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Abstract

Distance fields are an important volume representation. A high quality distance field facilitates accurate surface
characterization and gradient estimation. However, due to Nyquist’s Law, no existing volumetric methods based on the
linear sampling theory can fully capture surface details, such as corners and edges, in 3D space. We propose a novel
complete distance field representation (CDFR) that does not rely on Nyquist’s sampling theory. To accomplish this, we
construct a volume where each voxel has a complete description of all portions of surface that affect the local distance
field. We also show here that CDFR can be adaptively represented, without comprising accuracy. The adaptively
represented complete distance field is shorted for ARCDF. For any desired distance, we can extract a surface contour in
true Euclidean distance, at any level of accuracy, from the same CDFR representation. Such point-based iso-distance
contours have faithful per-point gradients and can be interactively visualized using splatting, providing per-point shaded
image quality. We also demonstrate applying CDFR to a cutting edge design for manufacturing application involving
high-complexity parts at un-precedented accuracy using only commonly available computational resources.

1.  Introduction

A voxel-based volume, as a 3D raster, holds discrete sample points representing a certain multi-dimensional
entity. In an alias-free volume discretization, only frequency components below half the Nyquist sampling rate would
be stored. As a natural description of solid physical entities, volume representations have found applications in a vari-
ety of areas, including medicine, mechanical engineering, scientific computing and simulations. In order to utilize
volume technologies, it has been common to convert surface models, such as a polygonal mesh exported by a CAD
package, to a volume representation. In this process, first, one needs to voxelize the surface model into a hollow vol-
ume representing the surface shape [11][14][15]. Second, a distance transform is computed to construct a solid vol-
ume that encompasses a distance or thickness field recording distances to the surface. Euclidean distance has not been
commonly used due to both efficiency concerns and the fact that accuracy is already compromised in the binary sur-
face volume model. Instead, most applications use less accurate distance heuristics such as Manhattan or chessboard
distance, or a Chamfer distance [3].

Voxelization techniques that convert surface shapes into binary volumes, with 1’s representing occupancy and
0’s representing empty space, have been developed in [11][14][15]. These methods are practical and commonly used
nowadays. Surface shapes, however, are infinitely thin in space. To sample this thin shape, one needs infinitely high
sampling rates. To avoid such a difficulty, Kaufman’s algorithm [14][15] increases the voxel thickness of a surface,
and therefore, to some extent, band limits the frequency spectrum before the sampling, or scan-conversion, process.
Huang et. al [11] proved the sufficient and necessary thickness of the surface shape that guarantees a correct discrete
topology in the resulting volume representation. Unfortunately, all these methods are based on binary volume repre-
sentations, which are highly susceptible to aliasing artifacts. To address this issue, Sramek and Kaufman initiated
data representations in non-binary formats [22]. In their paper, they show one has to use higher order smoothing func-
tions to pre-filter and band limit the spectrum of the volume. Later, an incremental voxelization method for non-
binary volume is reported in [5].

Over the years, in addition to the search for optimal voxelization, the community has also been exploring other
representations of surfaces, such as distance fields. Distance fields are scalar fields, with each element in the 3D vol-
ume representing the minimal distance to a certain shape. It is common practice to use signed values to distinguish
between interior and exterior of the shape. Compared to the surface shapes that correspond to impulses in 3D space,
distance fields are much smoother. For shapes without sharp corners and edges, both the surface position and gradient
can be reconstructed relatively accurately using a distance field [1][9]. When corners and sharp edges are introduced,



high frequency components are also brought into the spectrum. To preserve such details, super-sampling with excep-
tionally high volume resolution, as well as low-pass filtering, is necessary to achieve an alias-free representation. 

All traditional distance field algorithms are based on the Nyquist sampling theory. In other words, distance fields
can only be sampled and then stored into discrete volumes. Unfortunately, for CAD applications, without a practi-
cally usable definition of accuracy loss after band-limiting filtering, all previous discrete distance field algorithms
could in no way be reliably used. The alias-free definition to the graphics community does not address the accuracy
issues for CAD applications. This limitation in error-tolerance, as well as the overwhelming costs of high-resolution
volume applications, has limited applications of volume techniques in CAD/CAM.

In [13], a novel method to accurately represent distance fields in a volumetric form was proposed. The new
method of volumetric representation of distance fields is based on a complete distance definition, which is disparate
from the theory of linear sampling. The new distance field representation was named a “complete distance field rep-
resentation (CDFR)”, because once the distance volume is constructed, one can extract any distance contour to any
error-tolerance directly from the distance field. As a comparison, conventional approaches based on a single valued
distance field can only achieve higher accuracy by re-building the whole distance volume at an increased resolution.
However, in most cases building a high resolution distance volume is non-trivial both in computational time and stor-
age space. Another recent work [16] stores the estimated local edge positions in x, y and z directions with each voxel
and can extract triangle meshes from volume data at a much improved quality compared to conventional methods
[2][10]. However, their distance field representation is not complete and the surface extraction is still based on esti-
mation. The method of CDFR only relies on exact computations, and, different from the approach in [2][10][16], uses
a point-based approach to represent the extracted contour surfaces.

Hierarchical data structures representing distance fields efficiently have been reported in [7], where adaptively
sampled distance fields (ADF) were introduced. ADFs help in reducing volume storage size when fewer details are
locally present. The specific ADF implementation described in [7] relies on a discretely sampled distance representa-
tion, therefore that implementation still depends on a band-limited spectrum that discards all details beyond the cut-
off bandwidth supported by the leaf level in the tree structure. Although CDFR does not abide by the sampling the-
ory, the adaptive structures of ADF can be utilized by CDFR as well. As shown here, however, the Adaptively Repre-
sented Complete Distance Fields (ARCDF) only helps to speed up the iso-contour extraction phase, but not more
efficient in storage.

