
 

 
 

Volumetric Shadows Using Splatting 
 
 

Caixia Zhang, Roger Crawfis 
Department of Computer and Information Science 

The Ohio State University, Columbus, OH 
 
 

             
 
   )
 

Figure
 
 

 
Abstract 
 
This paper des
attenuation due
light attenuatio
both the viewer
shadow buffer 
contribution of
from the eye, w
seen from the l
lights and par
algorithm has b
and projective t
 
CR Categorie
Graphics]: Pict
[Computer Grap
Color, shading,
Keywords: vis
nation 
 
 
1. INTROD
  
Volume render
dimensions. Th
raycasting, spl
texture mapping

�zhangc, crawfi
    395 Dreese L
 
 
 

(a)
 1. Some scenes with shadows. (a

cribes an efficient algorithm to
 to a participating media with 
n is modeled using splatting vo
 and the light source. During th
attenuates the light for each 

 a footprint is added to the ima
e add the contribution to the s

ight source. We have generated 
allel lights using this algorith
een extended to deal with mult

extured lights. 

s and Subject Descriptors: 
ure/Image Generation – Display
hics]: Three-Dimensional Graph

 shadowing and texture. 
ualization, volume rendering, 

UCTION 

ing is the display of datasets 
ere are four popular volume rend
atting, shear-warp, and hardw
. Based on the comparison and e

s�@cis.ohio-state.edu, 2015 Nei
ab, Columbus, OH 43210, USA 
(b)
): Teddy bear. (b): Bonsai tree. (c): R

 model the light 
low albedo. The 

lume renderer for 
e rendering, a 2D 
pixel. When the 

ge buffer, as seen 
hadow buffer, as 

shadows for point 
m. The shadow 
iple light sources 

I.3.3 [Computer 
 algorithms; I.3.7 
ics and Realism – 

shadows, illumi-

sampled in three 
ering algorithms: 
are-assisted 3D 

valuation of the  

l Ave., 

four algorith
render effici
proposed by
represent the
with amplitud
functions to t
integral. A m
voxels are pr
the volume d
    A shadow 
region caused
Shadows are 
of shadows fo
multiplied w
by Crow [4
shadow volum
of a shadow
During the r
not fall insid
the light sour
and Nakamae
the image to 
and unshado
polygons is c
or not. In th
done, and th
shadow flag. 
for polygon 
algorithm to 
created with 
z-buffer dept
from the eye
supports prim
problems du
hardware can
example, NV
calculation an
(c)
oom scene. (d): HIPIP with grid p

ms [8], splatting can create high-q
ently in the case of sparse data
 Westover [19], and its basic 
 volume as an array of overlapp
es scaled by the voxel values; (2)

he screen to achieve an approxim
ajor advantage of splatting is 

ojected and rasterized. This can tr
ata that needs to be processed and
is a region of relative darkness wi
 by an object totally or partially 
essential to realistic images. Earli
cused on hard shadows, in which

ith the light intensity. The shadow
] introduces the concept of sh

e is the polygonalized solid that 
 cast into space by the silhouet
endering, a visible point is first v
e such a shadow volume before 
ce. In the 2-pass hidden surface a
 [15] and Atherton et al. [1], the f
the view of the light source, and s
wed portions of the polygons. T
reated, each marked as either com

e second pass, visible determinati
e polygons are shaded taking 
This 2-pass hidden surface algorit
primitives. Williams [22] uses a 
generate shadows. A light-source
respect to the light source. During
h-map is used to determine if an o
, is also visible from the light sou

itives other than just polygons, 
e to discretized depth-map ce
 generate shadows without partic
IDIA GeForce4 video cards are u
d implement shadows. 
(d
To appear in the Proceedings of the IEEE Visualization 2002 conference
attern. 

