

Volumetric Shadows Using Splatting

Caixia Zhang, Roger Crawfis
Department of Computer and Information Science

The Ohio State University, Columbus, OH

)

Figure

Abstract

This paper des
attenuation due
light attenuatio
both the viewer
shadow buffer
contribution of
from the eye, w
seen from the l
lights and par
algorithm has b
and projective t

CR Categorie
Graphics]: Pict
[Computer Grap
Color, shading,
Keywords: vis
nation

1. INTROD

Volume render
dimensions. Th
raycasting, spl
texture mapping

�zhangc, crawfi
 395 Dreese L

(a)
 1. Some scenes with shadows. (a

cribes an efficient algorithm to
 to a participating media with
n is modeled using splatting vo
 and the light source. During th
attenuates the light for each

 a footprint is added to the ima
e add the contribution to the s

ight source. We have generated
allel lights using this algorith
een extended to deal with mult

extured lights.

s and Subject Descriptors:
ure/Image Generation – Display
hics]: Three-Dimensional Graph

 shadowing and texture.
ualization, volume rendering,

UCTION

ing is the display of datasets
ere are four popular volume rend
atting, shear-warp, and hardw
. Based on the comparison and e

s�@cis.ohio-state.edu, 2015 Nei
ab, Columbus, OH 43210, USA
(b)
): Teddy bear. (b): Bonsai tree. (c): R

 model the light
low albedo. The

lume renderer for
e rendering, a 2D
pixel. When the

ge buffer, as seen
hadow buffer, as

shadows for point
m. The shadow
iple light sources

I.3.3 [Computer
 algorithms; I.3.7
ics and Realism –

shadows, illumi-

sampled in three
ering algorithms:
are-assisted 3D

valuation of the

l Ave.,

four algorith
render effici
proposed by
represent the
with amplitud
functions to t
integral. A m
voxels are pr
the volume d
 A shadow
region caused
Shadows are
of shadows fo
multiplied w
by Crow [4
shadow volum
of a shadow
During the r
not fall insid
the light sour
and Nakamae
the image to
and unshado
polygons is c
or not. In th
done, and th
shadow flag.
for polygon
algorithm to
created with
z-buffer dept
from the eye
supports prim
problems du
hardware can
example, NV
calculation an
(c)
oom scene. (d): HIPIP with grid p

ms [8], splatting can create high-q
ently in the case of sparse data
 Westover [19], and its basic
 volume as an array of overlapp
es scaled by the voxel values; (2)

he screen to achieve an approxim
ajor advantage of splatting is

ojected and rasterized. This can tr
ata that needs to be processed and
is a region of relative darkness wi
 by an object totally or partially
essential to realistic images. Earli
cused on hard shadows, in which

ith the light intensity. The shadow
] introduces the concept of sh

e is the polygonalized solid that
 cast into space by the silhouet
endering, a visible point is first v
e such a shadow volume before
ce. In the 2-pass hidden surface a
 [15] and Atherton et al. [1], the f
the view of the light source, and s
wed portions of the polygons. T
reated, each marked as either com

e second pass, visible determinati
e polygons are shaded taking
This 2-pass hidden surface algorit
primitives. Williams [22] uses a
generate shadows. A light-source
respect to the light source. During
h-map is used to determine if an o
, is also visible from the light sou

itives other than just polygons,
e to discretized depth-map ce
 generate shadows without partic
IDIA GeForce4 video cards are u
d implement shadows.
(d
To appear in the Proceedings of the IEEE Visualization 2002 conference
attern.

uality images, and
set. Splatting was
principles are: (1)
ing basis functions
 project these basis
ation of the volume
that only relevant
emendously reduce
 stored.
thin an illuminated
occluding the light.
er implementations
 a value of 0 or 1 is
 volume algorithm
adow volumes. A
models the volume
te of an occluder.
erified that it does

it is illuminated by
lgorithm by Nishita
irst pass transforms
eparates shadowed
hen a new set of
pletely in shadow

on from the eye is
into account their
hm is only suitable
z-buffer depth-map
 depth-map is first
 the rendering, the
bject point, visible
rce. This algorithm
but it has aliasing

