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In video-based surveillance people monitor a wide spatial area through video sensors for anomalous events related to safety and security.
The size of the area, the number of video sensors, and the camera’s narrow field-of-view make this a challenging cognitive task. Computer
vision researchers have developed a wide range of algorithms to recognize patterns in the video stream (intelligent cameras). These advances
create a challenge for human supervision of these intelligent surveillance camera networks. This paper presents a new visualization that has
been developed and implemented to integrate video-based computer vision algorithms with control of pan-tilt-zoom cameras in a manner
that supports the human supervisory role.

SUPERVISION OF SMART CAMERAS
In every day activities people move through many areas moni-
tored by security cameras. Surveillance centers use these cam-
eras to meet safety and security goals by looking for unusual hu-
man activities and anomalous events in the physical areas under
camera surveillance (Haering et al., 2008). Surveillance centers
tend to be quite similar. One or more walls of monitors show
live video feeds from sensors (e.g., video cameras, news organi-
zations). The centers are staffed 24/7; interesting events occur
relatively infrequently, and the centers communicate with secu-
rity personnel in the physical world and with other security and
safety related organizations.

The video camera, which is still the workhorse sensor tech-
nology in surveillance, can be thought of as a stand-in for hu-
man security personnel. Each video sensor, fixed mounted but
with pan, tilt, and zoom (PTZ) capability, can monitor a portion
of the total space to be surveilled, which can be spatially large.
Security personnel, rather than patrol the physical area, often
monitor video feeds and use their experience to look for and
identify anomalous patterns of activity. The task of monitoring
is challenging given the large area under surveillance, difficul-
ties in recognizing anomalous activity (e.g., high context sensi-
tivity), a low base rate of anomalous events, a large number of
video sensors feeding the surveillance center, and the ability to
capture only a fraction of the entire area at any given moment.

One goal of computer vision algorithms in video surveillance
is to reduce the need for and the burden on human security per-
sonnel by creating smart automation to monitor the array of
sensor feeds. The result has been the development and deploy-
ment of intelligent algorithms to detect human motion (Gavrila,
1999), track people moving through a scene (Aggarwal and Cai,
1999), and analyze the types of motions people carry out (Wang
et al., 2003). The design question is how to couple responsible
supervisory human security personnel to the results of the algo-
rithmic analysis of the actual video feeds from the scene, or, in
other words, what kinds of supervisory displays are needed for
smart surveillance systems?

This paper presents a new concept for supervisory visualiza-
tions of smart surveillance systems designed for single smart
PTZ cameras. The visualization is based on a static panoramic
frame of reference that captures the entire space of views for a

single smart PTZ camera. This is overlaid with a brightness
coded activity map that represents outputs from smart algo-
rithms monitoring for human activity. Scan-path algorithms are
overlaid on to this capturing how the PTZ camera will monitor
the space based on the output of smart algorithms.

The scan panoramic display serves as a longshot display
(Woods, 1984; Woods and Watts, 1997) for human supervi-
sors to understand how diverse sets of smart algorithms cap-
ture the flow of human activity through a physical space being
monitored. In addition, the display also conveys how the scan-
paths of a camera will progress over a scene based on the out-
put of these smart algorithms. A longshot display provides an
overview of the system status, orientation, and movement be-
tween detailed views. The longshot is always displayed in par-
allel with detailed views to minimize the attention re-orienting
costs associated with moving between isolated detailed views.

The panoramic representation also provides a base for human
supervisors to interact with the smart camera (visual program-
ming interface). This provides a means to meet the directabil-
ity functional requirement for human supervision of automation
(Woods and Hollnagel, 2006).

The software to create these visualizations has been built and
tested on actual video feeds from PTZ cameras that monitor hu-
man activities on the Ohio State University campus (see Figures
2(a-c)) for a smart algorithm (detecting translating motion) and
three different scan-path algorithms (Davis et al., 2007a,b). In
addition, the base panorama visualization can be built automati-
cally and continuously (Sankaranarayanan and Davis, 2008a,b).

COGNITIVE COMPLEXITIES

This section highlights some of the issues in human supervi-
sion of smart video surveillance by exploring the analogy be-
tween experienced human security personnel moving through
the scene of interest and intelligent processing of the video
stream from multiple cameras placed in and around the scene
of interest.



