from a confusion
matrix defined over the voxel space. We found those voxels
that were highly likely to be occluded (e.g., P(Oi

j ) > 0.95)

and those that were highly likely to be visible (e.g., P(Oi
j ) <

0.05). We will refer to these sets as Ai and Bi , respectively.
We define the true positives to be those voxels from Ai

which are occluded in image i and true negatives as those
voxels from Bi which are visible. Similarly false positives
and false negatives can be defined. We can compute the F-
measure of this data as a function of the number of cameras,
and show the results in Fig. 5.

Fig. 5 Results showing the F-measure of the learned occlusion model
as a function of the number of cameras used to learn in the SYNTHETIC

dataset

The graph in Fig. 5 shows the F-measure, precision and
recall. On the x-axis we show the number of cameras, in-
creasing. The main thing that one notices is that the algo-
rithm performance stays fairly constant/stable. The reason
that the precision stays so high is due to the conservative na-
ture of the algorithm. The algorithm updates only those vox-
els it is quite certain are occupied, and P(Oi

j ) will only get
near 1 when the algorithm repeatedly believes that a voxel
is both occupied and not visible. On the other hand, we also
point out that the recall stays consistently lower, near 0.60.
This is also related to having an algorithm that has this con-
servative nature. We will show, however, that a conservative
system is much more effective for occlusion reconstruction
and tracking.

We show the final results of the learned occlusion model
in Fig. 6. We display the results by first plotting the Canny
edge map of the mean image from the dataset. Edges are
shown in black. All background is shown in gray, and
the projection of the highly likely to be occluded voxels
(P(Oi

j ) > 0.95) in each view are projected in white.
In this figure one can see a reflection of the F-measure

results that were presented above: all that is marked as an
occlusion truly is an occlusion. In the first row of the figure
we show the results of running our system on this data. In
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Fig. 6 Synthetic dataset results
for learning with cameras 6, 8,
and 15. Top: Results from the
learning algorithm. Bottom:
Ground truth manual markings
of areas where objects were
occluded

the second row we show a manual marking approximating
all areas that occluded any object in the sequence. The re-
sults from the two are similar to one another, and many of
the occluded areas that are not projected into the result im-
ages are missed because no object occupied that area over
the entire sequence (e.g., left most pillar in camera 6). Other
areas that are not learned as occlusions are when foreground
objects are only visible from one of the views (i.e., they are
occluded or off-screen in two views). This is what happens
in the right-most pillar of camera 8; when the foreground ob-
jects in the scene are occluded by this pillar, they are already
off-screen in camera 6, so no learning can occur.

We also present the results of running our matching and
reconstruction algorithm from Sect. 5. We first show the re-
sults of running the matching algorithm as the number of
cameras in the system vary. We report the F-measure of both
the reconstruction of the foreground objects for each of the
sequences as well as the F-measure for the final reconstruc-
tion in Fig. 7(a). A pair of final reconstructions of the oc-
clusions are presented in Fig. 7(b) and (c). In Fig. 7(b), all
29 cameras from the dataset were used in the reconstruc-
tion, and in Fig. 7(c), only cameras 6, 8, and 15 were used.
We would like to note that because the visual hull algorithm
overestimates the true object, there is no possible way for
the algorithm to achieve perfect results (i.e., F-measure of
1) with a finite number of cameras.

One notices from the graph that, as expected, as the num-
ber of cameras is reduced, the reconstruction of the fore-
ground objects becomes poorer, and when the number of
cameras is below 10, the results have a pronounced degra-
dation. Even though these results are somewhat unreliable,
the reconstruction of the occluding structures themselves is
quite accurate even when the number of cameras is small.
This is possible because of the conservative nature of the al-
gorithm. Since only occluded areas are learned in each set
of images, and because the matching algorithm is able to
accurately match the segments belonging to each structure

across views, the poor foreground visual hull results are not
a significant factor. While using only 3 cameras naturally
introduces some error that does not exist when using all 29
cameras, the results are strikingly similar, showing that our
algorithm can recover 3D structure even when there are only
few cameras.

However, it is important to consider that the placement
and coverage of the cameras also plays a role. Consider the
following: camera 1, which is viewing the voxel space from
the canonical position down the negative z-axis, is on a cam-
era ring with 11 other cameras that has radius 6 units. These
first twelve cameras all point to the center of the space, and
are spaced apart by 30◦ on the ring. Thus the closest cameras
to 1 are 2 and 12. These cameras are also on one side of the
voxel space. If these three cameras were used as the three
cameras to model the scene, not all of the columns would be
recovered. This is simply because from those three views,
two of the columns have areas behind which no activity oc-
curs. Also, when views are closer together, there are much
larger areas of the scene which cannot be viewed by at least
two of the three cameras, meaning no foreground recon-
struction (and therefore learning) can occur. Finally, when
using a small number of views, any missed match (match
found only in 2 of 3 views) will have a more pronounced
effect.

This prompted an experiment testing the coverage of the
cameras. For this experiment, we kept the number of cam-
eras constant (3) but varied which cameras were used. We
define coverage as the minimum distance between any 2 of
the 3 cameras employed. Therefore if any 2 are close to-
gether, we consider that low (poor) coverage. To conduct
the experiment, 3 views were randomly selected from the
29 views available and the full algorithm was run on this
data just as before. This random selection was performed
100 times.