2.  Introduction to Distance Fields

Traditionally, distance fields are defined as spatial fields of scalar distances to a surface geometry or shape. Each
element in a distance field specifies its minimum distance to the shape. As long as the shape is represented by an ori-
ented manifold, positive and negative distances can be used to distinguish outside and inside of the shape, for
instance, using negative values on the outside and positive on the inside. Distance fields have a number of applica-
tions in constructive solid geometry [1][7], surface reconstruction and normal estimation [9] and morphing [1][3].
Distance fields are also applied to concurrent engineering [17] where simulations and analysis involving the interior
of geometries, such as die-casting simulation or thickness analysis of parts [23], are routine.

For an alias-free sampling of a signal, Nyquist’s Law dictates that the sampling rate must be at least two times
the highest frequency component in the signal. In spatial domain, geometry is infinitestismally thin, and has an infi-
nitely wide frequency spectrum. The sharp details on the surface, such as corners and edges, also reside on the high
ends in the spectrum. Even with an overwhelmingly large volume resolution, one still needs extensive low-pass filter-
ing to limit the bandwidth of the geometric shape. These low-pass filtering operations, with either simple box filters
[11][14][15] or specifically designed higher order filters [22], inevitably cause a loss of the exact surface details.
Converting the surface shape to a distance field, which is smoother, provides a way to exactly locate the surface [9]
during reconstruction. But the underlying assumption of having a completely smooth surface that is free from sharp
corners and edges is unrealistic for most scenarios.

Frisken et. al [7] developed a well analyzed framework for adaptively sampled distance fields (ADF), by which
one can build hierarchies of distance fields at different levels of detail and be able to cross over different levels of



detail as needed. They also vary sampling rates according to the amount of details that are available locally. They
used tri-linear interpolation to reconstruct distances, and were able to demonstrate a suite of applications with impres-
sive rendering quality. However, ADF [7] does not fundamentally solve the problem of losing surface details in dis-
crete representations. After the leaf level of ADF is constructed, the loss in surface details is final and irreversible.
When the primary goal of an application shifts from visual quality to accuracy, ADFs with trilinear interpolation may
not satisfy the accuracy needs with a guarantee, simply because the true distance fields are not linear where corners or
edges are present. What the hierarchies provide is an ability to save computational and storage resources when less
details are encountered. For models with fine details everywhere, the ADF eventually resorts to an extremely large
voxelization. For the applications where accuracy is highly sought after, current ADFs based on single valued dis-
tances incur overwhelming costs, because most practical geometrical models are rich in details at a wide range of
scale.

A high quality distance field should be accurate, efficiently stored and can be efficiently processed. There are
two fundamental issues involved in building a high quality distance field. First, we need an accurate way to represent
the distance from an arbitrary point in 3D space to an arbitrary shape. Second, how should we optimally organize the
distance representations in space? The first question can be answered by CDFR as a fundamental fix that preserves all
geometric details in the true distance field. The answer to the second question lies in applying the hierarchical con-
cept presented in ADF[7] to efficiently organize the spatial data structure of CDFR. Depending on the amount of sur-
face details available, one needs an adaptive and smooth transition between resolution levels for efficient querying.

3.  Complete Distance Definition (CDD) & Complete Distance Field Representation (CDFR)

We now introduce a complete distance definition (CDD). Corresponding to different surface representations,
such as parametric surfaces, implicit surfaces or subdivision/polygonal mesh surfaces, there could be different instan-
tiations of CDDs. Here, we focus on a simple case where the surface is represented by polygonal meshes. When accu-
racy is paramount, Euclidean distances are preferred over other distance metrics, such as Chamfer distance or
Manhattan distance. The CDD distances are true Euclidean distances. Before discussing CDD, we will discuss a few
observations that motivated the CDFR research.

3.1  Some Observations

Distance fields are very smooth in some simple scenarios. For instance, suppose in a 1-dimensional space, we
have an impulse. It’s frequency components extend to infinity. There is no way to use a finite sampling frequency to
sample the impulse without aliasing. But on the other hand, as illustrated in Fig. 1, the signed distance field of the
impulse is a linear function which extends from negative infinity to positive infinity. Sampling this linear function
can be accurate with a relatively low sampling rate.

 

Unfortunately, this feature does not hold in higher dimensions where corners are present. As presented in [11],
when extended into 2D or 3D, the discrepancies and discontinuity on corners makes the distance field non-smooth.
For instance, in the triangle in Fig. 2, we have a rather faithful sampling in the light grey grids on the edges, because
the geometry is locally linear*. But the sampling is not sufficient in the dark grey grids that have corners. The non-lin-
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Figure 1:  Without low-pass filtering, it’s impossible to sample
the impulse (left), but we can sample its distance field (right).
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ear distance fields within the dark grey grids make it impossible to accurately recover the correct distance distribution
from the grid samples.

According to Nyquist’s Law, to sample such complicated distance fields, one must low-pass filter the corners
and smooth out the sharpness. Using ADF [7], for the grids on the corners, a higher resolution would be used,
whereas in the light grey grids, a much lower resolution might suffice.

