

Shurgeken
Game Design Document

Cherry Frosting Everywhere
Adam Kimble, Chris Leight, Albert Maah, Nicolas Re, Kris Wenger

Introduction
Overview
Programmed in C# on the Unity3D Engine v5.5.0f3 Shurgeken revives the age old third-person
classic, capture the flag with a new far east feel. Uses of interactive lighting elements help the
player to stay concealed in the shadows to outmaneuver opponents. Or players can take a more
direct approach and cross blades with them head on in melee weapon combat. Beware though,
death in this game means jail time with the only method of escape being an ally coming to the
rescue. Do you have what it takes to overcome your opponents and reign as the top ninja around.
Or will you fail and spend all eternity in jail. Available for play in both singleplayer and online
co-op multiplayer.

State Diagram

The above diagram shows the game’s overall flow through its states. As shown players can
freely move between the main menu, and the options and exit menu to configure their game or
exit it. Players can then either enter solo play or create/connect to a networked room. Once in a
game players then have access to their in-game menu which lets them change settings in game,
exit to main menu, or exit the game entirely. Once the game is finished the players are returned
to the main menu.

1

Game Mechanics
Control Schema

Health/Combat/Jail
Every player spawns into the map with five points of health, which do not regenerate. Players
and enemies are equipped with a single melee weapon which can be used to inflict damage on
their targets. Players and enemies lose one point of health every time they take damage. If a
player loses all five bars of health they will be “knocked out.” They will then respawn in the
neutral jail located at the center of the map. Enemies that lose all of their health will also be
“knocked out”, until they respawn after a brief delay. In network play, players can be freed from
the neutral jail. This is done by having an allied player go to the jail entrance and hold down the
F key for a few seconds. Players freed from the neutral jail then respawn back at their base’s
spawn point.

Figure 1: A player in the neutral jail trigger a lose state in solo play

2

Figure 2: Player freeing an ally from the neutral jail triggering the “JAILBREAK” UI

Flag Interaction
The goal of Shurgeken is to capture the enemy’s flag, located within the main building on the
opposing side of the map. The flag appears as a glowing blue orb. Guards are also able to spot
players carrying the flag more accurately. This is because the flag is itself a light source. Once a
player picks up the flag, they lose their ability to fight. Players holding the flag can throw it o a
short distance in front of them. A player regains their combat ability once they are no longer
holding the flag. If a flag is thrown out of the map or a guard picks up the flag, it respawns in its
base. Similarly if the flag is scored it respawns at its base.

Figure 3: Player with the enemy team’s flag

3

Interactive Lighting
Campfire and torches are scattered throughout the stage, which provide guards a boost to their
vision. Players can extinguish and relight these lights by standing close to them and pressing E.
Once a light is extinguished, nearby guards will have their field of vision cut. Some lights cannot
be disabled, however, such as the light emitted by the flag and the ambient light in the spawn
room.

Figure 4: Debug visualization of guard vision

The guards’ vision depends on the player’s proximity to active lights. The farther the player
moves from light sources, the harder it is for the guard to detect the player. Because of this, it’s
easiest to escape the guards in a darkened area. The white bar in the debug visualization tool
displays the guard’s maximum vision range, while the red bar displays it’s effective vision range
due to lighting.

Figure 5: As the player moves away from light sources, the guard’s vision range decreases

4

Sound Design
Sounds for the game are managed over the network to ensure that all player, enemy, and
environmental sound events occur at the same time for all clients. Movement and combat noises
caused by players may alert guards if the noise level is within their sphere of hearing. Players
must be careful when infiltrating the enemy base to do so silently to minimize their chance of
detection.

Artificial Intelligence
The game’s guards use artificial intelligence to give the players a challenge. The guards’
artificial intelligence is broken into three main parts. These parts are: how they are created and
interact with the environment, their pathing, and their state pattern.

