Lost Marbles: Design Document
by 4G(1G)2 <lost-marbles@googlegroups.com>
Conner Campassi
Christie Deiters
Razvan Lupusoru
Jason Stenftenagel
Tyler Wymer
http://www.lupusoru.com/lostmarbles.html
Lost Marbles is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License.
Table of Contents
2Game Overview

2The Idea

2Technologies Used

2Game Mechanics

3User Interface

3Controller/Camera

3Display

3Artwork

4Game Architecture

4Managers and States

5Actors, Behaviors, and Powerups

6Scenes

6Features

6AI

6Physics

7Sounds

7Testing/Scripting

7Conclusion

Game Overview
The Idea
The protagonist is a marble who explores worlds, accumulating smaller marbles as it goes. The player must make use of puzzle solving abilities and platforming skills to find and collect all of these small marbles.

Technologies Used
Rendering: Ogre3D 1.6.5
GUI: MyGUI 3.0.0
Physics: Bullet 2.76
Sound: FMOD 4.30
AI: Lua 5.1.4
Level Design: Ogitor 0.4
 OgreMax Scene Exporter for 3D Studio Max 2.2.7
Game Mechanics
Basic game-play consists of rolling around to explore the world and collecting smaller marbles by colliding with them. Discovering all of the marbles in a level will have varying degrees of difficulty, and many will require puzzle solving and platforming skills to find. For example, the player will need to balance on thin courses and use precision keyboard control to leap from one small platform to another. Thus, the main antagonist of the game is the environment itself. As a deterrent to leaping off of levels, the player will have a limited durability in the form of a health bar that is reduced by a fixed amount each time the player falls from a level. When the health bar reaches 0, the level is completely reset - including any collected marbles. A player may only proceed to the next level when a threshold number of marbles has been collected in all levels previous.

During play, the player will have the option of applying powerups to aid in the navigation of a level. For example, (s)he may use:

· "Bouncy" to leap tall walls

· "Speed" powerup to get a running start before a large jump

· "Health" to restore health lost from falling off of platforms

· "Sticky" to climb vertically up objects

· "Teleport" to be transported to another distant platform

· "Float" to slow a fall and allow for farther jumps

Beginner levels may also contain "Help" stations which will display messages teaching new players the basic functionality of nearby powerups.

User Interface
Controller/Camera

The control of any entity, including details such as controlling keys, is contained in a pluggable behavior that can be altered during gameplay. The player's marble's default behavior defines movement through the standard WASD keys, where forward movement is set as the current facing of the camera. While the player's marble is controlled using the keyboard, the camera is mouse-controlled. The camera rotates around the player at a constant distance. This is a complete map of the keys used for character control in game:
[image: image1.png]F1 F2 F3 Fa Fs F6 F7 F8 F9 Fo |[rn |F2

~ fr tf2 els #[a s|s e ~|[7 &fs *fo [o |- _|= +|Backspace

Tab Q w o |[e R T Y u 1 o P I
orward| Pause

Caps Lock A s D F G H J Holdl i L 5o+ o | enter

Leit | B2k || Right o Reset

ward cation

shift z X c v B N M . <. > |7 ? || shift

Hold to accelerate

more slowl
ctd winkey || At AKGr ctrl
Jump

Figure 2.1 Keyboard Control Key Map
Display
The health bar in the top right corner displays the remaining health of the player, which is reduced when the player falls off the level. The bottom of the display contains information about collectible marbles such as how many have been collected by the player (bottom-left), how many remain to be collected (bottom-center), and how many have been collected by the enemy, if any (bottom-right). Above the description of the player's collected marbles are markers with timers for all active powerups. The color of the marker is unique to the powerup that is active, and the timer is a countdown describing the amount of time remaining until the powerups effects are removed from the player.

All display elements in both the game display, main menu screen, and pause screen are data driven and implemented as MyGUI widgets described in .layout files.

Artwork

The loading screen was designed as a series of images that introduce the game creators, describe the origin of the team's name, and give credit to all libraries, programs, and groups that made this project possible. All images are data driven and implemented using Ogre overlays described in .material and .overlay files. The images of the creators are all pictures selected and manipulated by the subject using Photoshop.

The artistic design of the game itself fluctuates between a strange psychedelic world and a more realistic one. Levels showing a space skybox are followed by a skybox featuring clouds and hills. The world in which the player's marble lives is meant to be akin to a dream world where fragments of reality appear here and there, but nothing makes complete sense (even the levels with realistic textures are still floating platforms).

Game Architecture
Managers and States
There are six managers used in the code.
· Game Manager - The most fundamental, the game manager is an Ogre frame listener. It passes all the functionality of its listeners (such as frameStarted) to the current state.

· Level Loader - An XML parser used to parse ogre levels, actor information, and the level progression.

· Input Manager - Gets information about the mouse and keyboard state.

· Lua Binding - Contains all the binding information for the Lua scripts for AI.

· Sound Manager - Used to contain and play all sounds.