To capture the exact location of the impulse in Fig. 1, we do not have to use sampling. Alternatively, all one
needs is to place an anchor point at some location, and record the signed distance from the anchor to the impulse. In
this method, preserving the exact position of the impulse is made straight-forward. This observation motivated our
research towards a new distance representation for distance fields.

3.2  Complete Distance Definition (CDD)

CDD is a set of parameters describing both the distance from a 3D point to a surface geometry primitive and the
geometry primitive itself. Specifically, when the shape is represented as a mesh of triangles, CDD reduces to a tuple
that consists of a scalar canonical distance value, and a description of the triangle with a vertex list and an edge list:

(1)

The value distance is the true Euclidean distance from the voxel center to a finite triangle. This distance is
defined in the pseudo code in Fig. 3. 

While the return value is the CDD distance, the input parameters include a triangle, tri, and a 3D point, pnt. If pnt
orthogonally projects into tri (case C1), the return value is the orthogonal distance from pnt to the plane where tri lies.
Otherwise, we check whether pnt orthogonally projects onto any of the three edges. If yes (case C2), then the returned
distance value is the shortest distance from pnt to an edge that pnt projects orthogonally onto. In case neither C1 or C2
applies (case C3), the distance is the minimal distance from pnt to the three vertices. This definition of distance to a
finite triangle is further illustrated in Fig. 4. 

*Locally linear: reconstruction is accurate with linear interpolations.

Figure 2:  Corners in the triangle cause complexity in the
distance field, resulting in an aliased spectrum after sampled.

distance v1 v2 v3, ,〈 〉 e1 e2 e3, ,〈 〉, ,〈 〉

float CDD (triangle tri, vec3 pnt)
{
     float mindist = MAXIMUM;
     if (pnt projects orthogonally into tri’s interior)          // C1
             mindist = distance from pnt to tri’s plane;
     else
     {
          for each edge of tri, ei,
              if (pnt projects orthogonally onto ei)                // C2
                 mindist = min(mindist, distance from pnt to ei);
          for each vertex of tri, vi,                                        // C3

Figure 3:  Definition of distance from a point to a finite triangle



We can still use positive and negative distance to distinguish inside and outside. We term the triangle that is the
closest to pnt as the base triangle of pnt. If pnt is closest to a triangle and the distance is of case C1, then this triangle
is pnt’s base triangle. If pnt’s distance is not case C1, rather, it’s case C2 or C3, looking for pnt’s base triangle is more
complicated. For C2 cases, let’s label the projection point of pnt on that corresponding edge as, p’, and we record the
vector pointing from p’ to pnt as V. Between the two triangles sharing that edge, the triangle with a normal direction
closer to V’s direction, i.e. larger absolute dot product value, , is pnt’s base triangle. Very similarly, in
C3 cases, among the triangles sharing that closest vertex, we can easily find out the base triangle of pnt by comparing
dot product values. We are interested in finding out pnt’s base triangle, because by using the outward normal direc-
tion of the base triangle and the relative position of pnt, we can determine the sign of the distance at pnt without
ambiguity. 

To better illustrate the process in determining the distance sign, in Fig. 5a, we show several 3D examples, shown
in 2D. p1 through p6 are 2D points. t1 through t6 are triangles that form the surface mesh. p2, 3, 4 and 5 are all case C1.
From the normal direction of t2, we can tell p2 is outside, p3 is inside. Similarly, using the normal of t3 and t5, one can
tell that p4 is inside, and p5 is outside, respectively. p1 and p6 are both C2. We show an enlarged view of these two
cases in Fig. 5b. By comparing the dot products, we can tell p1’s sign is determined by t2, and for p6, it is decided by
t1. 

Finally, to save space, we store the description of all triangles in a separate array and only keep a triangle index
in a CDD tuple.

3.3  A Complete Distance Field Representation (CDFR)

In this section, we show the process that uses CDD to build a complete distance field representation (CDFR),
allowing exact capture of all geometric details, e.g. sharp corners and edges, to any level of accuracy. 

C1
C2

C2

C2

C3

C3

C3

Figure 4:  If pnt projects into tri, it’s case C1. Otherwise, pnt is either C2 or C3, depending on whether it’s
closer to an edge or a vertex. This diagram is drawn in 2D for ease of illustration.
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Figure 5:  (a) 2D illustrations of the process to determine the sign of the distance of a point. The solid black arrows
depict the outward normal direction of each triangle. Points p2 through p5 project into the triangles, i.e. case C1. The
signs of the distances of p2 through p5 are determined by evaluating the normal direction of each point’s base
triangle. p1 and p6 are examples of C2 cases. (b) Enlarged view of p1 and p6. Both p1 and p6 are outside.
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Given a surface mesh, in the voxelization step, we store CDD tuples with each surface voxel, rather than single
valued distances.

For each triangle touching a surface voxel, a CDD tuple is stored with that voxel. The end result of the voxeliza-
tion step leaves all surface voxels with a list of CDD tuples, sorted in ascending order by distance values. Fig. 6 pro-
vides an example of voxelizing a single surface voxel, Vox. There are three triangles touching Vox. T2 is case C 1, with
T1 and T3 being case C2 or C3. The minimal distance of Vox, measured from the center of Vox is d2. As a result, Vox
has a sorted list of 3 CDD tuples.

At the end of voxelization, we have a volume where each voxel which the surface intersects contains a list of
polygons cutting through it.