uality images, and 
set. Splatting was 
principles are: (1) 
ing basis functions 
 project these basis 
ation of the volume 
that only relevant 
emendously reduce 
 stored. 
thin an illuminated 
occluding the light. 
er implementations 
 a value of 0 or 1 is 
 volume algorithm 
adow volumes. A 
models the volume 
te of an occluder. 
erified that it does 

it is illuminated by 
lgorithm by Nishita 
irst pass transforms 
eparates shadowed 
hen a new set of 
pletely in shadow 

on from the eye is 
into account their 
hm is only suitable 
z-buffer depth-map 
 depth-map is first 
 the rendering, the 
bject point, visible 
rce. This algorithm 
but it has aliasing 

lls. New graphics 
ipating media. For 
sed to do rendering 



    The shadow volume algorithm, 2-pass hidden surface algorithm 
and z-buffer depth-map algorithm can only determine if an object 
point is in shadow or not, resulting in only binary values for the 
light intensity. These algorithms are not suitable for volume 
rendering. In volume rendering, as the light traverses the volume, 
the light intensity is continuously attenuated by the volumetric 
densities. Raytracing offers the flexibility to deal with the 
attenuation of the light intensity. Raytracing has been used to 
generate shadows for both surface representations [21] and 
volumetric datasets [18]. Here we investigate a new shadow 
algorithm that properly determines this light attenuation and 
generates the shadows for volumetric datasets, using a splatting 
paradigm for volume rendering.  
    Behrens [2] uses texture mapping hardware to add shadows to a 
texture-based volume renderer. A shadowed volume which 
contains the light attenuation information is first produced by the 
hardware using the original unshadowed volume and the light 
vector. The shadowed volume is then rendered using texture-
based volume rendering. The resulting image has diffusely 
illuminated effects and the performance decreases by less than 
50% when shadows are added. However, for high performance, it 
is limited to parallel light sources. Lokovic and Veach [9] 
proposed the concept of deep shadow maps to deal with light 
attenuation. A deep shadow map is a rectangular array of pixels in 
which every pixel stores a visibility function. The function value 
at a given depth is the fraction of the light beam's initial power 
that penetrates to that depth. The deep shadow map is equivalent 
to computing the approximate value of (1.0 - opacity) at all 
depths. They implemented deep shadow maps in a highly 
optimized scanline renderer. However their work gives us some 
ideas into how to deal with the light attenuation in volume 
rendering using splatting. 
    Nulkar and Mueller have implemented an algorithm to add 
shadows to volumetric scenes[16] using splatting. They use a two-
stage splatting approach. In the first-stage, splatting is used to 
construct a three-dimensional light volume; the second stage is 
formed by the usual rendering pipeline (the only difference is that 
the light contributions are interpolated from the light volume). 
Since the algorithm needs a 3D buffer to store the light volume, it 
has the problem of high storage and memory cost. Here, we 
investigate a new algorithm to implement shadows using splatting 
that requires only a 2D buffer for each light source. 
    In this paper, we focus on generating shadows using image-
aligned slicing algorithms, in particular image-aligned sheet-based 
splatting. The algorithm uses the same splatting for both the light 
attenuation and the rendering, as seen from the light source and 
from the eye respectively. In the following section, the image-
aligned sheet-based splatting is reviewed and the motivation of 
this work is given. Section 3 describes the basic shadow algorithm 
for a single light source. Sections 4 and 5 are the extensions of the 
basic shadow algorithm: multiple light sources and projective 
textured lights. Section 6 discusses the accuracy issues and the 
conclusions are given in Section 7. 
 
 
2. IMAGE-ALIGNED SHEET-BASED 
SPLATTING 
 
In splatting, each voxel is represented by a 3D kernel weighted by 
the voxel value. The 3D kernels are integrated into a generic 2D 
footprint along the traversing ray from the eye. This footprint can 
be efficiently mapped onto the image plane and the final image is 
obtained by the collection of all projected footprints, weighted by 
the  voxel  values. This  splatting  approach  is  fast, but  it  suffers  
               