· Text Renderer - Utilities to render simple text to the screen.
All game states are singletons that can be pushed and popped off of a stack using the GameManager class.
[image: image2.png]Win State

f————press ‘Space

Select Bt

Pause State

Select ‘Resume

Press Esc

¥

Finished.
\‘ Press Space’

Meain Menu
state

Select Exit

Select Start Game'

Finish last level ~——|

Play State

Quit Game

State

Figure 3.1 State Transition Diagram

Actors, Behaviors, and Powerups
The Actor is the basic object type, representing all physical objects in the game. The actor class has the following properties and methods:

· A physical body and shape

· A maximum speed

· A graphical shape (mesh)

· Zero or more behaviors

· Zero or more power ups

· Collision information (used to react to other Actors)
The Actor class is extended to allow for specific implementations of the collision methods. The double dispatch design pattern is used to process collisions between different Actors, implemented by including an onCollision(Actor* a) pure virtual function. Every class that extends Actor must implement this method with the line "a->onCollision(this)". Because "this" is a specific type of Actor, the actor receiving the call can determine which Actor type is colliding with it and respond accordingly.
Powerups and behaviors are implemented as simple interfaces. Behaviors have only one update method that is called every frame and can act on its Actor in any way. Powerups behave similarly to behaviors, with the main difference being that Actors are also notified upon their creation and deletion, and they include the concept of being "reset."
[image: image3.png]PowerUp
Behavior

Speed Behavior

Bounce
Behavior

PowerUp
Behaviors

Competitor
Marble

Collectible
Marble

Collsion
Shape

Behaviors

Figure 3.2 Class Inheritance Diagram
Scenes
The descriptions of levels and actors are stored in .level and .actor files. A .level file is identical to a standard .scene file and describes the object's position, rotation, and scale. It also includes information on the entity's name, texture, the mesh used to create it, and whether or not it casts shadows. It also defines any particle effects that are in use (if any). A .actor file contains a list of all actors in the .level file with additional information such as behavior, collision shape, and the physical properties of the body.

This is an example of an entry in a .level file:
 <node name="PlayerMarble" id="50508136">
 <position x="38.387" y="3.83666" z="-4.00398" />
 <rotation qw="1" qx="0" qy="0" qz="0" />
 <scale x="0.2" y="0.2" z="0.2" />
 <entity name="PlayerMarble" meshFile="marble.mesh" castShadows="true" materialFile="Earth"/>
 </node>
This is an example of a corresponding entry in a .actor file:
 <actor name="PlayerMarble" type="CompetitorMarble" team="friend" entity="PlayerMarble" focus="true" maxSpeed="10">
 <collisionShape>
 <autoSphereCollisionShape />
 </collisionShape>
 <body name="bPlayerMarble" restitution="0.3" friction="0.3" mass="1.0" linearDamping="0.2" angularDamping="0.6" ccdMotionThreshold="0.2" ccdSweptSphereRadius="0.04" />
 <behavior type="PlayerBehavior" camNode="PlayerCam" />
 </actor>

Features

AI

Another danger for the player during gameplay is the Rival Marble. The Rival Marble, upon collision with the player, takes one of the marbles the player has already collected. The behaviors of the Rival include:

· Wandering (the marble meanders about the level, avoiding the edges of the platform and obstacles)

· Chasing (when the player is within a certain radius of the Rival, it gives chase)

· Fleeing (if the Rival has stolen one of the player's marbles, it flees from the player)

These behaviors are implemented using lua so they can be modified in real time and updated "on the fly".

Physics

This game uses Bullet as its physics engine, and all objects in the game have physics applied to them. For example, the player's marble isn't simply translated and rotated across the level, a force is applied to it which causes it to roll. Although generally the player's marble behaves as expected, powerups can change its physical properties:

· "Bouncy" - Increase the restitution of the body to 0.8 (it retains 80% of its energy when it bounces)

· "Speed" - Doubles the maximum speed of the actor

· "Sticky" - Sets its friction arbitrarily high (a coeffecient of friction of 100 is used)

· "Float" - Halves the gravity felt by the actor

Most objects in the environment are static rigid bodies. However, the Rival Marbles described in the AI Section are able to experience physical property changes when the encounters powerups, and collectible marbles - although rigid - are not static.

Sounds

There are two types of sounds in the game: background music and effects. Background music and sound effect volume may be adjusted from Settings in the Main Menu.

The loading screen, main menu screen, and each game level has its own unique, continuously looping, background music. In addition, the main menu and pause screens have interface interaction sound effects (ex. when a mouse hovers over a button or a button is selected). Since sounds are specific to the state playing them, if there is a state change all of the corresponding sounds are stopped.

During gameplay, there are sounds for almost every interaction including the marble rolling on the ground, colliding with objects, gaining powerups, respawning, etc. In addition to the interaction sounds, there are 3D environmental sounds produced by any collectible marble that has not yet been found, making it possible to get a general idea of their location simply through sound.

Testing/Scripting

A scripting window allows the user to run debug commands, and the debug console can be toggled on using the '`' (grave) key. From this console the user may apply forces to any object, move any object, or execute other predefined commands. The user may also enter a debugging state using the ';' key. In this state, the level continues as before but the user now controls a free roaming camera so (s)he is able to inspect the entirety of the level.

Console commands:

· push [RivalMarble,PlayerMarble] x_force y_force z_force

· ex: push RivalMarble 0 50 0

· move [RivalMarble,PlayerMarble] x_position y_position z_position

· debug

· pause

· win

· quit

· close

Conclusion

Our game is . . . the best.