lls. New graphics
ipating media. For
sed to do rendering

 The shadow volume algorithm, 2-pass hidden surface algorithm
and z-buffer depth-map algorithm can only determine if an object
point is in shadow or not, resulting in only binary values for the
light intensity. These algorithms are not suitable for volume
rendering. In volume rendering, as the light traverses the volume,
the light intensity is continuously attenuated by the volumetric
densities. Raytracing offers the flexibility to deal with the
attenuation of the light intensity. Raytracing has been used to
generate shadows for both surface representations [21] and
volumetric datasets [18]. Here we investigate a new shadow
algorithm that properly determines this light attenuation and
generates the shadows for volumetric datasets, using a splatting
paradigm for volume rendering.
 Behrens [2] uses texture mapping hardware to add shadows to a
texture-based volume renderer. A shadowed volume which
contains the light attenuation information is first produced by the
hardware using the original unshadowed volume and the light
vector. The shadowed volume is then rendered using texture-
based volume rendering. The resulting image has diffusely
illuminated effects and the performance decreases by less than
50% when shadows are added. However, for high performance, it
is limited to parallel light sources. Lokovic and Veach [9]
proposed the concept of deep shadow maps to deal with light
attenuation. A deep shadow map is a rectangular array of pixels in
which every pixel stores a visibility function. The function value
at a given depth is the fraction of the light beam's initial power
that penetrates to that depth. The deep shadow map is equivalent
to computing the approximate value of (1.0 - opacity) at all
depths. They implemented deep shadow maps in a highly
optimized scanline renderer. However their work gives us some
ideas into how to deal with the light attenuation in volume
rendering using splatting.
 Nulkar and Mueller have implemented an algorithm to add
shadows to volumetric scenes[16] using splatting. They use a two-
stage splatting approach. In the first-stage, splatting is used to
construct a three-dimensional light volume; the second stage is
formed by the usual rendering pipeline (the only difference is that
the light contributions are interpolated from the light volume).
Since the algorithm needs a 3D buffer to store the light volume, it
has the problem of high storage and memory cost. Here, we
investigate a new algorithm to implement shadows using splatting
that requires only a 2D buffer for each light source.
 In this paper, we focus on generating shadows using image-
aligned slicing algorithms, in particular image-aligned sheet-based
splatting. The algorithm uses the same splatting for both the light
attenuation and the rendering, as seen from the light source and
from the eye respectively. In the following section, the image-
aligned sheet-based splatting is reviewed and the motivation of
this work is given. Section 3 describes the basic shadow algorithm
for a single light source. Sections 4 and 5 are the extensions of the
basic shadow algorithm: multiple light sources and projective
textured lights. Section 6 discusses the accuracy issues and the
conclusions are given in Section 7.

2. IMAGE-ALIGNED SHEET-BASED
SPLATTING

In splatting, each voxel is represented by a 3D kernel weighted by
the voxel value. The 3D kernels are integrated into a generic 2D
footprint along the traversing ray from the eye. This footprint can
be efficiently mapped onto the image plane and the final image is
obtained by the collection of all projected footprints, weighted by
the voxel values. This splatting approach is fast, but it suffers

 Figure 2. Image-aligned sheet-based splatting

from color bleeding and popping artifacts due to incorrect volume
integration.
 In order to mitigate this problem, Westover proposed the sheet-
buffer splatting method [20], in which the voxels are summed
within volume slices most parallel to the image plane and stored
in the sheet buffer. The sheets are then composited together to
form the final image. This improved splatting introduces a more
substantial popping artifact when the orientation of the sheets
changes. Mueller et. al. [14] eliminates this popping drawback by
aligning the sheets to be parallel to the image plane. This splatting
method (as shown in Figure 2) is called image-aligned sheet-
based splatting. All the voxel kernels that overlap a slab are
clipped to the slab and summed into a sheet buffer. The sheet
buffers are composited front-to-back to form the final image.
While this significantly improves image quality, it requires much
more compositing and several footprint sections per voxel to be
scan-converted. Using a front-to-back traversal, this method can
make use of the culling of occluded voxels by keeping an
occlusion map and checking whether the pixels that a voxel
projects to have reached full opacity [6]. Splatting using post
classification was proposed by Mueller et. al. [12] to generate
images without blurry appearance.
 The motivation of this paper is to implement shadows using the
image-aligned sheet-based splatting to create more realistic and
informative images.