The results of this experiment are shown in Fig. 8(a). This
bar graph shows how the F-measure of the system changes
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Fig. 7 Reconstruction results
for the synthetic dataset. In (a)
we show the graph of the
F-measures of both the
foreground reconstructions as
well as the occlusions
themselves. In (b) and (c) we
show the final reconstructed
occlusions using 29 cameras
and 3 cameras, respectively

with respect to the coverage of the system. As the cameras
lie on a hemisphere with diameter 12, the maximum possible
coverage is 12. We partitioned the results into 4 bins, the first
with coverage 0–3, the second with 3–6, the third with 6–9,
and the final bin with coverage 9–12.

What is evident from the graph is that the results certainly
get better as the coverage of the cameras increases. The rea-
son that the final bin is not much higher than the rest is be-
cause a degenerate configuration was included here, which
was not able to learn the occlusions. While maximizing cov-
erage is desired, one special configuration with high cover-
age is poor, that of having 2 cameras opposite one another.
This occurred in one run where cameras 4 and 10 were cho-
sen randomly together. With the cameras exactly opposite on
the hemisphere, when any object foreground object exists
between them a very large visual hull is generated. These
hulls are naturally removed by our clustering algorithm, and
with no activity in the scene, little is learned. Because of
this, nothing is reconstructed, since the learning algorithm is
the seed. This results in an F-measure of zero for that run. If
this were not included, the F-measure for the final bin would
be 0.66, a drastic improvement over the previous bins as all
other runs belonging to the bin reconstructed at least 2 of the
3 pillars.

Coverage also affects the quality of the final visual hull,
even when learning is possible. If the cameras used are close
together, then the visual hull reconstruction of the matched
segments will be elongated as a match is found in only 2
of the 3 views. We show examples in Fig. 8(b) and (c). In
Fig. 8(b), we show the final results when cameras 2, 10,
and 14 were used for learning in the scene. Cameras 2 and 14
are very close to one another, with 14 being slightly higher,
and right above 2, giving this dataset a coverage value of
3.1682. Because the views of 2 and 14 are so similar, the in-
tersection of the correct matches found between the 3 views
produces an elongated version of the actual 3D object (the
front-most in this figure). The other two pillars are missed
completely (shown here as the darker, rear-most columns).
On the other hand, we show in Fig. 8(c) the results from the
set of cameras 6, 9, and 18, which have a coverage value
of 7.9853. Although not all three columns were correctly
reconstructed (the right-rear column, colored darker again,
is missed), we do see that the placement of the cameras in
this case complements the visual hull algorithm very well,
and that the objects that are found have very few false pos-
itive voxels around them (some false positives are again in-
evitable as the visual hull algorithm overestimates the vol-
ume of the segmented object).
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Fig. 8 Effect of performance of the system with respect to the cover-
age of the cameras. (a) Histogram showing F-measure as a function of
coverage. (b) A reconstruction of the scene with a low-coverage set of

cameras. (c) A reconstruction of the scene with a medium-coverage set
of cameras

This lends great support to our argument that, contrary
to most 3D reconstruction algorithms, our algorithm actu-
ally performs better with wide baselines between the cam-
eras. Because of this (as well as its activity-driven nature)
we believe that the algorithm is well-suited to surveillance
scenarios as opposed to image-based rendering approaches.

6.1.1 Comparison to Space Carving

Here we show the results of the probabilistic space carv-
ing (Broadhurst et al. 2001) on the SYNTHETIC dataset. Be-
cause the approach requires that multiple cameras be one
side of the voxel space for good results, we cannot test this
approach directly on our real datasets, as in all of them the
three cameras are spread around the voxel space. We can,
however, test the approach on the SYNTHETIC dataset as
we can choose a subset of 3 cameras on one side of the
voxel space. Our full implementation performs a six-plane
sweep version of the algorithm and automatically partitions
the voxels such that they are only reasoned about by at most
one camera. This is a fusion of the original version and the
probabilistic version. We turned this functionality off, how-
ever, when testing with only 3 cameras, as they were all
on one side of the voxel space and did not need the added
logic. The results of the approach on the SYNTHETIC dataset
are shown in Fig. 9, where we plot the photo-hull voxels in
the space in their corresponding photo-consistent color. We
used as input to the algorithm the static background images
from each camera. In Fig. 9(a) we show the results of the
space carving algorithm using all cameras from the dataset.
As one can see, without any learned occlusion model, this
algorithm is able to identify the three occluding structures
as well as the floor. The only problem areas for this ap-
proach happen around the edges of the voxel space where
voxels project to background in every camera and are per-
fectly photo-consistent as the background is rendered black
in all views. As we know that this is not a realistic scene, we

believe the approach would normally carve away the back-
ground area, and consider the overall performance very good
when using all cameras.

On the other hand, in Fig. 9(b) we show the result of run-
ning the algorithm with only cameras 1, 2, and 12, all of
which are on one side of the voxel space (we cannot use
cameras 6, 8, and 15 because they are not). While there is
evidence the algorithm is working correctly, as large areas
behind the occluding cylinders appear to be carved away
with respect to the three views available, one can see that the
space carving approach leaves much more clutter this time.
The reason for this is that space carving works by modeling
each voxel as two competing models: (1) a single Gaussian
modeling the color over all cameras, and (2) a set of Gaus-
sians, one for each camera into which the voxel projects.
The algorithm attempts to determine which model better ex-
plains the data. Many of the voxels rendered as black in
Fig. 9(b) project to background areas in each of the three
cameras, which is always rendered as black in the imagery.
Since these voxels project to each of these views as a black
pixel, and therefore a single Gaussian model of the voxel ex-
plains the observations perfectly, the voxel is determined to
be photo-consistent. As more views are added to the scene,
more voxels can be carved away because some view will
eventually add information which makes the single Gaus-
sian color model less likely than the multi-Gaussian model
for unoccupied voxels. We also show what the space carving
approach can do if it knows a particular background color is
being used in Fig. 9(c). In this case, we added logic to the al-
gorithm that removed any voxel colored black that had zero
variance (i.e., background). With this additional logic most
clutter is removed, and it can be seen that the carving algo-
rithm actually does fairly well, keeping only the floor area
(which is also a bit more cluttered than the many camera
view) and the cylindrical voxels.