Patrolling

The patrol or in-scene agent is embedded on the ground within
the physical environment they are observing. The in-scene pa-
trol officer directly perceives the world they are moving through
as a continuous physical topology. The scene of interest is a
series of views the patrol officer takes and the path he or she
follows. The observing behavior of the patrol officer defines a
field of view (FOV) that is not scalable (i.e., cannot externally
expand or shrink the FOV). The in-scene patrol officer is sensi-
tive to the temporal evolution of activity only at a human scale
(i.e., cannot see patterns of activity defined over different tem-
poral scales, e.g., the last month). Additional constraints, such
as physical structures, layout of physical forms, and the environ-
ment influence what an in-scene agent can observe and where
they can move. For an in-scene agent, all possible view direc-
tions are, for our purposes, represented by a full sphere. Also,
the maximum distance between consecutive points of observa-
tion is defined by the type of environment (e.g., city, suburb,
etc.) and the mode of transportation (e.g., by foot, segway, or
car). Finally, the embedded agent has the ability to directly in-
teract with the environment by moving objects, speaking with
people, and by visible presence.

Surveilling

The out-of-scene agent understands, moves around, and inter-
acts with the world with a different set of constraints. Within
the surveillance center, personnel are external to the environ-
ment being observed. Consequently, they do not have a sin-
gle perceptual experience but multiple, narrow “keyhole” views
generated by video sensors on the world. These video sensors,
depending on their configuration in the world, can create oppor-
tunities to view the world at multiple spatial scales (e.g., from
the rooftops of buildings at differing heights). In addition, a
region of interest is spatially scalable by organizing a set of
cameras (i.e., 2 or more) to observe an area larger than the view-
able field of any single camera. Surveillance should be sensitive
to events defined over multiple temporal scales from extremely
short (notice the bag left behind) to extremely long (the organi-
zation of a protest gathering). Activities of interest can also play
out across multiple temporal and spatial scales, such as when a
small organized protest in one place interacts with other events
that transforms the situation into a chaotic violent confrontation
that spills out over a wider area.

Movement through the environment differs for an an out-of-
scene agent as compared to an in-scene agent. Interaction with
the world for an out-of-scene agent consists of switching be-
tween different cameras. But there are a large number of video
feeds mapped onto a set or even a wall of display monitors cre-
ating the potential for a form of data overload. Selecting among
the feeds creates, in some sense, a virtual patrol even though
the sequence of selecting camera feeds can create tortuous paths
and jumps. The virtual paths are not constrained by the spatial
topology, rather, only by the configuration of the sensor network
and the method of monitoring and controlling the network (e.g.,
through a mapping of camera feeds to monitors with a single
control for all cameras). Distance between points of observa-

tion is no longer meaningful given the structure of the control
room (i.e., wall of monitors). View directions are restricted to
a downward pointed hemisphere for the majority of PTZ cam-
eras, as opposed to the full sphere for the in-scene agent. The
context for out-of-scene surveillance creates risks for impaired
spatial understanding of the actual physical environment, rela-
tionships, and activities.

Smart surveilling

Intelligent algorithms create an opportunity to overcome the
complexities that arise from trying to understand in-scene hu-
man activities from a distant surveillance center (such as the
problem of selecting among a very large number of video feeds
for display onto a set of monitors). The current trend is to al-
low the automation to detect, track, and alarm human activi-
ties that could be anomalous. This creates a human supervisor–
automation system design problem. Commercial surveillance
system designers typically assume that alerting human super-
visors to potentially anomalous behaviors and popping up the
relevant video feed is an acceptable base design for human su-
pervisors even though years of human factors research have
demonstrated that this is a very poor joint system design which
produces a variety of predictable problems and failures (e.g.,
(Woods and Sarter, 2000; Woods, 1995)). These include the
false alert problem, getting lost effects in navigating over mul-
tiple cameras (Guerlain, 2006), and spatial disorientation from
view sequences that jump from place to place (Woods, 1984).

Past research on coordinating human-agent activities in such
joint systems has specified basic functional requirements for ef-
fective designs: observability, directability, directed attention,
and shifting perspectives (Woods and Hollnagel, 2006). The
task for human factors of smart surveillance systems is to de-
velop specific visualizations that meet these functional require-
ments

Extended perception and smart surveilling

The design direction we have been exploring for a wide range of
new sensor capabilities and systems is called extended percep-
tion. In this paradigm new technology extends a remote human
observer’s ability to perceive and explore the world as if they
were present in the scene (Murphy and Burke, 2008). For the
case of a smart PTZ camera in a surveillance task, we concep-
tualize the visualization opportunity created by computer vision
algorithms as: (a) support the out-of-scene agents ability to take
virtual patrols as if they were exploring a continuous space, and
(b) integrate the structure of activity and events in the monitored
physical scene extracted by computer vision algorithms with a
direct view of that physical scene.