The first main part of a guard is how they are created. Guards are created with the game’s
networking in mind. They are created at load time for the level. This allows us to easily scale the
number of guards which the player or players are competing against. When they are created
guards’ values are initialized. These values includes their attack distance, their chase time, and
their alert time, to name a few. This also allows guards to be much more modular in their
creation. The modular design ensure the guards are easier to pass over the network and can be
scaled to meet the game’s difficulty settings.

Another major initialization the guards go through when they are created is the assigning of their
paths. At load time assigned a patrol path, which contains waypoints.. The path the guard is
assigned is randomly decided from a pool of four different paths. Once assigned a path a guard
then is assigned random waypoints from that path. The randomization of points occurs once
when the path is assigned and then again every three minutes. This is done to add another layer
of randomization and replayability to the game. The patrol pathing is designed using an
interfaces so guards can quickly and easily switch paths they are currently patrolling as easily as
they switch waypoints. The paths are controlled by a path manager who when called returns the
waypoints for a certain path which the guards then use to create their random pathing.

The final main part of the guards is what gives them their intelligence, their state pattern. The
state pattern was designed to give players a challenge while also making the guards as
unintelligent as possible. Each guard has an enemy state pattern class which controls its states.
They then have access to their patrol, alert, chase, attacking, damage, death, and flag pick up
classes. Each class is implemented off the enemy state interface. Which guarantees the guard
transitions from any of its states. The state pattern evolved to look something like this:

5

The patrol state is the guard’s default state, in which the guard patrols between its randomly
chosen waypoints. If the guard is alerted to a player, either through the player entering its sound
range, or through environmental factors, it transitions into its alert state. In the alert state or
patrolling state, if the guard sees a player they transition to their chase state. In the chase state, if
the AI enters its attack range it stops and attacks the player. If the player escapes the enemy’s
attack range it goes to alert state or chase state depending on if the enemy can still see the player.
In any state, if the AI sees the flag it prioritizes picking up the flag over any other state. The
guards are able to take damage and die. If the guards die they will respawn after a few seconds,
and will be assigned a new patrol path which they will then follow.

Networking
The main purpose of networking in the game is to allow players to cooperate towards achieving
the goal of capturing the blue flag. The system used for this game is UDP as it does not require
port forwarding, which is inhibitive to players who are not technologically inclined. There are
two methods for transmitting data over the network, data streams and RPCs. There needs to be a
balance of data streams and RPC’s. This is because data streams are useful, but require a large
amount of bandwidth. RPC’s are able to update information on other clients’ games, but do not
continually relate the updates presented.

6

One of the two methods used in to network this game is data streaming. Data streaming is used
to relay continually updated information, such as AI and player positioning and states. As the AI
wanders the map and encounters players, and the AI’s state updates. As the player moves around
the map, the other player’s game instances need to be updated with that player’s information.
Player animation codes are also transmitted over the network to allow other players to see what
each other are doing. Whether they are attacking or just running around. As light
synchronization is important to the game, light’s status is transmitted continuously over the
network to ensure that lights are in the proper state. If we were to not transmit the state over the
network, a player may change a light’s status, and the next player to join may see the light in the
opposite state.

The other form of network transmission used in the game is remote procedure calls (RPCs).
These are for single time actions which change the game state. An example of an RPC is dealing
damage to another player or an AI, as this does not happen frequently. The game uses RPC’s for
dealing damage, light interaction, and throwing the flag, The AI used in the game is controlled
by the master client, therefore when interacting with each player, the AI must use an RPC in
order to deal damage or receive damage.

User Interface Design
The user interface or UI is used to provide players with the proper tools to navigate through the
game and provide information about the current state of their game. A main menu screen greets
the player at the start to allow them to choose between network and solo play.

Figure 6: Main Menu Screen

7

A settings menu allows players to change resolution, screen style, game volume, brightness and
contrast. Settings are saved between game and menu and are able to be changed on the fly.
They also allow the player to select the difficulty level of their games and invert their y-axis.

