
Timeless	Archipelago
Creaking	C⚙g	Creations

Alex	Toney,	Allison	Jett,	Haoran	Wang,	Jarvis	Huang,	Sergey	Maltsev,	Pavan	Nimmagadda,	Wesley	Brown	

CONTACT
Alex	Toney

toney.77@buckeyemail.osu.edu
Allison	Jett

jett.30@buckeyemail.osu.edu
Haoran Wang

wang.7371@buckeyemail.osu.edu
Jarvis	Huang

huang.2089@buckeyemail.osu.edu
Sergey	Maltsev

malltsev.1@buckeyemail.osu.edu
Pavan	Nimmagadda

nimmagadda.8@buckeyemail.osu.edu
Wesley	Brown

brown.5776@buckeyemail.osu.edu

SUMMARY
Timeless Archipelago is an Action Role-
Playing Game in the vein of already
successful games, such as Diablo II and
Path of Exile. However, we set our game
apart by introducing an aging mechanic,
which encourages players to start new
playthroughs (which are styled as the
“next generation”). The aging mechanic
provides a new, critical choice to
players – do they continue into old age
as the game gets more dif[icult, or start
a new playthrough?

PROCEDURAL GENERATION MODULARITY
All	of	our	elements	are	modular	and	can	be	combined	in	a	variety	
of	ways.
Most	things	have	a	hierarchy	of	extension.	i.e.:	interface>abstract	
base	>	real	base	>	speci[ic	object	>	etc.
This	makes	it	very	easy	to	add	new	instances	of	anything	in	the	
game	(Items,	Abilities,	Enemies,	Bosses).

SAVING/LOADING
The	player’s	data	is	saved	to	JSON	[iles	to	allow	continuation	
between	different	play	sessions
• Inventory
• Equipment
• Age
• Af[lictions
• Level
• Experience	Points
• Skill	Bar	Layout
• Class	Skill	Tree

ENEMY AI
A NavMesh is baked(created) after the island is generated. Each
enemy uses a NavMeshAgent for path[inding. Islands of different
themes spawn enemies of different types and different colors.
Each type of enemies has a unique [ield of vision to detect the
target. Different types of enemies use different AI.

Bat/Spidermoves	randomly	when	player	is	not	in	the	vision	
[ield,	and	follows	and	attacks	player	when	it	sees	the	player

Fungus/Plant sleeps/idles	when	player	is	not	in	the	vision	
[ield,	and	attacks	player	when	player	gets	close

Bee attacks	the	player	only	if	the	player	hurts	it.	If	one	bee	is	
killed,	all	other	bees	swarm	and	attack	the	player

Overview
Taking inspiration from work done by Maxim Gumin as well as
Karth & Smith (2018) [1], we modeled the procedural generation as
a constraint satisfaction problem (CSP) which consists of variables
and constraints. [2]
Our set of variables is a grid of squares, each of which can take on
any terrain tile shape. When one tile is set, it constrains the possible
tiles around it. The constraints are then propagated through the
entire map. The process of selecting a tile and propagating
constraints is repeated until all squares are [illed in.
In order to exert more control over the procedural generation, we
apply preprocessing steps and tile selection heuristics.

CSE5912 Preprocessing
The procedural generation begins with the selection of one or more
templates, which ensure that the overall shape resembles an island.
The use of images for templates allows for easy template creation, as
well as the ability to scale the templates to any size island. Templates
can also be combined with each other to create new templates.
Since there are tiles that can block access to other tiles, we also ensure
that there is at least one path to the boss teleporter by constructing a
tree and then locking a path in place.

Constraint Satisfaction Algorithm
Once the island is guaranteed to be playable, the procedural generation
proceeds as a constraint satisfaction problem. Our algorithm only uses
adjacency constraints, although it is possible to de[ine distant
constraints. The algorithm is as follows:
• While there are undecided slots
• Select the slot with the fewest values remaining
• Select a tile from that slot’s options using a tile heuristic
• Propagate the possibilities to the rest of the slots using Arc
Consistency Algorithm #3 (AC-3) [3]

[1]	WaveFunctionCollapse is	Constraint	Solving	in	the	Wild,	Karth &	
Smith	2018	
https://adamsmith.as/papers/wfc_is_constraint_solving_in_the_wild.p
df
[2]	Arti[icial	Intelligence:	A	Modern	Approach,	Chapter	6
[3]	A.K.	Mackworth.	Consistency	in	networks	of	relations.	Arti%icial	
Intelligence,	8:99-118,	1977.

Tileset
We designed a tileset that allows us to generate islands of any size.
Importantly, due to the design of our adjacency constraints, the
tileset is non-Wang, as there are patterns that are disallowed even
though the tile edges match.
In our tileset, 33 tiles are used per level of height. Most tiles are
rotations of other tiles, so only 9 unique tile models were required.
The [irst 33 tiles order by ID are pictured below.

Each tile has a numerical ID. Tiles 0-32 are used to transition from
water to land. Tile 33 is the [irst tile of the next range, and it is a [lat
land tile. Tiles 33-65 de[ine the transition from one height level to
the next. We can easily and dynamically add more tiles by reusing
the information from tiles 33-65, with some simple calculations. For
example, to generate an island that goes to height 5, the tileset is
automatically expanded to 166.

Heuristics
We create heuristics that map the list of possible tiles in a slot to a list
of weights. Our tile addressing systemmakes it easy to de[ine functions
that map IDs to weights. Additionally, we combine heuristics by
multiplying the weights from different heuristic functions. Once the
[inal weights are set, they are used to select a tile.Tile	IDs	by	row:	0-12,	13-24,	25-33 REFERENCES

https://adamsmith.as/papers/wfc_is_constraint_solving_in_the_wild.pdf
http://citeseer.ist.psu.edu/context/1023/0