The visualization design, for the case of a single PTZ camera,
first, requires a visible spatial frame of reference that surveil-
lance personnel can modify, i.e., is directable (Woods, 1995).
Figure 2(a) shows a panoramic frame of reference that captures
all of the views possible from a fixed PTZ camera in the mon-
itored scene (panels (a) through (c) show the base panorama
from three different cameras that are part of the research surveil-
lance network on the OSU campus).



Second, the visualization requires an overlay that captures
the results of the intelligent processing of activity in the scene.
We chose a history of translating motion through the monitored
scene as a baseline and representative exemplar of smart algo-
rithms (Davis et al., 2007a). Detecting translating motion is an
interesting problem in computer vision, and it is often a base for
more sophisticated algorithms such as tracking a person mov-
ing through a scene. Translating motion or activity paths can
also serve as a backdrop for displaying the output of algorithms
that detect specific patterns of activity such as walking versus
running. The visualization uses brightness coding to provide an
overlay that indicates those areas where the activity algorithms
have seen translating motion, cumulated over a past temporal
window. The brighter the area the more motion the algorithm
has seen in that position over the time interval. Figures 3 show
the brightness coding overlay for the actual motion histories for
the cameras/scenes of OSU campus in Figures 2. Note the dark-
est areas correspond to the rooftops and structures where the
cameras are mounted (generally high on buildings) where hu-
man activity occurs very rarely and bright areas correspond to
roads and pathways.

Given the base frame of reference and the activity history
overlay, one can now consider the scan path of the camera or
the spatial-based virtual patrol–where should or will the camera
point next? Scan-path algorithms use the motion history data to
tailor the PTZ camera movement to the activity in the physical
scene. Figure 4 illustrates scan paths for three different scan-
ning algorithms for the motion history data of the scene in Fig-
ure 2(a) and the brightness coding overlay in Figure 3(a) (see
(Davis et al., 2007a,b) for details of the scanning algorithms).
The scan-path in Figure 4(a) moves probabilistically from loca-
tion to location to sample areas with high activity (probabilistic
jump), while the scan-paths in Figure 4(b-c) create smooth con-
tinuous pathways. There are many different criteria (e.g., ac-
tivity value, staleness of data, operator comprehensibility) that
should be considered and balanced in designing any automatic
scan-path algorithm. The algorithms presented balance these
criteria differently resulting in distinct scan-path behaviors.

EXTENDED PERCEPTION DISPLAY

The panoramic frame of reference is constructed from individ-
ual images taken by the PTZ camera and combined through
an image-based stitching process. The panoramic construction
process uses a mapping that converts the cameras pan and tilt
orientation to an x, y pixel position. The inverse mapping con-
verts pixel position to camera orientation and is the foundation
for communication between supervisor and smart algorithms.

The smart algorithm implemented and demonstrated sepa-
rates patterns of translating motion from background noise.
The algorithm accumulates individual pixel differences between
consecutive images in to a single motion history image (Brad-
ski and Davis, 2002). Over 6 seconds (72 images) the salience
and robustness of translating pedestrians, cyclists, and vehicles
in the motion history image emerges against background noise
sources such as camera noise, changes in illumination, and ran-
dom motion (e.g., moving tree leaves and branches).

Using the same mapping that generates the panoramic frame
of reference, the output of the smart algorithms is transformed
into a panoramic representation. Instead of a set of images as
the input to the mapping function, however, the input is the re-
sult or output of the smart algorithms sampled across the pan-
tilt viewspace. The full process for generating an activity map
requires moving the camera to a pan/tilt position, capturing a se-
quence of images, performing the motion analysis, storing the
results, and then moving the camera to a new pan/tilt position.
One complete pass of the entire scene is sufficient to generate a
single activity map over a short temporal window (∼ 20 min).
Collecting and merging multiple passes (single activity maps)
of the scene results in a global activity map such as shown in
Figure 3.

EXPLORING VIRTUAL PATHWAYS

We introduced a representation to subsidize the raw camera
view from surveillance cameras. Integrating spatial structure,
activity data, and algorithm generated scan-paths over time
supports observability and directability for human supervisors.
This smart surveilling or extended perception redefines the unit
of analysis for surveillance from a sequence of single camera
feeds to virtual pathways or patrols through the viewable space.
The scan-path panoramic display and temporal displays support
these virtual pathways through spatial-, temporal-, and activity-
based frames of reference. These frames of reference are inher-
ently coupled and a virtual pathway necessarily defines each of
these dimensions, however, for clarity, we define virtual path-
ways and the forms of exploration for each dimension individ-
ually.