        
  Figure 2. Image-aligned sheet-based splatting
 
 
 
from color bleeding and popping artifacts due to incorrect volume 
integration.  
    In order to mitigate this problem, Westover proposed the sheet-
buffer splatting method [20], in which the voxels are summed 
within volume slices most parallel to the image plane and stored 
in the sheet buffer. The sheets are then composited together to 
form the final image. This improved splatting introduces a more 
substantial popping artifact when the orientation of the sheets 
changes. Mueller et. al. [14] eliminates this popping drawback by 
aligning the sheets to be parallel to the image plane. This splatting 
method (as shown in Figure 2) is called image-aligned sheet-
based splatting. All the voxel kernels that overlap a slab are 
clipped to the slab and summed into a sheet buffer. The sheet 
buffers are composited front-to-back to form the final image. 
While this significantly improves image quality, it requires much 
more compositing and several footprint sections per voxel to be 
scan-converted. Using a front-to-back traversal, this method can 
make use of the culling of occluded voxels by keeping an 
occlusion map and checking whether the pixels that a voxel 
projects to have reached full opacity [6]. Splatting using post 
classification was proposed by Mueller et. al. [12] to generate 
images without blurry appearance. 
    The motivation of this paper is to implement shadows using the 
image-aligned sheet-based splatting to create more realistic and 
informative images. 
 
 
3. BASIC SHADOW ALGORITHM FOR A 
SINGLE LIGHT SOURCE 
 
3.1 Illumination Models 
 
In splatting, we calculate per-pixel illumination at each sheet, then 
composite the sheet with its previous sheets by the following 
formula [19]: 
 
For a front-to-back traversal: 
            ))*(*)1(( nncco AIAII ���

                   (1) )*)1(( ncco AAAA ���

  
               



 For a back-to-front traversal: 
            )*()*)1(( nncno AIIAI ���

                   (2) ncno AAAA ��� )*)1((
 
    where I denotes the intensity, A denotes the opacity, o denotes 
the output, c denotes what is already in the image buffer, and n 
denotes the new point in the current sheet. and becomes 

and for the next sheet respectively. 

oI oA

cI cA
    For the per-pixel illumination at each sheet, the illumination 
model we use is: 

)))()((*)((*)()( xLxNxIkIkxCxC daaobj ���  

                        (3) nk
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    where  is the material’s ambient reflection coefficient,  

is the diffuse reflection coefficient, k  is the specular reflection 

coefficient,  is the Phong exponent, C  is the diffuse 

color of the object at the location corresponding to the pixel at the 
sheet (determined by the transfer function),  is the intensity of 

the ambient light,  is the intensity of the light, 
corresponding to the fraction of the original light intensity that 
penetrates to the location x from the light source,  is the 

normal vector (determined by the gradient),  is the light 

vector,  is the eye vector, and  is the reflection 
vector. 
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    Here, k , , k ,  and  are independent of the sample 

location. However, , , , ,  

and  are functions of the location x.  is calculated 
by estimating the gradient at each pixel using central differences 
[12]. The object color, , and opacity, can be determined 

from a transfer function at each pixel. For the implementation of 
shadows, the main work is to determine the intensity of the light 

arriving at each location x. The intensity of the light is 
decreased due to light attenuation as light traverses the semi-
transparent volume.  

a

)x

dk s

C
nk
(obj

Cobj

aI
(I

)

)x

(x

)x )(xN
(N

)(xL
)x

)(xE
(R

)x(I

 
 
3.2 Implementation of Shadows Using 
Splatting 
 
Visibility algorithms and shadow algorithms are essentially the 
same. The former determine the visibility from the eye, and the 
latter determine the visibility from the light source. However, it is 
hard to implement shadows, especially accurate shadows, in 
volume rendering, because the light intensity is continuously 
attenuated as the light traverses the volume. We need to determine 
the light intensity arriving at the point being illuminated.  
     Nulkar and Mueller [16] use a two-stage splatting algorithm to 
add shadows. They first splat the volume with respect to the light 
source using the image-aligned splatting algorithm and store the 
opacity values at each pixel for each sheet. Secondly, they  splat  
the  volume  with  respect  to  the eye to  render  the volume. They  
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                       Figure 3. The light attenuation model  
(Front sheets cause shadows to the back sheets along the light ray)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
thus construct an entire light volume to store the intensity values 
after the first-stage splatting. The advantages of this approach 
include pre-processing the attenuation calculation for view-
independent light volume. Accurate shadows are difficult to 
implement using this method, due to the limited resolution of the 
light volume. 
    In our shadow algorithm, we implement shadows by traversing 
the volume only once to generate per-pixel accurate shadows. The 
same splatting algorithm is used for both the viewer and the light 
source. For each footprint, while adding its contribution to the 
sheet buffer as seen from the eye, we also add its contribution to a 
shadow buffer as seen from the light source.  
    Here, we consider the case of a light source behind the viewer. 
In the image-aligned sheet-based splatting, the light passing 
through the front sheets will be attenuated and cause shadows on 
the back sheets along the light rays. This effect of front sheets on 
back sheets is shown in Figure 3.  
    The opacity with respect to the light source can also be 
accumulated using the same formula (1) and (2) as before. 
 

