

D E S I G N D O C U M E N T

All work Copyright 2013 by DeadFish Productions

Michael Griscom, David Klimek, Frans Kurniawan, Shitianyu Pan, Josh Ventura

Version # 2.5

26 April 2013

 Page 2 of 29

ABSTRACT

This document outlines Pivot, a single player puzzle-adventure game that is a twist on the concepts

popularized by Valve’s Portal. In Pivot, players have the ability to create portals, which act as

wormholes allowing the player – and other objects – to transport across the level. Pivot carries the

physics-altering mechanics further by allowing players to manipulate gravity, adding to the depth

of the puzzles. As the player progresses through the game, the level difficulty increases, slowly

introducing new game-play elements and forcing the player to avoid spiders, turrets, and other

obstacles. In addition to the built-in levels, players have the option of creating their own custom

levels, which can then be shared with others. The diversity of in-game objects allows for many

possible designs, enabling the creation of a wide variety of puzzles.

 Page 3 of 29

TABLE OF CONTENTS

Abstract ... 2

Overview ... 5

Specifications .. 5

Length of Gameplay .. 5

Victory Conditions .. 5

Playing the Game ... 5

Installation ... 5

Main Menu.. 6

Core Game .. 7

Overview .. 7

Controls ... 8

HUD... 8

Game Elements .. 10

Level Editor ... 14

Controls ... 14

Using the Editor ... 14

Technical Details .. 16

Game State Transitions ... 16

 Page 4 of 29

Code Architecture ... 17

Saving ... 18

Sound .. 19

Artificial Intelligence ... 19

Graphics .. 21

Physics ... 27

Bibliography .. 29

 Page 5 of 29

OVERVIEW

SPECIFICATIONS

Pivot was designed for the Windows operating system. The game was created using C# coupled

with Microsoft’s XNA 4.0 platform [1]. The development took place over a span of 15 weeks.

LENGTH OF GAMEPLAY

A new player can complete each of the built-in levels in approximately half an hour.

VICTORY CONDITIONS

The player must get to the end zone of a level in order to successfully complete it. Completion of all

levels results in beating the game.

PLAYING THE GAME

INSTALLATION

The One-Click installer can be used to install Pivot on a Windows computer. This installer bundles

with XNA 4.0 dependences, thus the computer must meet the requirements for XNA, i.e., be running

Windows XP, Vista, 7, or 8, and have a graphics card that supports Shader Model 1.1 and DirectX

9.0C [1].

 Page 6 of 29

MAIN MENU

Upon starting the game, the player has several options, as illustrated in Figure 1; these options can

be selected through keyboard or mouse input. They can play the core game, unlocking new levels as

they progress, or create their own levels using the level editor. There are also audio and visual

options that can be adjusted.

FIGURE 1: MAIN MENU SCREEN

 Page 7 of 29

CORE GAME

OVERVIEW

The goal of the game is to progress through every level. This is accomplished by reaching the “End

Zone” (see Figure 2) through the use of tools at the player’s disposal, while avoiding obstacles. The

levels become increasingly difficult, slowly introducing new puzzle elements as the player becomes

accustomed to the game mechanics.

FIGURE 2: END OF LEVEL MARKER

 Page 8 of 29

CONTROLS

The controls for the core game are shown below in Table 1.

TABLE 1: MAIN GAME CONTROLS

Button Function

W/A/S/D Character movement
Space bar Jump
Esc Pause Menu
Mouse Look
Left mouse button Fire blue portal
Right mouse button Fire orange portal

HUD

The HUD is depicted in Figure 3. A timer, visible at the top of the screen, adds an additional element

of competition, allowing players to track their personal best times for each level. The crosshair

serves multiple purposes, showing both where portal “bullets” will be fired in addition to whether a

portal can be fired on a given surface, indicated by the crosshair’s color. Surfaces which can

support portals are detailed in the Cube Types section of this document. The different crosshair

colors are shown in Figure 4. Damage infliction is indicated on the HUD by a red overlay, shown in

Figure 5. When the red overlay fades away, the player has returned to full health.

