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Abstract

Existing techniques for object tracking with Multi-
ple Instance Learning take the approach of extracting
low-level patches of fixed size and aspect ratios within
each image, and employ many simplistic assumptions.
In this work, we propose an approach that automati-
cally utilizes image segments as input primitives to de-
velop a multi-level segmentation-based system, and build
a target model refinement procedure that learns the op-
timal model corresponding to the target object. To go
beyond existing restrictive assumptions, we further de-
velop automatic scene environmental models to assign
prior probabilities to segment instances of belonging to
the target vs scene. We demonstrate impressive qualita-
tive and quantitative results with tracking sequences in
typical outdoor surveillance settings.

1 Introduction
Object tracking using Multiple Instance Learning

(MIL) [1, 4] has become a popular approach primarily
since MIL allows the flexibility of ambiguous labeling
of target objects at the level of images in a video se-
quence instead of the actual individual locations within
the image. But these existing techniques which take the
approach of extracting low-level patches of fixed size
and aspect ratio are approximate, need manual tuning,
and implicitly assume a particular camera viewpoint and
target pose. To move beyond these simplistic assump-
tions, especially with PTZ cameras having a wide-range
of possible viewpoints and poses, we propose to utilize
image segments as input primitives thereby providing a
semantically more meaningful set of descriptors as in-
stances. Further, to go beyond the run-time assumptions
of such techniques such as motion models or manual ini-
tialization, we exploit the scene information by building
one-time environment models which we then employ to
automatically assign prior probabilities to instances as
belonging to the target/foreground or scene/background.
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The work presented here seeks to build on and im-
prove the approach of [4] to detect a persistent target
in a video sequence, which proposed a MIL optimiza-
tion algorithm using softmax where the logistic func-
tion weight vector w models the target of interest (one
for each target in case of multiple targets) and each in-
stance xi in a bag is represented using a vector of log-
covariance features built from that instance patch.

2 Multi-level Segmentation Approach
We develop a multi-level segmentation approach

based on the work of [2] by modeling the probability of a
pixel being on a boundary conditioned on a set of locally
measured image features such as Oriented Energy (OE)
and Texture Gradient (TG).

OEθ,s = (I ∗ feθ,s)2 + (I ∗ foθ,s)2 (1)

where feθ,s and foθ,s represent the quadrature pair of even
and odd symmetric filters at the specified orientation θ
and scale s, with fe as Gaussian second derivative and
fo being its Hilbert transform. Using textons of [3], TG
can be formally defined based on the χ2 distance be-
tween the two histograms m and n of textons in the two
disc halves around a pixel as

χ2(m,n) =
1

2

∑ (mi − ni)2

mi + ni
(2)

The raw OE and TG signals are transformed to em-
phasize local maxima. Given a feature f(x) defined over
spatial coordinate orthogonal to the edge orientation, the
derived feature is calculated as

f̂(x) = f(x) ·
(
−f ′′(x)
|f ′(x)|+ ε

)
(3)

To robustly estimate the directional derivatives and
localize the peaks, a cylindrical parabola is fit over a cir-
cular window of radius r centered at each pixel. The
coefficients of the quadratic fit ax2+bx+c directly pro-
vide the signal derivatives, so the transform becomes

f̂ = −2 · c · a
|b|+ ε

(4)
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Figure 1. Hierarchy of segmentations (# of
segments n from 30 to 100 in steps of 20).
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Figure 2. (a) Size-adaptive segment erosion.
(b) Noisy segments have high intensity vari-
ance

and this transformation is applied to the OE and TG val-
ues at each θ and s separately. Such a combination of OE
and TG allows us to more robustly detect natural bound-
aries.

An artifact of most segmentation algorithms is that
the segmentation is not always accurate along the seg-
ment borders, resulting in the some of the pixels from
the surrounding segments creeping into a segment (see
Fig. 2(a)). To reduce this “structural noise” along seg-
mentation borders, we perform an erosion operation on
each segment adaptively based on the actual size of the
segment (as for smaller segments we do not want to dis-
card too many pixels, whereas for larger segments we
can afford to remove more pixels). We then build upon
the MIL framework of [4], where for each image in the
training sequence of tracking, we run this segmentation
over multiple levels, and then employ these segments as
instances to form the input bags for the optimization al-
gorithm to learn persistent targets across the bags.