3.4  Distance Transform

For a distance transform, initially, we use an outside flooding algorithm to eliminate all outside voxels from our
computation. For the remaining voxels, a contour by contour CDD propagation is performed from the surface voxels
to the interior. During this process, a voxel looks for CDD tuples that have been newly propagated to anyone of its
26-neighbors [11]. It inherits all new CDD tuples from its neighbors, and for each triangle, it computes the true
Euclidean distance from its own position. An updated list of CDD tuples are then sorted into ascending order and the
first CDD tuple in the list contains the current distance, cur_distance, of this voxel. All the CDD tuples that contain a
distance value within the range:

       [cur_distance, cur_distance + *voxel size] 

are stored with that voxel. This is a sufficient range to guarantee correctness in the distance transform, as we will
prove in Section4. The CDD tuples out of this range are discarded. This process of distance transform iterates until
no voxels find new CDD tuples from its 26-neighbors affecting its current CDD tuples list.

3.5  Extracting A Distance Contour

The most frequent way in which a distance field is used is by reconstructing or extracting an iso-distance con-
tour. For instance, a user asks the following request, “show me the zero distance contour with an error tolerance of
0.5mm”. The conventional way of reconstructing sub-voxel distance is to trilinearly interpolate in-between voxels
[7]. Often times this reconstruction step is embedded in ray-casting procedures at rendering time. While this works
for some applications, there is no guarantee on the level of accuracy. From CDFR, we extract a distance contour with
a fulfillment of an arbitrarily high accuracy requirement. We store the extracted distance contours as point-based
models [6][21], so that we can render the contours at high interactive rates with splatting [4][12][19].

The extracting procedure works as following. Given a requested interior thickness, t (t>0) , we traverse these
voxels with a distance value in the range:

 (2)

The requested iso-contour will pass through the span of these voxels. Unlike marching cubes [10], We do not use
conditions like  and , because the underlying assumption of having a linear
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d1

Vox

CDD Tuple List of 
Vox:
{d2, T2}
{d1, T1}
{d3, T3}
// in ascending order

Figure 6:  A 2D illustration of building a CDD tuple list for a surface voxel, Vox. There are 3 triangles intersecting Vox.
The CDD tuple list is organized in ascending distance order, with the minimal distance of Vox being d2.
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function is not true in our case. There could be cases where the 8 corner voxels are just surrounding the maximal
thickness point in the model, and none of the 8 voxels exactly captures that maximum. 

After identifying the relevant voxels, we then subdivide the voxels into sub-voxels, or points [2]. We only extract
the sub-voxels that are close to the desired surface into a point-based iso-distance contour represented the surface. In
order to support the error tolerance, E, picked by users, the size of each sub-voxel must be:

(3)

For each sub-voxel, or point, we compute the signed true distance for all the CDD tuples resident on each of the
8 cornering voxels. The points that have the minimal positive distance value within the range [ t - E/2, t + E/2] are
extracted into the point-based iso-distance contour. 

3.6  High Quality Gradients

Besides using the distance contour for analysis, visualizations of the distance contours are also highly desired in
applications. For point-based models, having high quality normal information on each point is essential for high
image quality. 

Our CDFR offers an additional advantage in this perspective. When extracting the distance contour from the base
triangle of each sub-voxel, the normal of this point is computed. If this point is of case C1 to its base triangle, then the
normal of the base triangle is this point’s true gradient. If the point is one of the cases C2 or C3, the gradient is the
vector V  in Fig. 5. For instance, in a C2 case, the 3D point, P, first gets projected onto the closest edge. The gradient is
the vector connecting P and its projection. In C3 cases, the gradient direction is obtained by connecting P and the
closest vertex. Therefore, the normal vectors computed for the whole point-based model is continuous and accurate.
High quality per point shading is thus supported.

4.  Proof of Sufficiency

To prove the correctness of CDFR, we need a proof of sufficiency. That is, when we need to reconstruct the local
distance field in the span of any voxel, all the surface primitives affecting this local area are present on that voxel.

A surface primitive, such as a triangle, affects a local field in 3D space by being the closest surface triangle to at
least one position in this local area. Based upon this observation, we devise our proof of sufficiency with a proof by
contradiction: 

Suppose in the CDFR, R, there exists a local voxel, V, in whose span there exists at least one point, P(x,y,z),
whose base triangle, T, is not resident on the voxel, V.

Without loss of generality, we write the distance from P to T as D. All distance fields are continuous functions,
although they may not have continuous derivatives. For a point, P’(x+dx,y+dy,z+dz), that is closely neighboring P,
the minimal distance from P’ to T is bounded by:

 (4)

Due to deduction, when P’ incrementally moves from P towards V’s center point, it logically follows that the dis-
tance from V’s center point to T is bounded by:

(5)

Equation (5) can be rewritten as:
(6)

However, the minimum distance to P, which is D, must also be smaller than , with minD denot-
ing the minimum distance of the surface to V. Therefore, the distance of T to V, must be within the following range:

(7)
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Since P  is in the span of V, the maximum possible distance is  voxel size, the range in (7) is actually a
subset of:

(8)

Contradiction. Since during our distance propagation process, Equation (8) is exactly the range that we maintain
on each voxel. Hence, triangle T must be resident on voxel V. The assumed case can not exist. Proof completed.

We do not claim our storage is minimal. We might have kept more CDD tuples on each voxel than necessary.
However, enforcing that minimality would introduce more complexity. As long as we use a triangle index in CDD
tuples instead of complete description of each triangle, the extra storage cost that we spend is low. We have traded for
simplicity in implementation.