3. BASIC SHADOW ALGORITHM FOR A
SINGLE LIGHT SOURCE

3.1 Illumination Models

In splatting, we calculate per-pixel illumination at each sheet, then
composite the sheet with its previous sheets by the following
formula [19]:

For a front-to-back traversal:
))*(*)1((nncco AIAII ���

 (1))*)1((ncco AAAA ���

 For a back-to-front traversal:
)*()*)1((nncno AIIAI ���

 (2) ncno AAAA ���)*)1((

 where I denotes the intensity, A denotes the opacity, o denotes
the output, c denotes what is already in the image buffer, and n
denotes the new point in the current sheet. and becomes

and for the next sheet respectively.

oI oA

cI cA
 For the per-pixel illumination at each sheet, the illumination
model we use is:

)))()((*)((*)()(xLxNxIkIkxCxC daaobj ���

 (3) nk
s xRxExIk))()((*)(��

 where is the material’s ambient reflection coefficient,

is the diffuse reflection coefficient, k is the specular reflection

coefficient, is the Phong exponent, C is the diffuse

color of the object at the location corresponding to the pixel at the
sheet (determined by the transfer function), is the intensity of

the ambient light, is the intensity of the light,
corresponding to the fraction of the original light intensity that
penetrates to the location x from the light source, is the

normal vector (determined by the gradient), is the light

vector, is the eye vector, and is the reflection
vector.

ak

k

(xE

dk

s

n

)

)(xobj

aI

(xL
)(xR

)(xI

)(xN
)

 Here, k , , k , and are independent of the sample

location. However, , , , ,

and are functions of the location x. is calculated
by estimating the gradient at each pixel using central differences
[12]. The object color, , and opacity, can be determined

from a transfer function at each pixel. For the implementation of
shadows, the main work is to determine the intensity of the light

arriving at each location x. The intensity of the light is
decreased due to light attenuation as light traverses the semi-
transparent volume.

a

)x

dk s

C
nk
(obj

Cobj

aI
(I

)

)x

(x

)x)(xN
(N

)(xL
)x

)(xE
(R

)x(I

3.2 Implementation of Shadows Using
Splatting

Visibility algorithms and shadow algorithms are essentially the
same. The former determine the visibility from the eye, and the
latter determine the visibility from the light source. However, it is
hard to implement shadows, especially accurate shadows, in
volume rendering, because the light intensity is continuously
attenuated as the light traverses the volume. We need to determine
the light intensity arriving at the point being illuminated.
 Nulkar and Mueller [16] use a two-stage splatting algorithm to
add shadows. They first splat the volume with respect to the light
source using the image-aligned splatting algorithm and store the
opacity values at each pixel for each sheet. Secondly, they splat
the volume with respect to the eye to render the volume. They

pixels
 light source

 eye

 light ray

sheets

 Figure 3. The light attenuation model
(Front sheets cause shadows to the back sheets along the light ray)

thus construct an entire light volume to store the intensity values
after the first-stage splatting. The advantages of this approach
include pre-processing the attenuation calculation for view-
independent light volume. Accurate shadows are difficult to
implement using this method, due to the limited resolution of the
light volume.
 In our shadow algorithm, we implement shadows by traversing
the volume only once to generate per-pixel accurate shadows. The
same splatting algorithm is used for both the viewer and the light
source. For each footprint, while adding its contribution to the
sheet buffer as seen from the eye, we also add its contribution to a
shadow buffer as seen from the light source.
 Here, we consider the case of a light source behind the viewer.
In the image-aligned sheet-based splatting, the light passing
through the front sheets will be attenuated and cause shadows on
the back sheets along the light rays. This effect of front sheets on
back sheets is shown in Figure 3.
 The opacity with respect to the light source can also be
accumulated using the same formula (1) and (2) as before.

image plane sheets

current slice

the corresponding pixel
to the light (i’,j’)

the pixel to
the eye (i,j)

eye

light source

Figure 4. Determining the opacity value for the considered pixel

 During the rendering, when we calculate the illumination for a
pixel at the current sheet, we determine the accumulated opacity
for the pixel from the shadow buffer by mapping the pixel to the
shadow buffer. The pixel at the current sheet is first transferred
back to eye space, and it is then re-projected to the shadow buffer
as seen from the light source (as shown in Figure 4). Here we take
the orientation of the shadow buffer aligned with the image plane.
 The pixel on the current sheet buffer can be mapped to

the pixel on the shadow buffer using the following
transformation:

),(ji
), '' ji(

 �
� (4) ��

�

�
��
�

�
��

�
�

�

�

�
�

j
i

MM
j
i 1

12'

'

 where, is the matrix which transfers the pixel on

the current sheet buffer to the point x in eye space; is the
matrix which transfers the point x in eye space to the pixel

 on the shadow buffer.