3 Scene Modeling Approach
The next step in our approach is to exploit the

scene structure to assign probability values to individ-
ual segments as belonging to scene/background or tar-
get/foreground. We develop a 3-step algorithm for this.

3.1 Scene Entity Probability: Barring actual changes in
the structure of the scene (buildings, street, etc.) or en-
vironmental changes (e.g. seasonal change), the nature
of the scene remains fairly similar. To exploit this prop-
erty, we seek to model the environment-level structural
information obtained from multiple views of PTZ cam-
eras overlooking the entire scene (this is different from a
single view-specific image-level background model, typ-
ically obtained in pixels).

For building such a scene model, we employ seg-

Figure 3. Nearest neighbor classification of
segments. Color denotes the cluster assigned
and the intensity of color corresponds to the
probability value of belonging to that cluster.

ments from across the entire scene, by collecting image
data from the PTZ cameras from random pan-tilt loca-
tions and then run the segmentation algorithm on each
of the images. We then build a Gaussian Mixture Model
of segments with YCbCr features using the Expectation-
Maximization (EM) algorithm and automatically select
from different models, the model that maximizes the
Bayesian Information Criterion (BIC) [5]. As seen in
Fig. 3, the main clusters emerging from the scene are
those corresponding to environmental features such as
streets, walkways, buildings, and vegetation/grass.

Next, using the GMM, each segment in a new image
is assigned a background cluster using a nearest neigh-
bor classification scheme in the YCbCr space with the
Mahalanobis distance, and the Gaussian pdf (µ,σ) cor-
responding to that cluster is used to obtain the probabil-
ity that the segment belongs to its assigned background
cluster, as given by Eqn. 5

pgaussiani = exp

(
−(xsegi − µk)2

2σ2
k

)
(5)

where xsegi is the feature vector corresponding to the ith
segment segi, and the mean and standard deviation of its
closest cluster k are µk and σk respectively.

3.2 Variance-based Weighting: The segmentation al-
gorithm generally results in segments that are mostly
uniform in color and hence any segment that contains
a large variance in color is most likely a result of in-
correct segmentation (mix of foreground-background, or
segment contains more than one person, see Fig. 2(b).
Therefore, we look at the intensity variance within each
segment and employ a Laplacian-based weighting factor
on the scene priors, as given in Eqn. 6

βi = exp

(
−σ2

segi

σn

)
(6)
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probability weighting probability

Figure 4. Two step weighted-probability as-
signment.

where βi is the variance-based weight assigned to seg-
ment iwhose intensity variance is σ2

segi , and σn is a stan-
dard scaling parameter for the Laplacian-based weight-
ing scheme that is manually specified.

3.3 Combined Scene Prior Probability: These
variance-based weights βi are used along with Gaussian
scene probability values pgaussiani to obtain a weighted
probability for each segment as

pbgi = βi · pgaussiani (7)

Therefore, the final probability of a segment belong-
ing to the scene (desired high) is composed of two parts,
(i) Gaussian probability of belonging to a scene en-
tity (desired high), and (ii) variance-weighting indicat-
ing uniform segment and hence likely to emerge from a
scene entity (desired high) - see Fig. 4.

3.4 MIL Initialization: These combined scene proba-
bility values pbgi are used as labeling information on the
segments to obtain a robust prior w0 for the MIL opti-
mization of [4]. We do this using a Maximum Likelihood
Estimation approach, so that given the segmentation data
(using its covariance features) with the background prior
information (Xseg,pbg) = (x1, p

bg
1 ), ..., (xN , p

bg
N ), we

find the weight vector w which maximizes Eqn. 8

w0 = argmax
w

−
N∑
i=1

log
(
1 + exp(−pbgi w

Txi)
)

(8)

which is optimized using gradient descent. The next part
describes how we handle multiple disjoint, adjacent, and
overlapping models learned from the sequence in our ap-
proach.