This experiment highlights some of the differences be-
tween the algorithms discussed in Sect. 2.2. We can see that
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Fig. 9 Results of the space
carving approach. (a) Results
using all cameras. (b) Results
using only cameras 1, 2, and 12.
(c) Results from cameras 1, 2,
and 12 and removing black
background matches

when using all cameras, space carving approaches perform
very well and will likely get a more accurate 3D reconstruc-
tion than the occlusion reconstruction algorithm proposed.
However, when given few cameras the reconstructed scene
can become cluttered by voxels that are thought to be photo-
consistent due to lack of information. This is one of the ad-
vantages to our method: because it uses temporal informa-
tion to learn which areas of the space are occluded, it can ig-
nore some of these issues automatically, whereas space carv-
ing must be supplemented manually. This evidence further
supports our previous claim that space carving methods are
more well suited to image-based modeling/rendering appli-
cations, while our approach is better for learning occluded
areas for the purposes of aiding surveillance applications.

6.2 BALL Dataset

The second set of experiments we conducted to validate our
learning procedure was done on our BALL dataset, frames of
which are shown in Fig. 10. This dataset was captured with
3 Sony Handycams connected to a Matrox Morphis Quad
digitizer. We were able to capture the three streams in color
at about 20 Hz for around 6 minutes, which resulted in a to-
tal of 7630 frames. We created a “lego world” on the floor to
create occlusions, and then placed an autonomously moving
pet toy (Weazel Ball) into the space to generate the activ-
ity necessary, assuming that the object’s random movement
would be able to cover the space adequately.

We present qualitative results of this experiment in the
second row of Fig. 10. We again show a manual marking of

the areas where the object rolled behind occlusions in the
final row. It is shown that the areas found are truly occluded
with few exceptions, and one can see that the second and
third rows are very similar. Though some areas are not high-
lighted (e.g., the top of the closest tower in view 2), this is
because the ball is not tall enough to generate activity in
those areas.

To validate these results, we again took the F-measure
for the learned occlusion model in the same manner as in
Sect. 6.1. Using the manually segmented occluding struc-
tures in each image an F-measure of 0.8774 was produced,
again meaning that the areas we label as positives (definitely
occluded) and as negatives (definitely visible) are both accu-
rate and precise.

We used the results in Fig. 10 to seed the segment match-
ing strategy and perform the reconstruction. We show these
results in Fig. 11 from multiple angles so that the reader can
interpret the 3D reconstruction easily. The reconstruction is
shown from an azimuth angle of 18◦ starting in the top left
row all the way to 168◦ shown in the bottom right. Again
we display in Fig. 11 the correct occlusions reconstructed
and as well as the false positives from the system. We do not
display the false negatives here so that the reader can eas-
ily see the precision of the system (we will discuss the false
negatives below).

First, one is able to clearly see that the algorithm properly
identifies the main structures here (the lego buildings) as oc-
clusions and very accurately matches them. The structure of
the inside of the lighter lego building is recreated faithfully.
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Fig. 10 BALL dataset. Top: 3
input frames from the dataset.
Middle: learned model projected
into the three images. Bottom:
Ground truth manual markings
of areas where objects were
occluded

Fig. 11 Multiple reconstruction angles for the BALL dataset

One may also notice that the bottom of the darker building’s
reconstruction contains two holes that appear to be errors
at first glance. However, when one looks at Fig. 10(a), it
is obvious that this comes from the segmentation. The red
building was taped to the cinder block with white duct tape,
which is correctly segmented in the image and therefore that
area is not matched and reconstructed by the algorithm.

We have also shown the false positives in the plot as
well. The false positives shown here are a product of a false

match. In the first image, the cinder block underneath the
darker building was improperly matched to the back wall in
the second image and to a segment on the floor in the third
image, creating this floating area in the middle as an occlu-
sion. This is an unavoidable error when the scene cannot
be accurately segmented based on joint range-domain data
(elements that are similar in color and close to one another
are merged into one cluster), and is expected from the algo-
rithm. The important thing, however, is that with such wide
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Fig. 12 BIGZERO dataset. Top:
3 input frames from the dataset.
Bottom: Learned occlusion
models in each view

angles between the cameras we are still able to find matches
and get an accurate reconstruction of the buildings.

We computed the F-measure for this reconstructed data
as well, which was a low 0.2464. The reason the F-measure
is so much lower on this dataset than the previous dataset is
simply because the system was not able to match the cinder
blocks across views. First, all of the cinder blocks, as well as
the floor, have very similar color, so the matching algorithm
threw many out as having no match. Further, some of the
cinder blocks were incorrectly segmented and could not be
matched correctly. This is obvious when examining the two
components to the F-measure formula. On this dataset our
precision was 0.93, meaning that what was reconstructed,
for the most part, were actual occlusions. However, the re-
call of the system was 0.14 due to the number of false nega-
tives present for the reasons discussed.