 Page 9 of 29

FIGURE 3: MAIN GAME HUD

FIGURE 4: INVALID PORTAL SURFACE (LEFT) AND VALID SURFACE (RIGHT) CROSSHAIR INDICATORS

Timer (s)

Crosshair

 Page 10 of 29

FIGURE 5: DAMAGE INFLICTION INDICATED BY A RED OVERLAY

GAME ELEMENTS

GRAVITY BUTTONS AND PORTALS

In order to beat certain levels, the player must make use of gravity buttons and portals. The gravity

button is shown in Figure 6. In order to activate it, the player must jump on the button. The

universal gravity will then be changed to any of the five other directions based on the given button.

In other words, what was previously the ceiling or any of the four walls will now be the floor; an

example of this is illustrated in Figure 7.

 Page 11 of 29

FIGURE 6: GRAVITY BUTTON

FIGURE 7: LEVEL REORIENTATION CAUSED BY GRAVITY BUTTON

There are two different types of portals: level portals which are permanent, and player portals

which can be placed and removed in-game. These types are distinguishable by color, as shown in

Figure 8. Static portal pairs share the same color, and the color of pairs varies. The player is able to

shoot one pair of portals, that is, if a blue portal is fired, then firing a new blue portal will remove

the previous one. Static portals have the added feature that they may alter the player’s gravity. The

 Page 12 of 29

player’s orientation after entering such a portal can be seen by looking through the portal. Other

objects in the level, such as lava, are not affected by this change.

FIGURE 8: PLAYER PORTALS (LEFT) AND LEVEL PORTALS (RIGHT)

CUBE TYPES

There are five different types of surfaces: metal, rubber, concrete, brick, and wood. The differences

between these are given in Figure 9. The last three types, concrete, brick, and wood, differ only in

appearance.

 Page 13 of 29

FIGURE 9: SURFACE TYPES

ENEMIES AND OBSTACLES

When navigating to the end zone, the route is often complicated by different obstacles which can

damage and potentially kill the player. These are described in Figure 10.

FIGURE 10: ENEMIES AND OBSTACLES

Metal

•Supports portals

Rubber

•Bounces the player

Other

•Do not support portals

Spider

• Climbs walls

• Only walks on metallic surfaces

Stationary Turret

• Fires out of all sides

• Fires at predictable intervals

Rotating Turret

• Can rotate in any direction

• Fires a laser when approached

Lava Ball

• Hurts player and spiders on contact

• Can fall through portals

 Page 14 of 29

LEVEL EDITOR

CONTROLS

The level editor controls are shown below in Table 2.

TABLE 2: LEVEL EDITOR CONTROLS

Button Function

Mouse/Arrow keys

 Translate cursor
+/-

 Move cursor forward/backward
U/I/O/J/K/L

 Alter cursor orientation
W/A/S/D Translate Camera
Q/E

 Zoom camera out/in
Ctrl+[add or subtract key]

 Rotate camera
Ctrl+Arrow Keys

 Rotate level
Space/Left mouse button

 Place object
Right mouse button

 Remove object
Ctrl+(Shift)+E

 Alter object type
Ctrl+M

 Alter object sub-type
Esc

 Pause Menu

USING THE EDITOR

Players can create custom levels through the use of a built-in level editor. The user-friendly

interface and file format allow for the quick creation and sharing of levels, as described in the

Saving section of this document. The level editor also provides a drop-in feature, accessible through

the pause menu (Figure 11), which allows immediate play testing during level creation.

 Page 15 of 29

FIGURE 11: LEVEL EDITOR PAUSE MENU

The level editor HUD is shown in Figure 12. The cursor, represented by a wireframe cube, indicates

the location of the object to be placed. The arrow indicates the orientation of the object, which is

used in setting the gravity direction of buttons and static portals.

