
Dead End Dungeon
Autumn Hart Donghyun Kim Ghias Padmakoesoema Dawson Pike Anders Santus Colby Williams

● Theme decisions: 1-5: traditional, 6-10: overgrown,
11-15: lava, 16-20: lovecraftian
Cinemachine for dynamic camera functionality

● Minimap implemented via render texturing and
displaying a sprite attached to the Player

● A unique boss encounter is found at floor intervals
of 5

● Hazards exist through the dungeon, which damage
the player on contact

● When the player enters a portal, the player’s vision
is blocked as the old floor is deleted, and a new
floor is requested

● The pause menu freezes the game, and allows the
player to navigate between scenes

● A global Mixer controls the volume of music and
sound effects

● The player and props each have Point Lights that
light the dungeon, and a fog exists to limit far
visibility

● Easy DG (store asset) is used to generate level
floorplans

● LevelManager SO for each dungeon theme
customizes values and prefabs to give to Easy DG

● LevelSpawner places the Player into each level and
generates:
○ # of platforms depending on wall count
○ Props and enemies depending on the tile count
○ Chests to preset value
○ Navmesh for enemies
○ Floor advancement portal
○ Sets dungeon theme depending on floor field

count
● LevelSpawner checks the tags of platforms during

prop placement to mitigate vertical prop clipping in
the event that shorter platforms generate under
taller platforms (this can happen because platforms
are larger than floor tiles)

● Props have trigger collider checks for collision with
other objects to mitigate clipping

● GroundItem script attaches to game models and
holds their respective SO (ItemObject)

● ItemObject contains the item’s sprite, whether or
not it’s stackable, its description, and a method for
creating an Item

● Item is instantiated with ItemObject data and also
stores the ID, buffs, weapon type (sword, bow,
etc.), and amount to receive upon looting (ex. Loot
10 gold)

● Item assigns a random attack type (fire, ice, etc.) to
weapons, which has interaction with Player
animation system. Weapon types also interact with
Player animation system

● Item pickup and selection is done via raycasting
● Raycasts enable/disable item’s Outline script (store

asset), which adds/removes a shader to a model’s
mesh

● Chest script randomly picks two items it’ll contain
and opens/closes on trigger interaction with Player

● Base class attributes seen during character
selection are created as ItemObjects and are saved
in a JSON file

● BuildingGridController is main game manager
(currency, permanent attribute bonuses,
saving/loading)

● BuildingController manages each building (type,
level, sell value, upgrade cost, “adjacency matrix”)

● Grid changes update records in PlayerPrefs
(building positions, building types, permanent
attribute bonuses)

● UI changes communicated to TownMenuController
(currency, buttons)

● Bonus permanent attributes determined by number
of taverns and buildings adjacent to taverns
○ BuildingGridController recalculates and passes

adjacency matrices to affected
BuildingControllers

● ShopManager handles shop mechanics (shop
inventory generation, purchasing items)

● Explore mode drops a copy of the Player Prefab
into the world, hiding UI elements appropriately

● InventoryObject inherits SO, has functionality
methods for the system, uses a JSON file for
saving between game sessions, and has an
instance of the Inventory class which then has an
InventorySlot array

● InventorySlot class holds one Item, keeps track of
what items are lootable per slot, and communicates
between the UI and InventoryObject

● “Database” SO is used to assign items IDs
● Item data is contained in SOs that are attached

through a script that is then attached to the 3D
models

● Delegate methods update the UI and the Player’s
attributes array when the inventory class methods
to delete, swap, or add are called

● A second InventoryObject with no UI is created
during the Character Select scene and has one slot
for storing the attributes of the class/model the user
selects, making attribute passing between scenes
even without the Player object easy

● MeleeEnemy and RangedEnemy inherit
AbstractEnemyController and implement custom
behavior specific to the general enemy type

● Each enemy has a SO containing specific behavior
● EnemyPool tracks all enemies and determines their

status based on distance from player
● AbstractEnemyController checks for collisions with

“Weapon” tag, calls Attack method on the weapon
to calculate damage, and invokes
DealDamageCommand on itself using the
calculated damage

● Melee enemies have a disabled collider that is
enabled during their attack, ranged enemies
instantiate projectile prefabs, and the colliders are
tagged with “EnemyAttack” to group them

● Player class checks for collisions with
“EnemyAttack” tag, determines the damage from
the enemy, and invokes
DealDamageToPlayerCommand with damage

● Dungeon uses RandomEnemySpawner to
instantiate random enemy prefabs from provided
list

The Overall Game Dungeon Generation Items & Chests

The Town

Inventory System

Enemies

OSU, CSE 5912, Dr. Crawfis, Spring
2021

● Class abilities each have their own scripts
○ On pressing their activate key, a

BroadcastMessage() is called onto the player
for the ability classes with “OnAbilityActivate()”

● Command pattern uses for class abilities
○ CommandInvoker attaches to an Invoker object

in the Dungeon scene and instantiates a queue
of commands

○ Various scripts add commands (ex.
DealDamageCommand) throughout gameplay

○ CommandInvoker executes the logic within
each ICommand class and then dequeues them

○ Over half of class-specific commands
implemented (5/7)

○ Example: DamageGOsInSphereAreaCommand
used for ability area damage (ex. mage’s fireball
attack)
■ On execute: enqueues

DealDamageCommand for each enemy in
the overlapping attack area

Player Classes

*Any animation not mentioned is a store asset
● Player can move 8 different directions
● Player can roll 8 different directions
● Player can jump while moving
● Player has death animation
● Player attack system is handled by player’s current

weapon and attack type
○ Each weapon has different cool down, and

different animations
● Player animations are controlled by player animator

○ Player animator is composed by 2 different
layers

○ Multi layer system allows player to do 2 different
animations at one time.
■ Player can attack while moving

● Slime animations include walk/idle, attack, getHit,
and die

Animations

Lava Generation 1 Lava Generation 2 Navmesh View

	Slide Number 1
	Slide Number 2