It must be pointed out that again it is more important for
our system as a whole to be conservative in what it labels as
occluded. We argue that it is much more important for our
reconstruction algorithm to be very precise as opposed to be-
ing very accurate. This is because the application of the re-
construction is to aid tracking algorithms. If occluded areas
are (partially) missed, the tracking performance is not hin-
dered, it merely remains the same. However, if some area is
reconstructed as an occlusion that is not, this can adversely
affect the tracker, introducing erroneous data. This will be
discussed further in Sect. 7.

6.3 BIGZERO Dataset

We introduce the BIGZERO dataset in this section, which
is an outdoor dataset with multiple limiting challenges. We
employ this dataset to show how our segment matching and
occlusion reconstruction component can be used to compen-
sate for poor results expected from the learning algorithm.
We captured the dataset from 3 cameras at half-resolution at

a rate of 30 Hz, which resulted in 10619 frames. The views
from the 3 cameras are shown in the top row of Fig. 12.

This dataset has many issues that will severely limit re-
construction accuracy. It was captured such that multiple ar-
eas are occluded from two views (1 and 3). Further, a large
specularity is present in view 2 on the occluding structure.
With these apparent shortcomings that plague the dataset,
we will show that our activity-based model will have dif-
ficulty learning, but that our reconstruction will be able to
handle these apparent issues, giving results similar to the
desired activity-based output.

The results of running the learning algorithm on this
dataset are shown in Fig. 12. The top three images show the
input frames, and the second row shows the learned prob-
abilistic occlusion model. As expected, the poor nature of
the dataset reduced the capability of the learning algorithm
to perform well. Many areas of the structure are not learned
in views 1 and 3, leaving a very sparse occlusion model as
expected because of the inability of the algorithm to learn
areas in which no activity occurs. A rather high F-measure
of 0.79 is still achieved by the algorithm on this dataset, but
largely because very few voxels were even reasoned about.

However, in Fig. 13 we show the resulting occlusion re-
construction on this sequence when seeding the matching
algorithm with this sparse occlusion model. Even with a
sparsely learned occlusion model and poor lighting condi-
tions, our algorithm is able to reliably segment much of the
zero structure in views 1 and 3, and splits it at the specu-
larity in view 2. The robust matching technique is able to
find correct matches for the structure in all 3 views (even
with some lighting changes) and reconstructs the major part
of the zero area. This completion of the inner part of the
structure, which the continuous occlusion model does not
capture, is very well represented in the reconstruction and
therefore the binary occlusion model. In fact, if the specu-
larity had not existed in the scene, our algorithm would have
been able to fully reconstruct the zero structure with this
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Fig. 13 Multiple reconstruction angles for the BIGZERO dataset

minimal amount of learned information. Overall the results
of the reconstruction produced an occlusion model, though
not fully segmenting the zero, that is similar to the desired
activity-based model for the scene.

In this dataset we were able to mark the ground truth of
the occluding structure’s shape, and calculate the F-measure
to quantify how well our algorithm performed. In this case,
the F-measure for this reconstructed structure is 0.6771, due
to a low recall and the difficulties presented by view 2, which
lead to false negatives. Precision for this dataset was 0.9476,
while recall was 0.4798, indicating that very little was re-
constructed as an occlusion that was not, while missing the
top portion of the structure. However, again we would like
to re-iterate that it is much more important for tracking algo-
rithms to have a high precision as opposed to having a high
recall rate, which we have again achieved on this difficult
dataset.

6.4 ARCHITECTURE Dataset

Finally, in this section the ARCHITECTURE dataset is uti-
lized. Captured near the Architecture building on campus,
this dataset presents the biggest challenges to our algorithm.
While this outdoor dataset does not have as many illumi-
nation issues as BIGZERO, all occluding structures in the
scene, as well as the ground, are very similar in color, and
many more pedestrians enter/exit the scene during the col-
lection.

We show example frames and results of the learning al-
gorithm in Fig. 14. In all three views, note that the areas
that are not occlusions are rarely marked as such. This re-
emphasizes the conservative nature of the system, which

should only get a very high value in the occlusion model
for those areas that truly are occluded. Areas that are not
marked as occluded, such as the deepest column in views 2
and 3, cannot easily be modeled since the area behind this
column is not visible in both of these views (i.e., it can’t be
seen by at least two cameras). Thus we cannot model that
area.

We calculated the F-measure for our learned model on
this scene by marking the 3 large columns manually, and de-
termining which of the voxels we chose indeed were behind
occlusions. In this case, our F-measure was 0.7433, which
is slightly lower than our indoor and synthetic experiments
(as expected), but is still considered fairly high. In this ex-
periment the same phenomenon occurred as before, where
our recall was much lower than our precision, which is a
consequence of the conservative nature of our system and is
viewed as an advantage.

We show reconstruction results from our system in
Fig. 15. What we see from the final reconstruction is that
one column was missed (the left-most one in the first im-
age), and one has been elongated because a match was found
in only two of the three views. Finally the third column has
some of the error one would expect around it, but is mostly
correct. All of these issues can be attributed to the fact that
these views are very difficult to segment and very difficult to
match across due to everything looking so similar. However,
our results are very encouraging as this scene does not con-
form to our assumption that occluding objects will be easily
differentiated from the background via color.