image plane sheets 

current slice 

the corresponding pixel 
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Figure 4. Determining the opacity value for the considered pixel



    During the rendering, when we calculate the illumination for a 
pixel at the current sheet, we determine the accumulated opacity 
for the pixel from the shadow buffer by mapping the pixel to the 
shadow buffer. The pixel at the current sheet is first transferred 
back to eye space, and it is then re-projected to the shadow buffer 
as seen from the light source (as shown in Figure 4). Here we take 
the orientation of the shadow buffer aligned with the image plane.  
    The pixel  on the current sheet buffer can be mapped to 

the pixel  on the shadow buffer using the following 
transformation: 
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    where,  is the matrix which transfers the pixel  on 

the current sheet buffer to the point x in eye space;  is the 
matrix which transfers the point x in eye space to the pixel 

 on the shadow buffer. 
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    Then, the intensity of the light arriving at the point x is:  
                               (5) lightIxxI *))(0.1()( ���

    where, )(x�  is the accumulated opacity at x , which is the 

value at   in  the shadow buffer,  is the original 

intensity of the light source. 
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    Now the illumination model becomes: 
        �� aaobj IkxCxC (*)()(
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    For a given point x, we get its )(x�  by choosing its nearest 
pixel’s opacity value in the shadow buffer. For better shadow 
quality, we can also interpolate the opacity values of nearby 
pixels.  
    Compared to splatting without shadows, two more buffers are 
needed: a 2D shadow buffer to store the composited opacity from 
the light to the current sheet, and a 2D shadow sheet buffer to 
store the opacity caused by the current sheet from the transfer 
function with respect to the light. The shadow sheet buffer is 
composited into the shadow buffer and used for the next slice. 
    The shadow algorithm using the image-aligned sheet-based 
splatting is demonstrated with the pseudo code in Figure 5. 
    Using the above algorithm, we have implemented shadows for 
two different light sources: parallel lights and point lights.  
    Figure 6 shows the shadow of a robot which is composed of 
cube primitives and rectangular parallelepiped primitives. The 
shadow of the Olympic rings composed of torus primitives is 
shown in Figure 7. Figure 8 is a scene of a smoky room with a 
volumetric cube inside. Figure 9 shows a room scene, which 
includes the robot, the Olympic rings and a smoke-like object 
constructed using a turbulence function.  
    Figure 10 is the HIPIP (high-potential iron-sulfur protein) 
dataset, which describes a one-electron orbital of a four-iron and 
eight-sulfur cluster found in many natural proteins. The data is the 
scalar value of the wave function ‘psi’ at each point. Shadows 
provide  spatial  relationship  information.  Figure 11  shows  the  
 

1. Transform each voxel to eye space; 
2. Bucket sort voxels according to the transformed z-values; 
3. Initialize occlusion map to zero opacity; 
4. Initialize the shadow buffer to zero; 
5. For each sheet in front-to-back order 
6.     Initialize image sheet buffer; 
7.     Initialize shadow sheet buffer; 
8.     For each footprint 
9.  Rasterize and add the footprint to the current image sheet 

buffer; 
10. Rasterize and add the footprint to the current shadow sheet 

buffer; 
11. End; 
12. Calculate the gradient for each pixel using central difference; 
13. Classify each pixel in the current image sheet buffer; 
14. Map pixel to the shadow buffer and get its opacity; 
15. Calculate the illumination to obtain the final color; 
16. Composite the current image sheet buffer to the frame buffer; 
17. Classify each pixel on current shadow sheet buffer and 

composite to accumulated shadow buffer; 
18. End; 