Spatial

The spatial pathway of a PTZ camera differs from that of an
in-scene agent, which was defined as a moving point of obser-
vation with all possible view directions represented by a full
sphere. The spatial-based virtual patrols for a PTZ camera are,
instead, a sequence of pan and tilt positions within a down-
ward pointed hemisphere, from a fixed location in space. The
scan-path panoramic display in Figure 4 supports exploration
of the viewable scene for a PTZ camera by making observable
for the human supervisor the virtual pathway or sequence of
pan and tilt positions. An intrinsic quality of this longshot dis-
play is that not only can a human supervisor apprehend what
the camera will see in the future, but also what the camera will
not see. This display provides a mechanism for the human su-
pervisor to act on this information to re-direct the scan-path
algorithms, through the activity overlay, to explore the view-
able scene through a different virtual pathway. The exploration
through spatial-based virtual pathways are thus a collaboration
between human supervisor, smart algorithms, and scan-path al-
gorithms with the scan-path panoramic display as the medium
of communication and interaction.



Figure 1: The temporal display allows users to explore different temporal
rhythms through two independently scalable temporal scales versus smart al-
gorithm activity output. In this case, the display plots hours versus days to
capture the rhythms of different days over a one week period.

Temporal

The out-of-scene supervisory agent must monitor and explore
across multiple temporal rhythms. Temporal-based virtual path-
ways are a new construct for analysis of the temporal dimen-
sion. The relevant temporal rhythms may occur over differ-
ent temporal scales (minutes vs. hours), temporal intervals
(last month vs. last week), or in different temporal patterns
(Mondays and Wednesdays vs. Tuesdays and Thursdays). A
temporal-based virtual pathway is defined by a temporal win-
dow size, scale, location, and orientation for a PTZ camera and
exploration of the temporal dimension along a virtual pathway
consists of adjusting these different dimensions. The display
in Figure 1 captures these temporal dimensions and allows a su-
pervisor to create a temporal-based virtual pathway. The current
scan-path algorithms do not incorporate temporal information,
however, this is a natural extension for smart algorithms that
will likely inform new designs for temporal-based displays for
video surveillance.

Activity

The out-of-scene supervisory agent through new smart algo-
rithms monitors activity patterns over multiple spatial and tem-
poral scales. New algorithms are constantly created to detect
new types of activity and as the data extracted from these algo-
rithms increases, the potential for data overload also increases.
Escaping from data overload requires new forms of organiza-
tion (Woods et al., 2002) and the spatial longshot provided by
the scan-path panoramic display is precisely tuned to this re-
quirement. Independent of the type of smart algorithm or re-
sulting data, if the point of extraction is the video feed, then the
pan-tilt positions necessarily provide a spatial frame of refer-
ence and is therefore transformable into a spherical overlay rep-
resentation, as illustrated in Figure 3. While integration of this
data into the current visualization emphasizes the usefulness of
the panoramic longshot, these data also create a new activity-
based dimension for exploration, which can be supported by
new forms of activity-based virtual pathways. An area for future

research is to understand how activity-based virtual pathways
inform the organization of algorithm overlays, what manipula-
tion of the activity dimension are necessary (scaling, translating,
etc.), and how does the activity-based virtual pathway construct
inform the design of new smart algorithms.

Summary

This paper presented a panoramic display for supervisory visu-
alization of smart algorithms for a single PTZ camera within
a video-based security surveillance context. This display in-
tegrates the capability of video sensors, computer vision algo-
rithms, and cogitive systems principles to overcome the cogni-
tive challenges inherent in understanding a distant environment
through a video feed with a narrow field-of-view.
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(a) (b) (c)

Figure 2: The panoramic frame of reference for three (panels a-c) separate PTZ cameras on OSU campus that captures all of the views possible from a fixed point relative
to the monitored scene.
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(a) (b) (c)

Figure 3: The motion history brightness coded overlays for the cameras/scenes in Figures 2(a-c). Note the darkest areas correspond to the rooftops and structures where
human activity occurs very rarely and bright regions correspond to locations of expected human activity such as walkways and roads.

© copyright Alexander Morison, 2009 
Cognitive Systems Engineering Laboratory

The Ohio State University

© copyright Alexander Morison, 2009 
Cognitive Systems Engineering Laboratory

The Ohio State University

© copyright Alexander Morison, 2009 
Cognitive Systems Engineering Laboratory

The Ohio State University

(a) (b) (c)

Figure 4: The brightness coded activity map in Figure 3(a), which represents outputs from smart algorithms monitoring for human activity patterns, is overlaid with a scan
path that represents how the camera will move to monitor the space. The three different scanpaths are created using three different algorithms which are (a) a probabilistic
jump, (b) inhibited probabilistic walk, and (c) reinforcement learning paths.