On this challenging dataset, we are able to get an F-
measure on the reconstruction of 0.45, with both precision
and recall hovering around this mark due to the false pos-
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Fig. 14 ARCHITECTURE

dataset. Top: 3 input frames
from the dataset. Bottom:
learned model projected into the
three images

Fig. 15 Multiple reconstruction angles of for the ARCHITECTURE dataset

itives introduced by the two-segment match, and the false
negatives from not matching the third column. We consider
this dataset an illustration of some of the limitations of our
system, and that our algorithm can still perform at some
level even in the presence of significant challenges.

7 Application: 3D Tracking with an Occlusion Model

In Sect. 6 it was shown that the algorithms we have proposed
for learning the occluded areas in a scene as well as the re-
construction of those occlusions are effective even with few
wide-baseline cameras. In this chapter we introduce an ap-
plication of these models, that of occlusion-robust 3D track-
ing. This will be accomplished by incorporating the learned
occlusion model (or the reconstructed structures) into track-
ing frameworks so that the tracker can avoid corruption of
the tracker state/representation due to occlusion.

We will begin this section by discussing how our rep-
resentations for occlusion can be used by two popular al-
gorithms for tracking, Kalman filtering (Kalman 1960) and
mean shift tracking (Comaniciu et al. 2003; Tyagi et al.
2007) in Sects. 7.1 and 7.2, respectively. We chose to in-
corporate the occlusion model into these two methods due

to their popularity as well as to show that our model can be
incorporated into both 3D data associative trackers as well
as 3D appearance-based trackers. We present the results of
our new occlusion-aware tracking methods vs. their baseline
counterparts in Sect. 7.4.

7.1 Tracking Through Occlusion via Kalman Filters

Kalman filtering (Kalman 1960), a classic model for dis-
crete linear dynamical systems, assumes a set of noisy ob-
servations, y1:L, that are taken at discrete times t ∈ [1,L],
generated by a known process with latent state, and returns
as output an estimate of this hidden state at each time step,
namely x̂1:L (the “hat” notation differentiates the estimate of
the state from the true, unknown state itself).

The state space form of the Kalman system of equations
is shown in (17) and (18)

xt+1 = Gxt + qt (17)

yt = Hxt + rt (18)

where G and H are the state transition and observation ma-
trices, respectively, and qt and rt are the additive Gaussian
noise at each state (qt is assumed to be distributed zero mean
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with covariance Q and similarly rt is distributed zero mean
with covariance R).

The implementation of the Kalman filter for video track-
ing is rather standard in 2D, and here we simply extend it to
3D. We define the state as the 3D position and 3D velocity
of the object at time t

xt = [x y z ẋ ẏ ż]� (19)

G is chosen so that the next state keeps the same velocity,
but that the position is changed to add in the velocity. H is
easily defined as well to be the first three rows of I6 (In is
the n-dimensional identity), which means each observation
is simply the position of the state at that time. Q and R are
parameters to the system. We selected these experimentally,
and chose the values Q = 0.8I6 and R = 5I3. These param-
eters are chosen in such a manner (as opposed to units such
as feet/meters) because the 3D reconstruction is metric up
to a scale factor, hence the unitless values. With the system
identified, the optimal state sequence can be estimated given
the standard iterative procedure (see Kalman 1960).

The tracker thus is occlusion-aware as the model P(Oi
j )

is directly integrated into the MRF (the 3D cluster centers
of which are the observations to the Kalman filter at each
time step). We expect improvements in tracking as the MRF
with occlusion knowledge will be able to reconstruct fore-
ground objects that are occluded from some views, while the
baseline algorithm will not. This will alleviate errors that
arise from missing data because the tracker is provided an
occlusion-robust observation at each time step.

7.2 Tracking Through Occlusion via Mean Shift

To show how our occlusion model could be included in an
appearance-based tracking method, we employed the 3D ex-
tension of the mean shift tracker (Tyagi et al. 2007), where a
color histogram is created as the representation of the object
in the initial frame, and the location of the object in suc-
cessive frames is found by getting the best matching can-
didate location by taking the Bhattacharyya coefficient be-
tween the target representation and the representation of the
candidates, which is also a color histogram. We refer the
reader to Comaniciu et al. (2003) for details on the original
tracking algorithm.

In the case of occlusion, mean shift exhibits feature cor-
ruption, which means that the color feature extracted from
the correct object location will not match the target model
well. To alleviate this issue of feature corruption in our 3D
tracker, we simply ignore information from sensors that are
corrupt. We can model this in the following way:

q̂u = C

N∑

i=1

∑

Y∗∈S(0)

R(PiỸ∗, u)k(Y∗)pi
j (20)

p̂u(X) = D

N∑

i=1

∑

Y∈S(X)

R(PiỸ, u)k(Y − X)pi
j (21)

where {q̂u}u=1:B is the target color model with B bins, and
similarly {p̂u(X)}u=1:B is the candidate color model at loca-
tion X. Because these are assumed to be probability distri-
butions, the coefficients C and D are included to make sure
the histograms sum to 1. The function R(·, ·) maps a pixel
color to its bin u, and the function S(·) defines the neighbor-
hood of its argument. Finally, the kernel k(·) is the density
estimator for these equations, which we choose to be the
Epanechnikov kernel (Comaniciu et al. 2003).