5.  Adaptively Represented Complete Distance Fields

CDFR stores on each voxel the indices of all surface triangle that affect the distance field in the local neighbor-
hood around that voxel. We term these triangles as resident triangles. The accuracy of CDFR is guaranteed no matter
what the volume resolution is. However, the resolution of the volumetric grid does affect the efficiency of computa-
tion when a distance iso-contour needs to be extracted. In areas of high complexity, it helps to use a higher resolution
for efficiency. While in computational geometry and CAD fields, exactly defining what geometric complexity is a
thorny issue; for the purpose of adaptively representing CDFR, complexity can be straightforwardly defined as the
number of triangles resident on each voxel. We should also note here that CDFR is defined on a uniform grid only.
Therefore, an octree type of subdivision is inevitable. We construct the octree in a top-to-bottom fashion for all vox-
els that need to be subdivided.

The average number of triangles on each voxel across the whole volume is quite low, usually in the range of 2 to
7 or 8 triangles per voxel, for models with a modest complexity. However, in most data sets, about 1 to 3% of the
non-empty voxels have as many as 15 triangles or more. For some parts with more than 30 thousand triangles, the
maximal number of triangles resident on a voxel can be as many as 100, at a 128 CDFR resolution. If these voxels
with a large number of voxels are incurred when an iso-contour is extracted, a large amount of computation is inevi-
table. We subdivide these voxels. The process is quite straightforward. For each voxel that needs to be subdivided, we
partition it into 8 octree subdivided children. All triangles that affect the local neighborhood are guaranteed to be res-
ident on the parent voxel. We just compute the distance from each sub-voxel center to all the triangles, respectively.
For each sub-voxel, we then sort the triangles in ascending distance values, and discard all triangles with distances
larger than: 

minimal_distance + *sub-voxel size (9)

This subdivision process can be recursively iterated until a certain stopping criteria is met. Our current criteria
for subdivision is met when a voxel has more than k times the average number of resident triangles across the volume.
The value k can be any integer above two, if one doesn’t want to subdivide the whole volume. In that case, it’s easier
to use a higher initial resolution.

One interesting result we obtained actually shows that subdivision does not reduce number of resident triangles
very significantly on all subdivided voxels. In other words, the number of resident triangles does not scale down. In
areas where a large number of triangles affect the local distance field, no matter how small that region is, the number
of resident triangles does not reduce in a large amount as a result of subdivision, although such reduction is always
distinguishable between neighboring levels in an octree. The lower limit seems to be around 2 to 5 resident triangles
per voxel, depending on the complexity of each model. Our experimental results confirmed this hypothesis repeatedly
and consistently (Section 6.4). Also as expected, adaptively using a smaller voxel size in area of high complexity
does help to accelerate the time to extract final distance contour.

3( ) 2⁄

minDminD 3voxelsize+[ , ]

3



6.  Results and Analysis

The resolution of CDFR volumes do not affect the accuracy of the distance field. Also, the CDFR construction
step is independent from the step that reconstructs iso-distance contours. Before we analyze the performance of our
approach, we show images of distance contours on a few sample parts to demonstrate the accurate Euclidean distance
fields obtained. All point-based models are rendered with splatting [12]. All results are collected on a SGI Octane
with a 300MHz processor and 512MB memory. Table 1 provides a full description of the models used for test and
analysis of our algorithm. We have also applied our algorithm to a very complicated part, Engine Cylinder Head, for
heavy section detection. The details of the Engine Cylinder Head model is described in Section6.6. 

6.1  Proof-of-Concept Experiments

As a proof of concept, we first examine some simple cases. Cubes and tetrahedral cells are the simplest. They are
convex and symmetric. With a true Euclidean distance field, the thickness contours of different values are in the exact
shape of the outer surfaces, including the sharp edges and corners, as shown in Fig. 7(a)(b). Concavities cause addi-
tional complexity in distance fields. Two concave examples, a one-ended tooth and a six-pointed star are shown in
Fig. 7(c)(d). For the one-ended tooth, we choose a small thickness value to extract a contour close to the surface,
while for the six-pointed star, a larger thickness is chosen. The evolving effects in Euclidean distance fields are inter-
esting, with corners being smoothed out on the interior distance contours in both Fig. 7a and Fig. 7b. Small thickness
contours closer to the surfaces retain more detail of the surface shape. The shape of the deeper contours manifest
more global features of the shape (Fig. 7c,d). 

All four models have a CDFR at a low resolution of . To reconstruct the thickness contours in Fig. 7
and 7, we set the accuracy to 1/500 of the longest dimension of the model. For all 4 models, there are less than 400K
points in the point-based contour. We obtained 3 frames/second rendering rates of the accurate distance contours with
per point shading. 

Model No. Triangles Bounding Box Size 
(x,y,z) (inch)

Maximal Thick-
ness(inch)

Cube 12 (5, 5, 5) 2.5
Tetrahedron 4 (1, 1, 1) 0.2
1-Tooth 16 (1, 2, 2) 0.48
6-Star 48 (1, 3, 3.46) 0.49
Connector 242 (6.9, 2.0, 2.9) 0.50
Brevi 1812 (38.1, 34.9, 96.0) 13.00

TABLE 1. Physical Information of Test Models.

Figure 7:  A cube and tetrahedron, with the surface mesh shown in semi-transparency. The distance contours (shown in red, per-
point shaded) are of thickness (a) 0.6 inch and (b) 0.1 inch. Two concave examples, a 6-pointed star and a one-ended tooth. (c) For
small thickness values (0.2 inch), the distance field retains most corners and edges, with little smoothing. (d) As the thicknes s
increases (0.35 inch), the distance field evolves into the model, showing more smoothing.