1
1
�M),(ji

2M

),('' ji
 Then, the intensity of the light arriving at the point x is:
 (5) lightIxxI *))(0.1()(���

 where,)(x� is the accumulated opacity at x , which is the

value at in the shadow buffer, is the original

intensity of the light source.

),('' ji lightI

 Now the illumination model becomes:
 �� aaobj IkxCxC (*)()(

(0.1(* xIk ���)))()((*)) xLxNlightd �

nk
 xRxExIk))()((*))(0.1(* ���lights
 (6)

 For a given point x, we get its)(x� by choosing its nearest
pixel’s opacity value in the shadow buffer. For better shadow
quality, we can also interpolate the opacity values of nearby
pixels.
 Compared to splatting without shadows, two more buffers are
needed: a 2D shadow buffer to store the composited opacity from
the light to the current sheet, and a 2D shadow sheet buffer to
store the opacity caused by the current sheet from the transfer
function with respect to the light. The shadow sheet buffer is
composited into the shadow buffer and used for the next slice.
 The shadow algorithm using the image-aligned sheet-based
splatting is demonstrated with the pseudo code in Figure 5.
 Using the above algorithm, we have implemented shadows for
two different light sources: parallel lights and point lights.
 Figure 6 shows the shadow of a robot which is composed of
cube primitives and rectangular parallelepiped primitives. The
shadow of the Olympic rings composed of torus primitives is
shown in Figure 7. Figure 8 is a scene of a smoky room with a
volumetric cube inside. Figure 9 shows a room scene, which
includes the robot, the Olympic rings and a smoke-like object
constructed using a turbulence function.
 Figure 10 is the HIPIP (high-potential iron-sulfur protein)
dataset, which describes a one-electron orbital of a four-iron and
eight-sulfur cluster found in many natural proteins. The data is the
scalar value of the wave function ‘psi’ at each point. Shadows
provide spatial relationship information. Figure 11 shows the

1. Transform each voxel to eye space;
2. Bucket sort voxels according to the transformed z-values;
3. Initialize occlusion map to zero opacity;
4. Initialize the shadow buffer to zero;
5. For each sheet in front-to-back order
6. Initialize image sheet buffer;
7. Initialize shadow sheet buffer;
8. For each footprint
9. Rasterize and add the footprint to the current image sheet

buffer;
10. Rasterize and add the footprint to the current shadow sheet

buffer;
11. End;
12. Calculate the gradient for each pixel using central difference;
13. Classify each pixel in the current image sheet buffer;
14. Map pixel to the shadow buffer and get its opacity;
15. Calculate the illumination to obtain the final color;
16. Composite the current image sheet buffer to the frame buffer;
17. Classify each pixel on current shadow sheet buffer and

composite to accumulated shadow buffer;
18. End;

 Figure 5. Pseudo code of shadow algorithm using the

image-aligned sheet-based splatting

curved shadows on smooth objects.
 Figure 1(a) and 1(b) provides more results from our algorithm.
Figure 12 is a uncBrain with shadows included.
 The above images are generated using a front-to-back
rendering. The room scene in Figure 1(c) is an example of back-
to-front rendering: light comes into the room through the window
from the back. A desk and a chair reside in the room filled with a
light haze.
 When light is attenuated, the running time is longer than the
time without shadows, because footprint evaluation and shadow
buffer compositing need to be done with respect to the light
source. The algorithm with shadows takes less than twice the time
without shadows. For the Bonsai tree (256*256*128) rendered to
a 512*512 image, the running time with shadows is only about
56% slower, making the algorithm attractive for high-quality
volume rendering.