The only difference between our equations here and the
original 3D mean shift equations given in Tyagi et al. (2007)
is the weight pi

j , which is in the equation to add robustness
to occlusion. One straightforward way to define this would
be pi

j = 1 − P(Oi
j ). Thus if the tracked object is moving

through an area that is known to be occluded in view i, the
features corresponding to the occluded areas of the object
are ignored from that view. In some cases, the P(Oi

j ) may
not be stable at j because it has been occupied very rarely.
In this case, we search along the line of sight between the
j and the camera center Ci of camera i and instead use the
maximum value from all voxels in front of j that are stable.

While this model handles static occlusions, dynamic oc-
clusions are not considered. If one object walks in front of
another, corruption can still occur. To remedy this problem,
we also project all tracked objects into each view, and only
update those voxels which do not have another object in
front of it. This is known directly from the tracking algo-
rithm, since each tracker consists of a set of 3D locations
(lattice) that are assumed to belong to the object. Therefore,
the final formula for computing pi

j is

pi
j =

{
0 if a dynamic object occludes voxel j from i

1 − P(Oi
j ) otherwise

(22)

7.3 3D Tracking with Known Occluding Structures

In the case that no probabilistic occlusion model of the space
is available, but some 3D representation is available of the
occluding structures (such as that given in Sect. 5), a slightly
different model may be used in the MRF to address the prob-
lems presented by occlusion.

The idea is to move from weights in the interval [0,1]
to binary weights from the set {0,1}. This reflects the con-
cept that either a voxel, from each view, is behind a static
occluding structure or it is not. There is no longer a concept
of “likely occluded”. Thus for each element in the occlu-
sion model, we set the value P(Oi

j ) based on the known
occluding structures. This is done by projecting each voxel
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vj into each view i along with the occluding structures, and
determining which one is closer to the camera. If voxel vj

is closer than any known occlusion in view i, P(Oi
j ) is

set to 0 (unoccluded), and otherwise this is set to 1 (oc-
cluded).

Specifically, in the case of data associative tracking,
where reconstruction is the most important step so that miss-
ing data is lost, this is equivalent to changing our foreground
model in our MRF to

PF (di
j |Oi

j )

=
{

PB(di
j |Oi

h) if unoccluded by static structure

γ otherwise
(23)

This simple switch allows one to use the same MRF method
for reconstruction. Note that any 3D representation that can
give depth along lines of sight (i.e., at each pixel) can be used
in this approach, and is not limited to the idea proposed in
Sect. 5.

Similarly for 3D mean shift, we can alter the weights pi
j

to reflect binary weights instead continuous weights. We do
this in exactly the same way described above, where pi

j is

still 1−P(Oi
j ), but the occlusion model is now binary. So if

a voxel is occluded by a structure (or another object, which
is known through its bandwidth lattice), then pi

j gets the
value 0, and otherwise it gets the value 1. We express this
mathematically:

pi
j =

{
0 if an object occludes voxel j from i

1 otherwise
(24)

7.4 Experiments: Tracking

In this section we present the results of the two tracking al-
gorithms described above on our datasets, each of which use
only 3 cameras (we again restrict the SYNTHETIC dataset to
cameras 6, 8, and 15). Each tracker is run on each dataset
under 3 different conditions: the basic condition, where no
occlusion model is used to supplement the tracking algo-
rithm; the continuous condition, where the learned occlusion
model (based solely on activity) is used to assist the tracker;
and the binary condition, where the reconstructed occlusions
are used in conjunction with the tracker (called binary as we
convert the reconstruction to a binary occlusion model as
discussed in Sect. 7.3).

To rate the performance of the tracking algorithms, we
marked ground truth in each of the real datasets. In the case
of the synthetic data, the true location for the centroid of
each actively moving cylinder is known at every frame, giv-
ing 300 frames of ground truth in the scene. In the BALL

dataset, the object (ball) was manually marked every fifteen
frames over the entire sequence, giving 482 frames of 3D

ground truth. The BIGZERO sequence has 7 human tracks
(which included dynamic occlusion) marked at every 10
frames, and has a total of 142 ground truth 3D locations,
and in the ARCHITECTURE sequence 13 tracks were anno-
tated at 10-frame intervals giving a total of 498 ground truth
3D locations.

To determine the error at each frame at which ground
truth is marked, the 3D location of both the tracker and its
corresponding ground truth location are projected into each
of the views being used. The error then is the average pixel
error from those views:

err =
∑M

i ‖PiỸtrack − PiYgt‖
M

(25)

We choose this error metric as opposed to one in 3D so it
can be grounded, whereas errors in 3D are less meaningful
since each 3D calibration space has a different scale factor.
In the case that the error becomes very large (above some
predefined threshold Tpix), the tracker will be renominated
by the ground truth to its known proper location. One could
also use centroid locations of clusters to restart the track-
ing algorithms, but using ground truth eliminates noise in
this phase as most trackers are sensitive to this initialization.
The restarting of tracks is another method by which we will
gauge its effectiveness, and is necessary to grade the perfor-
mance of long tracks, as in the BALL dataset. For all datasets
and trackers, Tpix = 20.