Figure 7: Settings Screen accessed from Main Menu

In the network play menu the player has a choice of joining an existing lobby or creating their
own lobby. These lobbies will be PvE and have the difficulty that was specified in the host’s
settings and will allow other players to join in from the rooms menu.

Figure 8: Lobby Manager Screen

8

Once in game the UI provides the player with the ability to adjust their settings like in the main
menu using the options menu. Pressing the hotkey ‘P’ or ‘Escape’ will open the in game options
menu.

Figure 9: InGame Options Menu

Figure 10: Settings Screen accessed from InGame Options Menu

9

They can also exit back to the main menu or exit the game completely. This menu does not
naturally appear when the game loads as it obstructs player vision. There is also an indicator at
the start for the player to press ‘I’ and bring up the controls screen.

Figure 11: Controls Screen accessed by pressing ‘i’ on the keyboard

The UI also contains a health bar, minimap and score. The score indicates the total number of
flags captured by the team and the health bar indicates how much health the player has. The
minimap is a radar and only shows nearby enemies and allies. In addition, it provides the player
with a general direction and location of their home base (in red), the enemy base (in blue), the
enemy flag (also blue) and the jail (in white).

Figure 12: Closeup of the Minimap located in the bottom right of the screen

10

Between the start of the game and the main menu screen is a splash screen animation of our team
logo. The splash screen comes directly after the unity logo and loads into the main menu screen
automatically.

Figure 13: Loading Splash Screen at the start of the game

Between the main menu and the game is an additional loading screen to tell the player that the
game is in the process of loading. Depending on how the player’s computer handles the load of
the game the Shuriken in the middle of the screen may be spinning.

Figure 14: Load screen between main menu and game

11

Level Design
The level was designed with the traditional three lane system in mind to allow players a variety
of paths to the objective, while still maintaining designated focus areas of combat. Clutter and
interactive lighting were added to give players cover and strategic diversity in their approach to
capturing the object. A neutral jail is located in the center of the map which houses players that
die. Invisible triggers were placed on the outer limits of the map to prevent players and flags
from leaving the intended play area. If a flag leaves the play area it will respawn at its
appropriate base. If a player leaves the play area they will respawn in the neutral jail.

Figure 15: Overview of the map and its key points of interest

12

Bibliography

● Engine
○ Unity3D v5.5.0f3

● Assets
○ Moons and Night Skydome

■ https://www.assetstore.unity3d.com/en/#!/content/48514
○ Campfire

■ https://www.assetstore.unity3d.com/en/#!/content/45038
○ Simple Torch

■ https://www.assetstore.unity3d.com/en/#!/content/7275
○ Photon Unity Networking

■ https://www.assetstore.unity3d.com/en/#!/content/1786
○ RPG Character Mecanim Animation Pack Free

■ https://www.assetstore.unity3d.com/en/#!/content/65284
○ Kunoichi Ninja Character

■ https://www.assetstore.unity3d.com/en/#!/content/64665
○ Asia-Far East Environment

■ https://www.assetstore.unity3d.com/en/#!/content/21298
○ Universal Sound FX

■ https://www.assetstore.unity3d.com/en/#!/content/17256
○ JAPANESE ORIENTAL Free

■ https://www.assetstore.unity3d.com/en/#!/content/18495
○ AVPro Video Capture

■ https://www.assetstore.unity3d.com/en/#!/content/2670
○ YOZAKURA-Regular

■ http://www.dafont.com/yozakura.font

13

https://www.assetstore.unity3d.com/en/#!/content/45038
https://www.assetstore.unity3d.com/en/#!/content/21298
https://www.assetstore.unity3d.com/en/#!/content/48514
http://www.dafont.com/yozakura.font
https://www.assetstore.unity3d.com/en/#!/content/1786
https://www.assetstore.unity3d.com/en/#!/content/2670
https://www.assetstore.unity3d.com/en/#!/content/7275
https://www.assetstore.unity3d.com/en/#!/content/65284
https://www.assetstore.unity3d.com/en/#!/content/64665
https://www.assetstore.unity3d.com/en/#!/content/17256