w

Figure 6. A robot with the shado

 Figure 11. Curved shadows on smooth objects

(left: without shadow; right: with shadow)

s

Fig
(lef
Figure 7. Shadows of Olympic ring

s e
Figure 8. A smoky room with a cube insid

4. MULTIP

The shadow al
sources by usi
needs a separat
we add its cont
multiple light s
n light sources.
 During the r
pixel at the cur
buffers and get
of the light
thus:

thi

 iI (Figure 9. A room scene with shadows
The illuminatio

)((

*)((

()(

ilights
i

obj
i

obj

Ik

xC

CxC �

�

�

 This extensi
either in front o
the viewer. Th
front-to-back or
 Figure 13 sh
It can be seen th
than the region

ure 10. A scene of a HIPIP data set
t: without shadow; right: with shadow)
Figure 12: uncBrain with shadow
LE LIGHT SOURCES

gorithm can be easily extended to multiple light
ng multiple shadow buffers. Each light source
e accumulated shadow buffer. For each footprint,
ribution to multiple shadow buffers as seen from

ources. Hence, we splat the footprint n+1 times for

endering, when we calculate the illumination of a
rent sheet, we map the pixel to multiple shadow
multiple opacity values for the pixel. The intensity
arriving at the point x corresponding to the pixel is

 (7) ilighti Ixx)(*))(0.1() ���

n model becomes:

)))()((*))(0.1(*

)))()((*))(0.1(*)(

*)

nk
ii

iiilightd

aa

xRxEx

xLxNxIk

Ikx

��

���

�

�

�

 (8)
on has one limitation: all the lights need to lie
f the volume or behind the volume, with respect to
is is required in order to render the scene from
 from back-to-front.
ows the shadow of a robot with two light sources.
at the region shadowed by the two lights is darker

that is only in the shadow of one light.

5. PROJECTIVE TEXTURED LIGHTS

Projective textures can be added for special effects. We use a light
screen to get the effect of the “light window” or slide projector
and map the light pattern to the scene. The range of the shadow
buffer is determined by projecting the light screen to the shadow
buffer plane. We give the light screen an initial image. So in the
illumination model:

�� aaobj IkxCxC (*)()(

���)))()((*))(0.1(*)(xLxNxxIk lightd �

nk
lights xRxExxIk))()((*))(0.1(*)(���

 (9)
the intensity of the light should be treated as a vector

(the color of the light).

)(xIlight

 If the light is not aligned to the splat buffers, we need to warp
the light pattern to the buffer, defining the initial distribution of
the light intensity in the buffer. During the rendering, the
corresponding values can be obtained from this buffer.
 Figure 14 shows a scene where the light screen has a pattern of
red and green rings. A semi-transparent block is placed above a
ground plane, which either sees the light or is partially attenuated
by the block. The room scene in Figure 15 is lit by a light with an
image of the logo of The Ohio State University. Shadows are
generated by the robot and the rings which reside in the room.
 In Figure 1(d), a parallel area light with a grid texture casts the
grid pattern on a HIPIP scene. It gives us some dimension
information of the object in 3D space.
 Figure 16 shows images with light beams passing through a
semi-transparent cube. Three light beams with red, green and blue
colors enter the cube at the right top, traverse the cube and come
out from the left bottom. The left image is without consideration
of light attenuation, while the right one is with light attenuation.
The light intensity exiting the cube is the same as the original
intensity entering the cube in the left image, while the resulting
light intensity is lower than the original light intensity due to
attenuation as the light traverses the cube in the right image. In the
middle area of the beams, the beam colors are partially blocked by
front participating media.

Figure 14. A scene with shadows for a light screen
with ring pattern;

 Figure 13. A robot with two light sources (left);
 A robot with one light source (right)

 Figur

the c

6. ACC

One limita
sheet-base
to the eye
keep track
light sourc
light sourc
 We can
sheet-base
between th
in the dire
footprint c
the render
Figure 15: A room scene for a light screen
with an image of OSU logo

e 16. A scene with beams of light that pass through
ube (left: without attenuation; right: with attenuation)