7.4.1 3D Kalman Filtering

Our 3D Kalman filter was run on all datasets, with the results
are presented Table 1. On the left side the results from the
SYNTHETIC dataset are shown for each of the three tracking
conditions. At the top, the baseline tracker is shown which
reports an error rate of 11.03 pixels on average for the two
tracks over the 300 frame sequence. This is compounded by
a total of 41 restarts in the sequence, 19 for the first track
and 22 for the second track. This happens often because of
missing data at many consecutive frames, which is due to
the occlusion in the scene. When the Kalman filter is able to
reconstruct using the continuous occlusion model, the error
rate experiences 33% reduction down to 7.42. Additionally,
the error rate is able to improve without as much assistance
from the ground the truth, restarting only 11 times, a reduc-
tion of about 73%. This is simply because the MRF recon-
struction is able to utilize the occlusion model and generate
observations even when under partial occlusion. Finally in
the binary condition an even bigger improvement is seen by
a reduction in pixel error rate to 5.08 (a reduction of 53%
from the baseline) as well as even fewer restarts, with each
track only needing to be restarted twice. The binary con-
dition is able to improve upon the continuous condition in
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Table 1 Results of the 3D
Kalman filter on all of the
datasets

Synthetic BALL BIGZERO ARCHITECTURE

Avg. Err Res. Avg. Err Res. Avg. Err Res. Avg. Err Res.

Baseline 11.03 41 12.89 70 32.43 72 30.19 283

Continuous 7.42 11 3.64 4 27.56 64 20.67 245

Binary 5.08 4 9.80 53 19.32 44 26.36 191

this case because the learned occlusion model for the SYN-
THETIC dataset is sparse (see Fig. 6), but the final recon-
struction completely characterizes the scene. Because of this
significant increase in the amount of information available,
even more 3D observations are generated properly, and the
tracker is able to run with many fewer errors.

This table also displays the results of the Kalman filter
running on the BALL dataset. The baseline error rate of the
ball dataset is 12.89 pixels with 70 total restarts over the
sequence. When using the binary condition (bottom row),
we see that an improvement is made, but not nearly as sig-
nificant an improvement as before, only reducing the pixel
error 23% to 9.80, with a reduction in restarts by 17. The
interesting thing about this data is that the continuous con-
dition is able to achieve an error rate of only 3.64 pixels on
the dataset, and over the entire 7600 frame sequence is only
restarted 4 times. This is another vast improvement over
the baseline. Here the result is transposed from the SYN-
THETIC dataset, meaning in that dataset the binary condi-
tion was more effective, while here the continuous condi-
tion is more effective. In the SYNTHETIC dataset, the scene
was better characterized by the final reconstruction than the
sparse learned occlusion model, while in the BALL dataset,
the cinder blocks below the towers were not reconstructed,
but are very well represented by the learned model.

The next two columns of this table present the Kalman
filter results on the BIGZERO dataset. We again see a large
reduction in error from the baseline condition to the binary
condition (32.43 to 19.32, a 40% reduction). The findings
also support the hypothesis that the model which better char-
acterizes the scene (continuous or binary) will have better
tracking results. The overall error rate has increased from
the SYNTHETIC and BALL datasets, which is expected when
moving from controlled indoor to less restricted outdoor set-
tings. This is because of difficulties with background sub-
traction; there is also more missing data due to clustering
outdoors because the shapes of the foreground objects are
not as consistent as they are in the previous two datasets.
Even then, the occlusion model obviously increases the per-
formance of the tracking algorithm, again keeping a lower
error rate with fewer restarts from the ground truth. The final
two columns show the same performance measures on the
ARCHITECTURE dataset. Again we see significant error im-
provements (up to a 32% reduction in the continuous case)
over the baseline. The Kalman filter performs rather poorly

(in terms of number of restarts) for the baseline case in this
sequence due to the fact that so few observations are being
reconstructed and passed into the tracker because so much
occlusion is occurring. This is mitigated significantly in the
binary experiment, with a reduction of almost 100 restarts.

7.4.2 3D Mean Shift Tracking

For 3D mean shift tracking, we selected the parameters for
the 3D bandwidth, h3d , and the 3D sampling rate, s3d , ex-
perimentally (refer to Tyagi et al. 2007 for a full discussion
of these parameters). For each dataset, the 3D bandwidth
used was the exact same one as used in the clustering pro-
cedure. To select the sampling rate, the baseline mean shift
tracker was run on all datasets for all sampling rates between
6 and 20. A sampling rate of s3d = 16 was finally chosen as
it performed reasonably well on all datasets (minimized the
overall error for all datasets).

With these two parameters selected, we performed mean
shift tracking with both the learned occlusion model and its
binary counterpart on the datasets. These results are pre-
sented similarly to those in the previous section in Table 2.

Looking at the table we can see significant improvements
over the baseline mean shift tracker in all cases. The base-
line tracker in the SYNTHETIC dataset performs reasonably
well, getting an error rate of about 9.5 pixels. But because
of the occlusion of both tracks by one another as well as
by the statically occluding pillars, the baseline case needs
to be restarted 23 times over the 300 frame sequence, with
one track requiring 8 restarts and the other requiring 15. The
second track requires more restarting as it is dynamically oc-
cluded while the first is not. The mean shift tracker supple-
mented with the learned occlusion model does slightly better
in this particular case. It is able to allow the tracker a slightly
better error rate, but not a significant one (gaining only about
one pixel in accuracy). This is again because the learned oc-
clusion model is sparse, as stated previously. Large areas
of the occluding columns are missed in all views. However,
when the full reconstruction is used in conjunction with the
mean shift tracker, we see a significant reduction in error rate
as well as the number of restarts needed to keep the tracker
performing well. We see a drop in error from about 9.5 pix-
els per frame/object to 4.68 pixels, a reduction of over 50%.
A similar result is seen in the number of restarts necessary,



262 Int J Comput Vis (2011) 95:240–264

Table 2 Results of the 3D
mean shift tracker on all of the
datasets

Synthetic BALL BIGZERO ARCHITECTURE

Avg. Err Res. Avg. Err Res. Avg. Err Res. Avg. Err Res.