3.5 Refinement Procedure: In order to handle the pos-
sibility that multiple concepts could be learned from just
one semantically persistent target (see Fig. 5(b) and (c)),
we develop a refinement procedure based on the sizes,
adjacency and overlap of the learned target concepts so

Input: Representative set SR of segments s with
size (in number of pixels) n and centroid c
of each.

Sort the segments of SR based on size n
/*Initialize each segment as not a

sub-segment*/

For each segment s ∈ SR set ssub = 0;
Initialize i = |SR|

repeat iterate i

repeat iterate j
Check if centroid cj ∈ si
If yes, ssubj = 1; /*Mark segment sj
as sub-segment*/

until j ≤ i;

/*Check if all segments in SR are

marked as sub-segments*/

For each s ∈ SR, s 6= si, if ssub = 1, break;
Else i = i− 1;

until i ≥ 1;

Sfin = {s ∈ SR, ssub = 0}
Output: Sfin set of segments that are the largest

superset of the segments of SR.

Algorithm 1: Target models refinement procedure us-
ing representative segments.

as to retain only the concept that is the largest and a su-
perset of the other learned concepts - see Alg. 1. The
worst-case time complexity of this algorithm is O(n2)
where n is the number of segments in each bag. Fol-
lowing refinement, the target model corresponding to the
largest superset segment is retained as the most persis-
tent concept (see Fig. 5(a)) and employed for perform-
ing tracking-by-detection in every successive frame in
the video sequence.

4 Experiments

5.1 Target Localization with Segmentation: For each
image in the training sequence, we performed segmen-

(a) (b) (c)

Figure 5. Representative segments for refine-
ment, (a) is learned as the largest superset
segment.



Figure 6. Target localization results on differ-
ent video sequences using segments as input
instances.

tation at 8 different levels, created positive and negative
bags, using the priors to initialize the MIL algorithm as
explained in Sect. 3, and performed the refinement pro-
cedure explained in Alg. 1 to obtain the largest super-
set segment and the corresponding model. In the testing
phase, we tested this target model against each of these
segments, with each such test gives us the probability of
that segment representing the target of interest. Figure 6
shows the results for different video sequences where a
probability heatmap is overlaid on the segmented testing
images. From each of the above sequences, we can see
that the algorithm is able to localize on the target well,
thus validating the applicability of employing the seg-
mentation enhancement for input instances to enhance
the MIL approach.

5.2 Computational Efficiency: The plots in Fig. 7(a)
demonstrate the speed-up achieved using segments as
instances in the framework instead of technique of [4]
by comparing the time for convergence (in msec/frame)
on each of the 6 standard sequences from [4] with and
without segmentation (see Fig. 7). We observed an
overall speedup of 4-5 times in the running time of the
MIL algorithm. Similarly, the plots in Fig. 7(b) demon-
strates the speedup achieved by learning the scene model
and using it to assign prior probabilities to image seg-
ments. From this, we conclude that a 35-40% improve-
ment in the running time of the optimization procedure
is achieved by employing scene priors within the MIL
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Figure 7. Convergence speed with/without (a)
using segments as instances, (b) employing
scene priors.
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Figure 8. Stability: Overall likelihood of the
learned model wrt parameter α with/without
employing scene priors.

framework.

5.3 Parameter Stability with Scene Priors: The MIL
algorithm [4] converges to the correct model only for a
particular range of values for α parameter, outside of
which a degenerate model is learned. This validity of
convergence is checked by verifying the overall bag like-
lihood of the training data using the learned model. We
observed that with scene prior probabilities, the range of
values α that the algorithm permits for use was vastly
increased (as seen in Fig. 8).

These experiments together validate our approach
with PTZ camera tracking sequences in typical outdoor
surveillance settings and demonstrate the speedup and
stability achieved in the performance of the MIL algo-
rithms by employing our work.
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