URACY ISSUES

tion of our algorithm for shadows using image-aligned
d splatting is in dealing with light sources perpendicular
vector. The image-aligned splatting makes it difficult to
 of accurate opacities as seen from the perpendicular
e, especially for those slices with similar z-values as the
e (as seen in Figure 17).
 solve this problem by using a new non-image-aligned
d splatting. Here, we calculate the half way vector
e eye vector and the light vector, then splat the volume
ction of the half way vector. For each sheet, we add the
ontribution to the image plane aligned with the eye for
ing, and to the shadow buffer aligned with the light

source for the shadow (as shown in Figure 18). We use per-pixel
classification. The pixel (i,j) at the current image buffer is first
transferred back to the point x in eye space, and it is then
projected to the shadow buffer aligned with the light source. The
light intensity arriving at the point x is obtained from the
accumulated opacity stored at the corresponding pixel (i’,j’) on
the shadow buffer, which has been calculated from front sheets. In
this way, the light attenuation is accurately modeled. Kniss [7,8]
recently has also proposed the idea of a half angle slice axis.

 Using this non-image-aligned splatting method, we generate
shadows for a perpendicular light source (as shown in Figure 19):
a semi-transparent cube is at (0, 0, 0), the eye at (0, 0, 120) and
the light beam at (0, -1, 0) direction. The splatting is along the half
way vector (0.0, 0.5, 0.5) and the footprints are individually

warped to the image buffer and the shadow buffer. From the
comparison of the two images in Figure 19, we can see that the
light is attenuated.
 The shadow algorithm for non-image-aligned splatting has been
extended to generate shadows for multiple light sources. We use
the average light vector of all the light sources to calculate the half
way vector. Still, all the light sources should satisfy either

 or in the coordinate system defined by
the half-way vector, so that the volume can be rendered either in
front-to-back or back-to-front order. Here, E is the eye vector, and

are the light vectors. Figure 20 shows the Olympic rings with
shadows implemented using this new non-image-aligned splatting
for two light sources: one at (0, 320, 240), and the other at (0, 240,
320). The region shadowed by two lights is darker than the region
that is only shadowed by one light.

0�� iLE

iL

0�� iLE

image plane
light

 In front-to-back or back-to-front rendering, if lights move with
respect to the viewer, this non-image-aligned sheet-based splatting
along the half way vector will not have the popping artifacts as
mentioned for the sheet-based splatting in [20], since the splatting
direction changes continuously with the eye vector and/or the
light vectors. A consistent ray integration is generated with
accurately reconstructed sheets. During the switch from front-to-
back rendering to back-to-front rendering, there could be some
popping problem for non-image-aligned splatting. Since we use
small slice thickness, the popping artifacts are not discernable in
our study.

eye

current
slice

Figure 17. The problem of image-aligned splatting in
dealing with perpendicular light sources

the corresponding pixel
to the light (i’j’)

light

half way vector shadow buffer plane

 Figure 19. A scene with a beam of light that passes through

the cube (left: without shadow; right: with shadow)
slices

eye

the pixel to
the eye (i,j)

image plane

Figure 18. Non-image-aligned sheet-based splatting

Figure 20: Shadows of Olympic rings for two light sources

7. CONCLUSIONS

In this paper, we have described an algorithm to model the light
attenuation through a volume using the image-aligned sheet-based
splatting. This algorithm models the light attenuation with respect
to the light source and generates shadows. We need two additional
2D buffers to keep the accumulated opacity and the individual
sheet opacity with respect to the light source. For the running
time, the algorithm with shadows takes less than twice the time
without shadows. This algorithm has the advantage of saving
storage and running time.
 We have used this algorithm to implement shadows for point
lights and parallel lights. Projective textured lights are used to
create images with special effects or quantitative analysis. Our
work also includes the implementation of shadows with respect to
multiple light sources, by keeping separate shadow buffers with
respect to each light and getting the opacity value for each light at
each pixel. Future work has progressed on extending this
algorithm to deal with extended light sources to generate soft
shadows with penumbra and umbra [24].

8. ACKNOWLEDGEMENTS

We would like to thank the NSF Career Award (#9876022) for
support to this project and thank the University of Erlangen-
Nuremberg for providing the Teddy bear and Bonsai tree
datasets.

References

[1] P. Atherton, K. Weiler, D. Greenberg, “Polygon Shadow

Generation”, Proc. SIGGRAPH’78, pp. 275-281, 1978.
[2] U. Behrens and R. Ratering, “Adding Shadows to a Texture-

based Volume Renderer”, 1998 Symposium on Volume
Visualization, pp. 39-46, 1998.