 Page 16 of 29

FIGURE 12: LEVEL EDITOR VIEW

TECHNICAL DETAILS

GAME STATE TRANSITIONS

Figure 13 illustrates the possible game state transitions.

Cursor

 Page 17 of 29

FIGURE 13: GAME STATE TRANSITION DIAGRAM

CODE ARCHITECTURE

The foundational organization of the codebase is designed using the Model-View-Controller (MVC)

architecture, which provides a loose coupling between the game’s business logic and its visual

 Page 18 of 29

manifestation. This design philosophy was leveraged across the codebase in order to create a

flexible, maintainable application through the encapsulation of the various game components (e.g.,

the physics, graphics, and AI engines). Using the Visual Studio 2010 code metrics analysis,

maintainability indices were calculated for each project of more than 500 lines. This index is a value

between 0-100 designed to quantify the maintainability an application. Although this is a difficult

characteristic to judge, particularly in an automated way, Microsoft considers values greater than

20 as “good” [2]. The results of this analysis are shown in Table 3.

TABLE 3: VISUAL STUDIO 2010 CODE METRICS RESULTS

Project Maintainability Index Executable Lines of Code

Framework 83 714

GameCore 91 1,335

GameState 84 1,658

Graphics 76 1,884

MapEditor 90 554

Physics 90 973

Weighted Average 84.4

SAVING

The game progress (i.e., which levels have been beaten and the best time for each) is stored, along

with the game settings, in the user’s AppData folder. Additionally, custom levels are serialized in an

XML format within the same folder to allow for convenient saving, loading, and sharing.

 Page 19 of 29

FIGURE 14: SAMPLE XML FOR CUSTOM LEVEL DATA (LEFT) AND GAME PROGRESS (RIGHT)

SOUND

The cross-platform Audio Creation Tool (XACT) library was used in order to play in-game music

and sound effects [3]. The sound effects are generated in a virtual 3D space, meaning that sounds

(e.g., that generated by the end-of-level marker) become louder or softer based on proximity, in

addition to having differing left-right speaker strengths.

ARTIFICIAL INTELLIGENCE

The enemies of Pivot follow a state-machine model, where an entity’s current state (e.g., “Idle”) can

transition to another state (e.g., “Chase”) via a trigger (e.g., “Player Visible”). This allows for easy

extension through the creation of additional, more complex states. Further, in the future, alternate

AI personalities could be added via the use of different state machines, such as those emphasizing

exploratory or aggressive behavior.

 Page 20 of 29

For the spiders, additional logic – in the form of path planning – is used to provide chasing

mechanics. This is achieved through the creation of a navigation graph for the level, an example of

which is shown in Figure 15. Note that in the image the wooden cubes are excluded from the graph,

as spider locomotion is restricted to metallic surfaces. To determine paths, these graphs are

searched via Dijkstra’s algorithm, using the QuickGraph framework [4]. During locomotion, spiders

are also encoded with flocking tendencies to create more realistic and varied behavior. These forces

are detailed in Figure 16.

FIGURE 15: SPIDER NAVIGATION GRAPH FOR A LEVEL

 Page 21 of 29

FIGURE 16: FORCES THAT CREATE FLOCKING BEHAVIOR IN THE SPIDERS (IMAGES FROM [5])

GRAPHICS

All of the in-game textures and models are created procedurally; that is, rather than utilizing

modeling software, the functions that describe the appearance of objects are represented

mathematically within the code. A simple example of this is the six-sided turret model. The model is

created using a single sphere and three cylinders which are drawn along each axis from the outside

of the sphere, through the center, to the other side of the sphere. The code for this is fairly simple:

 var sphere = GraphicsUtil.SphereColored(radius, col);
 verts.AddRange(sphere.verts);
 inds.AddRange(sphere.inds);

 GraphicsUtil.ModelColorNormal cylinder;
 short co;