(a) (b) (c) (d)

32 32× 32×



6.2  Real-World Models

Surface graphics based CAD/CAM systems often spend hours to perform jobs involving the interior of real
world designs. Volume techniques have been considered. But due the overwhelming costs incurred in high resolution
volumes, the affordable accuracy is very limited with current computing systems when applied to design for manu-
facturing purposes [17]. The application of volume graphics to CAD is limited. We tested our approach on two indus-
try production models, ‘connector’ and ‘brevi’, for which both accuracy and interactive frame rates are highly sought
after.

All contours in Fig. 8 are extracted to an accuracy of 1/1024 of the length of each part. In Fig. 8(a,b), the thick-
ness contours within the ‘connector’ part show crisp edges and corners, while at the same time, retaining topological
features in the surface geometry at different levels of scale. In Fig. 8(c,d), we present the thickness contours within
the ‘brevi’ part at thicknesses of 10 and 4 inches. Fig. 8a demonstrates that even at the core of a part, sharp corners in
the distance fields still exist at a variety of scales. The hole on the lower right corner of Fig. 8d is a discontinuous
point in the distance field, and is one of the causes of failures during previous manufacturing processes. (See color
plate for greater details). The contours in Fig. 8(b,c) are small, with 400K and 120K points, respectively. Around 2 to
5 frames/second have been recorded. However, Fig. 8(a,d) both have relatively large contours, with 1.5 to 2 million
points, and only about 0.5 frames/second rates are obtained.

6.3  CDFR Size and Construction Time

The detailed storage structure on each voxel is shown in Fig. 9. Each voxel contains a 1-byte flag, vCnt. Empty
voxels, i.e. outside voxels, have vCnt set to zero. Surface voxels have a vCnt value in the range between 1 and 127,
denoting the number of triangles present on this voxel. Voxels entirely in the interior are distinguished by having a
vCnt larger than 127. The value (vCnt -127) is the count of triangles present. For very complicated models at very
low CDFR resolution, vCnt may overflow. In that case, a larger number is needed for vCnt, or an adaptive subdivision
scheme is required. By subdividing each voxel into an even number of sub-voxels, we also break up areas having a
central curvature point, such as a sphere. In total,  bytes are needed per non-empty voxel, with n being the
number of triangles present on that voxel.

To analyze storage costs of a CDFR, we constructed CDFR volumes for each model at different resolutions.
Cube, Tetrahedron, 1-Tooth (one-ended tooth) and 6-Star (six-pointed star) are simple models, for which we built

Figure 8:  (1)Results of ‘connector’. The surface mesh is shown in semi-transparency, and the per-point shaded distance
contours are at thicknesses (a) 0.2 inch and (b) 0.35 inch. (2) Sample images of ‘brevi’. With the per-point shaded contours at
thicknesses (a) 10 inches and (b) 4 inches.

(a) (b) (c) (d)

4 n⋅ 5+( )

CDD_voxel
{
   unsigned char vCnt; // in/suf/out, and counter of triangles
   float cur_distance;   // current minimal distance on this voxel
   int triangles[triangle count]; // dynamic array of triangle indices
}

Figure 9:  The storage on each voxel in a constructed CDFR.



CDFR volumes at 32 and 64 resolutions. At 32 initial resolution, the average number of triangles resident on each
voxel ranges between 2 to 4. When constructed at 64 resolution, the average number of triangles per voxel drop to 1.5
to 3. For such simple models, there is no need to adaptively store CDFR. For the two industry parts, ‘connector’ and
‘brevi’, we use higher resolutions, since there are more surface details. We chose 128 and 256 resolutions. A 128 res-
olution seems high enough to limit the average number of triangles on each voxel for ‘connector’. However, for
‘brevi’, a resolution of 256 is necessary to cut down the (number of triangles)/voxel. In Table 2, the ‘Resolution’ col-
umn shows the actual dimension of the CDFR volume. The construction time and final sizes of the CDFRs are shown
under ‘Timing’ and ‘Size’. ‘In/Sur/Out’ indicates the distribution of interior, surface and outside voxels in the CDFR.
Finally, the average number of triangles on surface and interior voxels are presented in the last two columns.

For both simple models and industrial parts, storage size, as well as construction time, of CDFR increase by a
factor ranging from 8 to 10 times, as the volume resolution is doubled each time. 

6.4  ARCDF Subdivision Results

For complicated industrial parts, such as connector and brevi, we select the threshold to be 3 times overall aver-
age number of triangles (column 3, Table 3) across the volume. Those voxels make up a very low percentage in the
total volume (column 4, Table 3). Before subdivision, those voxels having more resident triangles above the thresh-
old, of course, have a relatively high number of average resident triangles (column 5, Table 3). We subdivide those
voxels above the threshold to two different levels, 2 by 2 by 2 subdivision (column 6, Table 3) and 4 by 4 by 4 subdi-
vision (column 7, Table 3). As we have discussed in Section 5, the average number of resident triangles does not
decrease significantly. Until we use a high subdivision factor of 4 by 4 by 4, the average triangle count only reduces
to about half of the number before subdivision.