[3] R. Crawfis, J. Huang, “High Quality Splatting and Volume
Synthesis”.

[4] F. Crow, “Shadow Algorithm for Computer Graphics”,
Proc. SIGGRAPH’77, pp. 242-248, 1977.

[5] F. Foley, A. Van Dam, S. Feiner, J. Huges, Computer
Graphics: Principles and practice, Addison Wesley, 1996

[6] J. Huang, K. Mueller, N. Shareef, R. Crawfis, “FastSplats:
Optimized Splatting on Rectilinear Grids”,
Visualization’2000, pp. 219-227, 2000.

[7] J. Kniss, G. Kindlmann, C. Hansen, “Multi-Dimensional
Transfer Function for Interactive Volume Rendering”,
TVCG 2002.

[8] J. Kniss, S. Premoze, C. Hansen, D. Ebert, “Interactive
Translucent Volume Rendering and Procedural Modeling”,
IEEE Visualization (2002 to appear).

[9] T. Lokovic, E. Veach, “Deep Shadow Map”, Proc.
SIGGRAPH’2000, 2000.

[10] M. Meissner, J. Huang, D. Bartz, K. Mueller, R. Crawfis,
“A Practical evaluation of Popular Volume Rendering
Algorithms”, 2000 Symposium on Volume Rendering, pp.
81-90, Salt Lake City, October 2000.

[11] K. Mueller, T. Moeller, J.E. Swan, R. Crawfis, N. Shareef,
R. Yagel, “Splatting Errors and Antialiasing”, IEEE
Transactions on Visualization and Computer Graphics, Vol.
4, No. 2, pp. 178-191, 1998.

[12] K. Mueller, T. Moeller, R. Crawfis, “Splatting Without the
Blur”, Proc. Visuali-zation’99, pp. 363-371, 1999.

[13] K. Mueller, N. Shareef, J. Huang, R. Crawfis, “High-quality
Splatting on Rectilinear Grids with Efficient Culling of
Occluded Voxels”, IEEE Transactions on Visualization and
Computer Graphics, Vol. 5, No. 2, pp. 116-134, 1999.

[14] K. Mueller, R. Crawfis, “Eliminating Popping Artifacts in
Sheet Buffer-based Splatting”, Proc. Visualization’98,
pp.239-245, 1998.

[15] T. Nishita, E. Nakamae, “An Algorithm for Half-Tone
Representation of Three-Dimensional Objects”, Information
Processing in Japan, Vol. 14, pp. 93-99, 1974.

[16] M. Nulkar, K. Mueller, “Splatting With Shadows”, Volume
Graphics 2001.

[17] K. Perlin, E. M. Hoffert, “Hypertexture”, Proc.
SIGGRAPH’89, pp. 253-262, 1989.

[18] L. Sobierajski, A. Kaufman, “Volumetric Raytracing”, 1994
Symposium on Volume Visualization, pp. 11-18, 1994.

[19] L. Westover, “Interactive Volume Rendering”, Proceedings
of Volume Visualization Workshop (Chapel Hill, N.C., May
18-19), Department of Computer Science, University of
North Carolina, Chapel Hill, N.C., 1989, pp. 9-16.

[20] L. Westover, “Footprint Evaluation for Volume Rendering”,
Proc. SIGGRAPH’90, pp. 367-376, 1990.

[21] T. Whitted, “An Improved Illumination for Shaded
Display”, Communications of the ACM, Vol. 23, No. 6, pp.
343-349, 1980.

[22] L. Williams, “Casting Curved Shadows on Curved
Surfaces”, Proc. SIGGRAPH’78, pp. 270-174, 1978.

[23] A. Woo, P. Poulin, A. Fournier, “A Survey of Shadow
Algorithm”, IEEE Computer Graphics and Applications,
Vol. 10, No. 6, 1990.

[24] C. Zhang, “Implementation of Shadows Using Splatting”,
The Ohio State University Master thesis, 2002.

	Volumetric Shadows Using Splatting
	
	
	
	Abstract

	1. INTRODUCTION
	
	
	
	4. MULTIPLE LIGHT SOURCES
	5. PROJECTIVE TEXTURED LIGHTS

	6. ACCURACY ISSUES
	
	7. CONCLUSIONS

	8. ACKNOWLEDGEMENTS
	References