 
    Figure 5. Pseudo code of shadow algorithm using the 

image-aligned sheet-based splatting  
 
 
 
curved shadows on smooth objects.  
    Figure 1(a) and 1(b) provides more results from our algorithm. 
Figure 12 is a uncBrain with shadows included. 
    The above images are generated using a front-to-back 
rendering. The room scene in Figure 1(c) is an example of back-
to-front rendering: light comes into the room through the window 
from the back. A desk and a chair reside in the room filled with a 
light haze. 
    When light is attenuated, the running time is longer than the 
time without shadows, because footprint evaluation and shadow 
buffer compositing need to be done with respect to the light 
source. The algorithm with shadows takes less than twice the time 
without shadows. For the Bonsai tree (256*256*128) rendered to 
a 512*512 image, the  running time with shadows is only about 
56% slower, making the algorithm attractive for high-quality 
volume rendering. 
 
 
 

                         
 

w 
 

Figure 6. A robot with the shado



                        
 
 
 

                      
 
 
 

                      
 
 
 
 

    
 
 

          
 
 Figure 11. Curved shadows on smooth objects

(left: without shadow; right: with shadow)  
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          (8) 
on has one limitation: all the lights need to lie 
f the volume or behind the volume, with respect to 
is is required in order to render the scene from 
 from back-to-front. 
ows the shadow of a robot with two light sources. 
at the region shadowed by the two lights is darker 

that is only in the shadow of one light.  



 
 

        
 
 
 
 
 
5. PROJECTIVE TEXTURED LIGHTS 
 
Projective textures can be added for special effects. We use a light 
screen to get the effect of the “light window” or slide projector 
and map the light pattern to the scene. The range of the shadow 
buffer is determined by projecting the light screen to the shadow 
buffer plane. We give the light screen an initial image. So in the 
illumination model: 

�� aaobj IkxCxC (*)()(  

��� )))()((*))(0.1(*)( xLxNxxIk lightd �  

nk
lights xRxExxIk ))()((*))(0.1(*)( ���  

           (9) 
the intensity of the light  should be treated as a vector 

(the color of the light).  

)(xIlight

     If the light is not aligned to the splat buffers, we need to warp 
the light pattern to the buffer, defining the initial distribution of 
the light intensity in the buffer. During the rendering, the 
corresponding values can be obtained from this buffer.  
    Figure 14 shows a scene where the light screen has a pattern of 
red and green rings. A semi-transparent block is placed above a 
ground plane, which either sees the light or is partially attenuated 
by the block. The room scene in Figure 15 is lit by a light with an 
image of the logo of The Ohio State University. Shadows are 
generated by the robot and the rings which reside in the room. 
    In Figure 1(d), a parallel area light with a grid texture casts the 
grid pattern on a HIPIP scene. It gives us some dimension 
information of the object in 3D space.  
    Figure 16 shows images with light beams passing through a 
semi-transparent cube. Three light beams with red, green and blue 
colors enter the cube at the right top, traverse the cube and come 
out from the left bottom. The left image is without consideration 
of light attenuation, while the right one is with light attenuation. 
The light intensity exiting the cube is the same as the original 
intensity entering the cube in the left image, while the resulting 
light intensity is lower than the original light intensity due to 
attenuation as the light traverses the cube in the right image. In the 
middle area of the beams, the beam colors are partially blocked by 
front participating media. 
 
 

                            
 

Figure 14. A scene with shadows for a light screen  
with ring pattern;  

 Figure 13. A robot with two light sources (left); 
                 A robot with one light source (right)  

 

                         
 
   
 
 
 

  
 
 Figur

the c 
 
 
6. ACC
 
One limita
sheet-base
to the eye 
keep track
light sourc
light sourc
    We can
sheet-base
between th
in the dire
footprint c
the render
Figure 15: A room scene for a light screen 
with an image of OSU logo 
     

e 16. A scene with beams of light that pass through 
ube (left: without attenuation; right: with attenuation)