6.5  Point-based Iso-Distance Contour Extraction Time

Using a higher resolution CDFR has no effect on the accuracy in the final representation. However, it causes an
dramatic cubic increase in storage size and construction time. The main motivation in using higher CDFR resolutions
is to have more efficient distance contour extraction, due to less CDD tuples in each voxel and more accurate local-
ization of voxel spans that may contain the requested iso-contour. We tested all of the models on the time to extract
iso-distance point-based contours from different CDFR resolutions. In Table 4, we show these timings, in seconds, to
extract a contour from both 32-res and 64-res CDFRs of the four simpler models. The ‘Thickness’ column shows the
iso-distance value chosen. For each CDFR resolution, we collect timings for 3 levels of accuracy and organize the
results in regard to which conventional volume resolution the extracted contours would correspond to in accuracy.

Model Resolution Timing
(sec)

Size (KB) In/Sur/Out 
(K voxels)

Avg Tri/
Sur

Avg Tri/
In

Connector 128,43,58 8.05 970 26.4/20.8/272.0 1.95 2.91
Connector 256,81,112 82.72 7,548 30.7/91.5/1,924.0 1.43 2.53
Brevi 56,52,128 51.53 3,459 100.4/50.5/221.7 3.01 4.66
Brevi 106,98,256 448.2 25,260 1,075.4/205.2/1,379 1.96 3.69

TABLE 2. CDFR facts for ‘connector’ and ‘brevi’.

Part 
Name

Initial 
Res

Overall Avg 
Tri Cnt

Percentage 
over threshold

Avg Tri Cnt 
above threshold

Avg Tri Cnt above 
threshold (2-sub)

Avg Tri Cnt above 
threshold (4-sub)

Connec-
tor

128 2.55 1.28% 9.57 7.12 4.17

256 2.34 0.30% 9.60 7.01 4.73

Brevi 128 4.28 1.48% 15.21 11.93 4.92

256 3.40 0.58% 10.20 10.23 4.52

TABLE 3. CDFR Triangle Count after Subdivision



We list the three corresponding conventional volume resolutions, 128, 192, 384, under both ‘32 Res CDFR’ and ‘64
Res CDFR’.

It is obvious, that finer accuracy results in longer extraction time. Using a higher resolution CDFR, this extrac-
tion time significantly drops, as shown by the 32-res versus 64-res CDFRs in Table 4. In Table 5, we show the speed-
ups by using higher resolution CDFR’s. For any CDFR resolution, the number of points extracted for a certain
distance contour stays roughly the same. Using a higher resolution CDFR, the average amount of time spent to extract
a point on the contour is much less.

On the two industrial parts, we chose a thickness of 0.3 inches for ‘connector’, and 4 inches for ‘brevi’. We used
128-res and 256 res CDFRs and the 3 levels of accuracy correspond to conventional volume resolutions of 512, 768
and 1024. The results in Table 6 confirm our findings from Table 4 and Table 5. Using higher resolution CDFR effec-
tively cuts down iso-contour extraction time. 

We also tried to collect timing that extracts point-based model from ARCDF. However, we find the benefit of
ARCDF difficult to gauge. If we subdivide a small portion of the volume using a high threshold, such as three times
the average resident triangles (Table 3), since the subdivided voxels only comprise around 1% of all voxels, the accel-
eration is not very observable. If the threshold is decreased, the acceleration starts to become distinguishable, but
effectively, the resulting timing is roughly on-par with using a higher initial resolution. For example, in the case
described by Table 6, using a low-threshold, the contour extraction speed of 128-res CDFR with a 2 by 2 by 2
ARCDF come very close to the timing of using 256-res CDFR. In a way, this should be the expected results, due to
the fact that ARCDF is a trade-off between low-resolution CDFR and high-resolution CDFR.

6.6  A Cutting Edge Application

We also applied our algorithm to a challenging design part, an engine cylinder head with 135,429 surface trian-
gles. It is modified from a real design model for our research purposes. When built, it weighs 40Kg’s, and measures

cm in size. Typically, the maximal thickness of engine cylinders is only about 9 to 10 mm. In engines

Model Thickness 
(inch)

Timing (32-Res CDFR) (sec) Timing (64-Res CDFR) (sec)
128 res 192 res 384 res 128 res 192 res 384 res

Cube 0.6 1.13 3.96 29.66 0.84 1.95 14.48
Tetra 0.1 0.22 0.55 4.02 0.15 0.29 1.61
1-Tooth 0.2 0.73 2.15 14.79 0.43 1.61 7.75
6-Star 0.35 0.54 1.53 12.23 0.22 0.61 4.30

TABLE 4. Time to extract iso-distance contour from simple models. Two CDFR resolutions have been tested with 3 levels of 
accuracy.

Model Thickness 
(inch)

time/point ( /point) 
32-Res CDFR

time/point ( /point) 
64-Res CDFR

128 res 192 res 384 res 128 res 192 res 384 res
Cube 0.6 11.74 18.49 34.36 6.42 6.61 12.37
Tetra 0.1 11.98 12.91 19.63 4.72 4.99 6.92
1-Tooth 0.2 15.17 19.80 27.10 5.09 10.93 13.56
6-Star 0.35 34.03 43.83 78.36 10.37 12.80 20.41

TABLE 5. Comparing per-point extraction time ( /voxel) at different CDFR resolutions.

Model 128-Res CDFR 256-Res CDFR
512 res 768 res 1024 res 512 res 768 res 1024 res

Connector Timing (sec) 2.43 7.12 16.92 1.03 2.69 5.67
Connector:
time/point ( /point)

24.08 30.92 41.45 9.88 11.00 13.38

Brevi Timing (sec) 23.66 74.65 174.79 9.25 28.29 64.46
Brevi:
time/point ( /point)

32.51 45.27 59.72 12.23 16.63 21.36

TABLE 6. Connector’ and ‘brevi’ iso-contour extraction timing (sec) and per-point extraction time ( /point).