Baseline 9.50 23 20.37 143 17.01 43 14.92 187

Continuous 8.61 20 12.84 78 14.56 36 10.88 137

Binary 4.68 11 14.01 94 14.34 33 11.82 80

which drops from 23 to 11. This improvement can be at-
tributed to the vast increase in knowledge of the scene when
the full reconstruction is present as opposed to the occlusion
model, which in this case is much more sparse.

The second two columns of the table display the results
from the indoor BALL dataset. In this case, we again see a
marked improvement from the baseline case to the improved
tracker, except this time it appears in both cases. Obviously
not as accurate as the SYNTHETIC dataset because the color
models here are imperfect for mean shift, we see from the
baseline tracker an average error rate of 20.37 pixels. This
happened because in some cases when the ball became heav-
ily occluded, the tracker got lost, straying far from its loca-
tion and then registering very large error rates before being
restarted because of the number of frames that lapsed be-
tween being lost and being restarted (ground truth is marked
every 15 frames). Again we see an improvement in tracking
in the binary condition, when the full reconstruction is used
to supplement the tracker, getting a reduction in error rate of
about 6 pixels (a reduction of 31%) as well as a reduction in
the number of restarts needed in the sequence from 143 to
94. However, more interestingly we see that the continuous
experiment actually performs better than the binary, getting
a larger reduction in restarts (from 143 to 78) and a further
reduction in pixel error rate to 37%. The reason for this is
clear: the reconstruction of the occluding structures misses
the cinder blocks in the reconstruction, and therefore the bi-
nary condition does not believe they are there. On the other
hand, these areas are very well represented by the learned
occlusion model, which affords the improvement.

Finally, the right side of the table shows mean shift
tracking results on our challenging outdoor datasets. The
results from these datasets, on average, show less signifi-
cant improvements in terms of pixel error than the results
than the indoor datasets. Here, in the case of the BIGZERO

dataset, the improved trackers had a pixel error of around
14.5 whereas the original tracker had an error of about 17.
Similarly, the error on the ARCHITECTURE improves from
about 15 pixels to about 11 pixels. This modest reduction
shows that the occlusion model is able to alleviate some er-
ror from the datasets caused by occlusion. And while the
number of restarts in the BIGZERO dataset are fairly similar,
with the binary case having 33 restarts, the continuous case
having 36, and the baseline case having 43, the improve-
ment in restarts from the ARCHITECTURE dataset is much

more compelling. We see a reduction from 187 restarts to
80 restarts in the binary case. The primary reason for such
a strong drop for this dataset is that so much of the back-
ground is gray. When the algorithm begins ignoring large
parts of the gray scene, it can more easily lock in on the
unique color of the object without confusion. In the contin-
uous case, so much less of the scene is found to be occluded
that the results show a much less drastic drop.

Overall what we see from the mean shift tracker is that
when using the SYNTHETIC and BALL datasets, a dramatic
improvement can be made over the baseline tracking algo-
rithm by supplementing it with either the learned occlusion
model or the occlusion reconstruction results. These results
are compelling because the reduction is significant in both
the pixel error as well as the number of restarts needed by
the algorithm, meaning that the tracker stays more accurate
(on the object) with less outside influence, implying less fea-
ture corruption or model drift.

However, when the tracking algorithm is taken outdoors,
the improvements on the algorithm are much less signifi-
cant. We see that for our outdoor datasets the reduction in
pixel error is modest (around 2–5 pixels) and that the num-
ber of restarts is (usually) much more similar. The reason
for this is that the mean shift algorithm exhibits feature cor-
ruption for other reasons than occlusion. For instance, in
the BIGZERO sequence, we have very significant changes
in lighting conditions in different areas. In view 1, for ex-
ample, as a tracked object comes out from behind the zero
on the right side, it will go through a shadow. This change
will affect the mean shift histogram and cause a significant
amount of feature corruption which is not handled by the
occlusion model. These illumination effects are ubiquitous
outdoors, and results in a less pronounced improvement,
while synthetic and indoor data (which often exhibit more
stable lighting conditions) show significant improvements.

8 Conclusion

In this paper we presented methods for finding occlusions
in 3D for scenes with few cameras as well as incorporating
these models into tracking methods for improved results.
Our occlusion recovery scheme works by finding the vi-
sual hull of the foreground objects using an occlusion-robust
MRF, a primary contribution of our work. With the visual
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hull of the foreground objects computed at each frame, a
probabilistic occlusion model is then updated with these re-
sults, which then feeds back into the MRF in the following
frame. Experiments showed that the learning algorithm is
conservative in nature and very precise, meaning that those
areas which truly are occluded are the only areas which are
detected as such. We also presented a method that uses this
occlusion model as a seed to reconstruct occluding struc-
tures in 3D. This method, motivated by the need to fill in the
gaps of the areas that could not be learned by the occlusion
model, was shown to robustly recover the 3D visual hull of
the occlusions on multiple indoor and outdoor datasets. Fi-
nally, we showed that these two representations could nat-
urally be incorporated into 3D tracking algorithms for im-
proved performance in the face of occlusion, both in terms
of pixel error and the number of times that the tracker be-
came lost. The approach results in a practical framework for
modeling occlusions in 3D with applications to 3D tracking.
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