URACY ISSUES 

tion of our algorithm for shadows using image-aligned 
d splatting is in dealing with light sources perpendicular 
vector. The image-aligned splatting makes it difficult to 
 of accurate opacities as seen from the perpendicular 
e, especially for those slices with similar z-values as the 
e (as seen in Figure 17).  
 solve this problem by using a new non-image-aligned 
d splatting. Here, we calculate the half way vector 
e eye vector and the light vector, then splat the volume 
ction of the half way vector. For each sheet, we add the 
ontribution to the image plane aligned with the eye for 
ing, and to the shadow buffer aligned with the light 



source for the shadow (as shown in Figure 18). We use per-pixel 
classification. The pixel (i,j) at the current image buffer is first 
transferred back to the point x in eye space, and it is then 
projected to the shadow buffer aligned with the light source. The 
light intensity arriving at the point x is obtained from the 
accumulated opacity stored at the corresponding pixel (i’,j’) on 
the shadow buffer, which has been calculated from front sheets. In 
this way, the light attenuation is accurately modeled. Kniss [7,8] 
recently has also proposed the idea of a half angle slice axis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    Using this non-image-aligned splatting method, we generate 
shadows for a perpendicular light source (as shown in Figure 19): 
a semi-transparent  cube is at (0, 0, 0), the eye at (0, 0, 120) and 
the light beam at (0, -1, 0) direction. The splatting is along the half 
way vector (0.0, 0.5, 0.5) and the footprints are individually 

warped to the image buffer and the shadow buffer. From the 
comparison of the two images in Figure 19, we can see that the 
light is attenuated.  
    The shadow algorithm for non-image-aligned splatting has been 
extended to generate shadows for multiple light sources. We use 
the average light vector of all the light sources to calculate the half 
way vector.  Still, all the light sources should satisfy either 

 or  in the coordinate system defined by 
the half-way vector, so that the volume can be rendered either in 
front-to-back or back-to-front order. Here, E is the eye vector, and 

are the light vectors. Figure 20 shows the Olympic rings with 
shadows implemented using this new non-image-aligned splatting 
for two light sources: one at (0, 320, 240), and the other at (0, 240, 
320). The region shadowed by two lights is darker than the region 
that is only shadowed by one light. 

0�� iLE

iL

0�� iLE

image plane 
light

    In front-to-back or back-to-front rendering, if lights move with 
respect to the viewer, this non-image-aligned sheet-based splatting 
along the half way vector will not have the popping artifacts as 
mentioned for the sheet-based splatting in [20], since the splatting 
direction changes continuously with the eye vector and/or the 
light vectors. A consistent ray integration is generated with 
accurately reconstructed sheets. During the switch from front-to-
back rendering to back-to-front rendering, there could be some 
popping problem for non-image-aligned splatting. Since we use 
small slice thickness, the popping artifacts are not discernable in 
our study.  

eye 

current 
slice  

 

        

Figure 17. The problem of image-aligned splatting in 
dealing with perpendicular light sources 
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 Figure 19. A scene with a beam of light that passes through 

the cube (left: without shadow; right: with shadow) 
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Figure 18. Non-image-aligned sheet-based splatting 

 
 
 
 

Figure 20: Shadows of Olympic rings for two light sources



 
7. CONCLUSIONS   
 
In this paper, we have described an algorithm to model the light 
attenuation through a volume using the image-aligned sheet-based 
splatting. This algorithm models the light attenuation with respect 
to the light source and generates shadows. We need two additional 
2D buffers to keep the accumulated opacity and the individual 
sheet opacity with respect to the light source. For the running 
time, the algorithm with shadows takes less than twice the time 
without shadows. This algorithm has the advantage of saving 
storage and running time. 
    We have used this algorithm to implement shadows for point 
lights and parallel lights. Projective textured lights are used to 
create images with special effects or quantitative analysis. Our 
work also includes the implementation of shadows with respect to 
multiple light sources, by keeping separate shadow buffers with 
respect to each light and getting the opacity value for each light at 
each pixel. Future work has progressed on extending this 
algorithm to deal with extended light sources to generate soft 
shadows with penumbra and umbra [24]. 
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