
Group 1 Green Shells Technical Details

Track Creation

We used both Blender and Unity to create our tracks. Box colliders are
used as walls to guide AI and players. In the Radioactive track the barbed
wire walls contribute to the theme too. In the Mountain track we modeled
invisible colliders in Blender and imported as fbx files back into Unity to
ensure the players stayed on track. In the Mars Crater arena, Unity 3D
objects with the mesh filters turned off keep the players inside of the main
crater.



Starting a Multiplayer Race

A lot goes into starting a multiplayer race. First, the lobby has a ready
check that all players have to press. This message is sent buffered by
Photon so that even new players to the lobby will receive it. Once the
master client receives that all players are ready it broadcasts to all that the
race has started, and closes off the room to new people. All players will
already have a track name from the lobby. They load this using a prefab
pool. The track name is the key. After this each player tells the master client
to spawn them in with the name of the vehicle as the data. The master
client uses Photon’s instantiate function that gets called on all clients and
then transfers ownership of the vehicle instantiated to the client. Once the
master client spawns all the players it will call a function that tells everyone
to start the countdown. Additionally, the master client spawns in any AI in
the same way. If the master client leaves the new master client will take
ownership of the AI and track gameobjects, so the race continues.



Vehicle Movement

The vehicles move primarily based on a Unity Animator state machine.
There are 5 states: normal, boosting, strafing, boosting, and stunned. Each
state handles the inputs that the player can use, often inheriting the
behavior from the base state. In this way, all the stunned state has to do is
override the acceleration, turning, and using items input to do nothing.
There are also a number of constant behaviors, such as falling, health, and
aligning to the surface, which are outside of the state behaviors.



Multiplayer Synchronization

For the vehicle's own changes, such as location, effects and discharging
pickup, each vehicle calls the method locally, and then synchronizes it on
the screens of other players by photon view or remote procedure call. For
changes in the environment and room, such as whether the pickup box in
the map is picked up and the location of the energy ball, those changes are
sent to all the players in the room by a single manager owned by the
master of the room.



Pickups

All the pickups are stored and managed as scriptable objects. Each pickup
has its own data and discharge method. When a player hits a pickup box
on the map, the pickup manager in the track will be notified and syncs the
games of other players. Players will get pickups based on their ranking with
probabilities of occurrence for each pickup recorded in scriptable object
data.



Saving and Loading Player Ghosts

In practice mode, a player races against their own times. As such, having
“ghost” players the player can race against helps visually communicate this
and make the game mode more engaging. For this, a player’s performance
needs to be saved. Since logging a player’s inputs is nondeterministic, we
instead log player position and rotation every fixed update. This would then
be saved to a .json file containing that logged data, as well as the vehicle
used, and the time achieved if it was faster than one of the previous times.
For playback, up to 8 ghost records are loaded, then the positions and
rotations of those ghost racers are set manually at each time step
according to the saved data. Because this is set manually, we can remove
colliders on each ghost to prevent them from blocking the player.



AI Vehicle Navigation

In Grand Prix players can race against AI. Each track has invisible
checkpoints. The AI shoot raycasts to find these checkpoints. However,
there could be obstacles between the AI and the nearest checkpoint. To
handle this we had the AI shoot multiple raycasts from the front of the
vehicle, two straight ahead offset to the left and right. Additionally we shot a
raycast angled 30 degrees away from the vehicle on the left as well as the
right. If a raycast on the left hits something, there’s an obstacle on the left
so the AI should turn right. Similarly if the raycast on the right hits
something, there’s an obstacle on the right so the AI should turn left. If the
left and right raycasts hit something, there’s an obstacle straight ahead so
the AI should simply turn in the direction of the next checkpoint. To handle
obstacles of different heights, we shoot raycasts in the same directions, but
from lower and higher starting positions as well. To become more precise,
we added more raycasts on the left and right, same concept but this
allowed us to detect narrower obstacles and better navigate when multiple
obstacles were present.



Lap Tracker

The track utilizes checkpoints to track the progress and rankings of each
player. Each track has multiple numbered checkpoints throughout the map
and each player stores the last checkpoint hit. When a player hits a
checkpoint, the checkpoint then checks the checkpoint number stored in
the player, makes sure that the player did not skip any checkpoint, then
updates that player's checkpoint number. Similar logic applies when the
player goes backward.

There is a singleton class named LapListener that keeps track of the
checkpoint number for all players. Based on the current checkpoint, it
calculates which lap each racer is in. It also uses a weighted sum to
calculate the ranks of each player using the lap number, checkpoint
number and distance to the next checkpoint.



Procedural Generation

Building Generation

Buildings in this game are generated using building blocks. When all the
blocks and their corresponding offsets are provided, the script automatically
generates a building of a given size.



City Generation

The city is made out of tiles that are bordered by roads in all four directions.
Each tile has some designated building spawn places. When the city is
generated, the script randomly stitches tiles together while attaching
random buildings on top of the tile. So each time the destruction mode is
opened, different tiles and buildings are stitched to create the map.