µ s µs

µs
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blocks, heavy sections are an important source of physical failure. It is highly desired to be able to detect heavy sec-
tions at an accuracy higher than 0.15mm. Unfortunately, there has been no reliable and affordable way to perform
such detection in the early design stages. Extensive resources have to be spent in the dreadfully long and cyclic
design, prototyping and verification process. For conventional volume techniques to handle this task, one needs to
build a volume having at least  voxels in floating-point numbers, amounting to 24GB. Even so,
there is still no guarantee of an accurate Euclidean distance field, due to the binary surface volumes in voxelization,
inaccurate distance map and linear interpolations used in reconstruction. Furthermore, constructing or rendering of
data sets at such a size is overwhelmingly difficult. 

With the CDFR representation, at an CDFR resolution of , we are able to construct a CDFR of size
37MB in 30 minutes. From this CDFR, we extract the distance contour as a point-based representation with 0.137
mm accuracy, corresponding to a  conventional volume resolution. For a thickness contour of
8.5mm, the extraction stage takes about 632 seconds, and the resulting point-based model has 450K points and is ren-
dered interactively at 2 frames/sec, with the surface triangles being sorted and rendered semi-transparently at the
same time (see Fig. 10). This whole process is done on our 512MB memory, 300MHz processor SGI Octane.

This result is strong, in that it brings an unprecedented accuracy to commonly available computing platforms. It
is a tool that provides a guarantee of correctness as well as an interactive capability for visual investigation of highly
complex models. This specific model is courtesy of Ford Motor Company.

7.  Discussions and Future Work

Distance fields have traditionally be treated as another application of the Nyquist sampling theory. Using volume
graphics techniques, a lot of new capabilities have been made available to CAD engineers, medical practitioners, etc.
However, in some cases, such as, heavy section detection, thin section detection, tooling feasibility evaluation and
die-castability evaluation, when accuracy is at a high priority, convention discrete distance field methods can not pro-
vide satisfactory results. The main reason was due to our lack of understanding of losses in geometric details after
low-pass filtering in frequency domain.

CDFR has been proposed as an accurate description of distance fields resulting from a surface shape. CDFR vol-
umes are not band-limited and exactly capture surface details in the 3D volume. Specifically, the advantages offered
by CDFR on triangle surface meshes have been demonstrated. High accuracy and visual quality is achievable with a
point-based iso-distance contour extraction. In addition to providing a proof of correctness and visualization results
on real data sets, performance and storage issues have been discussed. With CDFR, the initial resolution of the vol-
ume does not affect the accuracy in subsequent iso-surface extraction. The initial resolution, however, provides a
trade off between storage and speed. CDFR can be rendered directly with ray-casting using an adapted method of ray-
object intersection check. However, we propose in this paper to use point-based approaches to rendering distance
contours from CDFR with genuine per-point shading.

Similar to ADF methods, where conventional discrete distance fields were adaptively sampled, CDFR can also
be organized hierarchically. In this paper, a way to create an adaptively represented complete distance field (ARCDF)

1774 3200× 1046×

Figure 10:  The thickness contour of a cylinder model, at 8.5mm thickness and 0.137mm error tolerance.
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is discussed. It is shown that the number of triangles resident on each voxel can be dynamically reduced by subdivi-
sion. However, such reduction in number of resident triangles is not very scalable as the number of subdivisions
increase. The reason is obviously that in most distance fields that are non-linear, more than one surface triangle
affects any local neighborhood in 3D space. In such cases, the number of resident triangles on each voxels reflects
such property accordingly.

As a future extension, hierarchically organized CDFR provides a general framework to compute the Euclidean
distance from a 3D point to polygonal mesh. While the applications discussed in this paper strictly deal with the inte-
rior of a shape, this framework can also be applied to the exterior of complex models and scenes. All distance values
are computed exactly at a low constant time. No complicated approximation schemes [8] based on progressive
meshes etc. is necessary. Applications that may benefit from this framework include path planning with a guaranteed
accuracy in highly complicated scenes, such as assembly of airplanes, large scale machinery. General graphics appli-
cations such as hypertexture renderings can also make use of this novel distance field representation. 
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Figure 7. A cube and tetrahedron, with the surface mesh shown in 
semi-transparency. The distance contours (shown in red, per-
point shaded) are extracted with an error tolerance of 1/500 of the 
longest dimension of the models. The thickness in (a) is 0.6 inch 

(a) (b)
Figure 8. Two concave examples, a 6-pointed star and a one-end 
tooth. (a) At small thickness (0.2 inch), the distance field retains 
most corners and edges, with little smoothing. (b) As thickness 
increases (0.35 inch), the distance field evolves into the core of the 

(a) (b)

Figure 9. Results of ‘connector’. The surface mesh is shown in 
semi-transparency, and the per-point shaded distance contours are 
at thicknesses (a) 0.2 inch and (b) 0.35 inch.

(a) (b)
Figure 10. The sample images of ‘brevi’. With the per-point 
shaded contours at thickness (a) 10 inches and (b) 4 inches.

(a) (b)

Figure 12. The thickness contour of a modified 
engine cylinder head model, at 8.5mm thickness and 
0.137mm error tolerance.


