
Defeat the hoard of mini-Rosso’s as well as 
many other single player mini-games to reveal 
a masked captor’s identity!

Multi-Player Maps

Health Pack
Increases Player’s Health

Purracell Battery
Recharges Player’s Shooting Stamina

Invisibone
Makes You Invisible to Other Players

Some maps include 
buttons that create 

and destroy barriers.

Keyboard Playstation 
Controller

Movement WASD Left Joystick
Jump Spacebar X button
Vision Mouse Right Joystick
Shoot Left Mouse R1

In-Game Stats F3 Select
In-Game 
Settings

F2 Start

Chat Enter + Keys -
For Kinect controls see technical poster.

★ Rosso’s Moon 
Landing

★ Murasaki’s Forrest
★ More..!

Single Player Mini-Games

★ Recycle Bin
★ Forgotten Temple
★ Industrial Hazards
★ More..!

Play up to six friends on one of the multiplayer 
maps! Face off in timed or stock battles.

Controls
Items

Interactive Elements

Cat Nip
Increases Player’s Speed

Play as one of six characters: 

Vert
(Dog)

Rosso
(Mouse)

Murasak
i

(Fox)

Lapis
(Cat)

Tangelo
(Rabbit)

Amber
(Squirrel)

Characters

Developers:
Kimberly Boydstun
Ian Freshwater
Michael Filliater
David Hazlett

Contributors:
Maddy Baringtang 
Trevor Richards
Sam Waldron



Photon Unity Network (PUN) was used to handle connecting remote clients via a Cloud based server 
system. Remote Procedural Calls (RPC) were used to communicate between clients and keep the 
games synced. This is used to have all the clients making identical calls on their local copy of game 
objects. Clients can either join existing rooms or create a new room and become the master client. 
When a player joins a room they are synced with the master client and player’s load scenes when the 
master client loads. Objects are instantiated over the network and each player keeps a local copy that 
continually gets data from the Cloud but only your player has scripts activated so it is the only character 
that is controlled by you.

Networking
Kinect

The game supports the original Kinect for Windows/Kinect 360. The SDK 
used was Kinect for Windows v1.8.

Bullets
The bullets are made by having a spherical game object with a rigidbody attached to handle movement 
and collision detection is handled by raycasting. The raycast checks what it collides with and allows the 
bullet to pass through pickups, damage players and destructible surfaces, and be destroyed when 
impacting the map itself.

Right Hand: Camera/Aiming

Left Hand: Movement - Left/Right Strafing

Jump: Raise Left Elbow above Shoulder.

Players move forward when the left hand is 
forward and move backwards when the 
hand is upright.
The camera moves up when the right hand 
is in the upright position and moves down 
when the hand is forward.

The commands are handled by first taking 
the distance between your elbow and wrist, 
then doing ratio checks on it to determine if 
your hand is forward or upright. The 
position in space does not matter except 
when checking if the elbow is higher than 
the shoulder. Everything else is based on 
ratios of the distance between two points 
of the body.

Artificial Intelligence
AI is used in the single player mode and each level has unique AI functionality. The mice on Rosso’s 
Moon Landing use character controllers to move and swarm towards the player by tracking the player’s 
current position. The fox in Murasaki’s forest uses a random integer generator to choose a location to 
move to and then rotates and moves behind the stump. In Tangelo says the commands are generated 
by checking a dictionary of commands and randomly choosing one to ask.

Level Building
Multiplayer levels were handmade using Prototype by 
ProCore.

Rosso’s Moon Landing is procedurally generated by creating 
a grid of cubes and removing cubes with an algorithm to 
create a level with obstacles. 