Separation

• Spiders tend to move directly away from
neighboring spiders

Cohesion

• Spiders tend toward the center of mass of the
swarm of neighboring spiders

Alignment

• Spiders tend to face in similar directions as
neighboring spiders

 Page 22 of 29

foreach (Vector3 v in new Vector3[] { new Vector3(maxRadius, 0, 0), new

Vector3(0, maxRadius, 0), new Vector3(0, 0, maxRadius) })
 {
 cylinder = GraphicsUtil.CylinderColored(barrelRadius, -v, v, col,

Color.Black);
 co = (short)verts.Count;
 verts.AddRange(cylinder.verts);
 inds.AddRange(GraphicsUtil.Rebase(cylinder.inds, co));
 }

The rotating turret is drawn in a similar manner. It comprises eight "pipe sections," that is, pieces of

a cylindrical shell of a certain thickness between two angles, along with three colored cylinders. The

primary code that generates it thus:

GraphicsUtil.ModelColorNormal[] models = new GraphicsUtil.ModelColorNormal[] {
 PipeSection(.6f, .8f, MathHelper.Pi*1f /16f, MathHelper.Pi*7f /16f, -length/2,

length/2, new Color(200, 220, 255)),
 PipeSection(.6f, .8f, MathHelper.Pi*9f /16f, MathHelper.Pi*15f/16f, -length/2,

length/2, new Color(200, 220, 255)),
 PipeSection(.6f, .8f, MathHelper.Pi*17f/16f, MathHelper.Pi*23f/16f, -length/2,

length/2, new Color(200, 220, 255)),
 PipeSection(.6f, .8f, MathHelper.Pi*25f/16f, MathHelper.Pi*31f/16f, -length/2,

length/2, new Color(200, 220, 255)),
 GraphicsUtil.CylinderColored(.7f, new Vector3(0, 0, length/2 + .1f), new

Vector3(0, 0, length/2 + .3f), new Color(30, 35, 50), Color.White),
 GraphicsUtil.CylinderColored(.1f, new Vector3(0, 0, length/2 + .3f), new

Vector3(0, 0, length/2 + 1f), new Color(230, 235, 250), Color.Black),
 GraphicsUtil.CylinderColored(.2f, new Vector3(0, 0, length/2 + 1f), new

Vector3(0, 0, length/2 + 1.5f), new Color(30, 35, 50), Color.Black)
 };

That array is then placed into a single vertex buffer in a manner very similar to the one shown

above for the six-sided turret. Clearly, most of the work (e.g., the trigonometry and index

buffering) is done by the PipeSection and CylinderColored methods. Additionally, it can

be seen that only four pipe sections appear in that array; the other four are packed into a separate

vertex buffer to be drawn rotating the other direction. The rotation is simply done via matrix

manipulation.

 Page 23 of 29

A less simplistic example of this is the spider model code and animation code. The entire

trigonometry for this model is handled within the generator code. The spider does not use a

texture; its eye is created by assigning random color values to each vertex, between yellow and

red. The torso of the spider, the leg cylinders of the spider, and the foot curve for the spider are

each stored in a separate vertex buffer. This allows for more easily animating the spider.

The animation is accomplished by creating eight points around the spider: one for each foot, as

can be seen in Figure 17. The spider is given a sine wave to control its foot movement. When the

wave is positive, the first set of four legs move to a new position nearer the spider's current

position. When the wave is negative, the other four feet move to their corresponding position. If

the spider moves during the elapsed time, the foot points do not move with it, which creates a

more realistic dragging effect. To draw the legs, then, a triangle is calculated using the distance

from the base of the spider to the foot position as the first side, and the length of each limb as the

other two sides. Angles are then calculated, from which modelview matrices are calculated, and

the legs are drawn according to those.

 Page 24 of 29

FIGURE 17: SPIDER JOINTS USED IN MOVEMENT

By extracting a function to generate the correct modelview matrices, creating an aesthetically

pleasing explosion effect also becomes possible. When a spider is destroyed violently, the same

matrices that were last used to render its limbs in the correct position are placed into a particle

array. At the same time, an angular velocity matrix generated for each limb, along with a

velocity vector. For each frame, the matrices are then transformed by the angular velocity matrix,

as well as a new translation matrix created for their individual velocities. The result is shown in

Figure 18.

 Page 25 of 29

FIGURE 18: SPIDER EXPLOSION EFFECTS

Particle effects around portals are created using an array of roughly 300 particles, each having a

unique position and velocity. Each particle is two triangles, graded from black to the color of the

portal (mixed with white) and drawn additively. The end result of this is shown in Figure 19, an

enlarged version of Figure 8.

 Page 26 of 29

FIGURE 19: PORTAL EFFECTS

Portals are rendered by creating a “stencil” which informs the graphics device which pixels to

render, then re-drawing the world in that stencil. The fill rate is optimized through the use of

scissor rectangles, which enable the consideration of only those pixels which might lie in the portal

stencil. These rectangles are illustrated in Figure 20. Portal nesting is accomplished recursively, and

is optimized using back-face culling (indicating not to draw the scene), followed by frustum culling

and occlusion testing.

 Page 27 of 29

FIGURE 20: SCISSOR RECTANGLES INVOLVED IN NESTED PORTAL RENDERING

PHYSICS

The physics engine of Pivot is composed of the following objects: lava balls, spiders, cube tiles, ramp

tiles, portal bullets, turret bullets, and a main player. The lava balls and main player are represented

by spheres. Cube tiles and ramp tiles are represented with triangles. Portal bullets and turret

bullets are represented with rays. To handle collisions, triangles are first extracted from every cube

and ramp tile and placed into a binary spatial tree. This allows for quick access, , to triangles

near a given point or volume. The lava balls and main player bounce off the triangles upon

collisions. A wireframe version of a level can be seen in Figure 21.

 Page 28 of 29

FIGURE 21: OBJECT WIREFRAMES

The triangles are also used by the spiders. When the game starts, the spiders are placed on the

triangle that is directly beneath them. From that point on, they will always be positioned on a

triangle. When a spider comes to an edge of a triangle it will detect if there is an adjacent triangle

touching the edge of the triangle it is currently on. If there is, the spider will be moved to the

adjacent triangle; otherwise, it will remain on the same triangle. Portals are accomplished by

removing the triangles underneath them upon placement. If the portal is later removed, the

triangles are replaced.

 Page 29 of 29

BIBLIOGRAPHY

[1] Microsoft, "Microsoft XNA Game Studio 4.0," [Online]. Available: http://www.microsoft.com/en-

us/download/details.aspx?id=23714. [Accessed 25 April 2013].

[2] Microsoft, "Code Metrics Values," [Online]. Available: http://msdn.microsoft.com/en-

us/library/bb385914.aspx. [Accessed 25 April 2013].

[3] Microsoft, "Using Microsoft Cross-Platform Audio Creation Tool (XACT)," [Online]. Available:

http://msdn.microsoft.com/en-us/library/ff827590.aspx. [Accessed 25 April 2013].

[4] QuickGraph, "QuickGraph, Graph Data Structures And Algorithms for .NET," CodePlex, [Online].

Available: http://quickgraph.codeplex.com/. [Accessed 25 April 2013].

[5] M. Buckland, Programming Game AI by Example, Sudbury, MA: Wordware Publishing, 2005.

	Abstract
	Overview
	Specifications
	Length of Gameplay
	Victory Conditions

	Playing the Game
	Installation
	Main Menu
	Core Game
	Overview
	Controls
	HUD
	Game Elements
	Gravity buttons and portals
	Cube Types
	Enemies and Obstacles

	Level Editor
	Controls
	Using the Editor

	Technical Details
	Game State Transitions
	Code Architecture
	Saving
	Sound
	Artificial Intelligence
	Graphics
	Physics

	Bibliography

