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Abstract

Visualizing three dimensional flow with geometry primitives is
challenging due to inevitable clutter and occlusion. Our approach
to tackling this problem is to utilize semi-transparent geometry as
well as animation. Using semi-transparency, however, can make the
visualization blurry and vague. We investigate perceptual limits and
find specific guidelines on using semi-transparency for three dimen-
sional flow visualization. We base our results on the user study that
we conducted. The users were shown multiple semi-transparent
overlapping layers of flow and were asked how many different flow
directions they were able to discern. We utilized textured lines as
geometric primitives; two general texture models were used to con-
trol opacity and create animation. We found that the number of high
scoring textures is small compared to the total number of textures
within our models. To test our findings, we utilized the high scoring
textures to create visualizations of a variety of datasets.

1 Introduction

Flows are ubiquitous in visualization applications. Ocean currents,
the flow of gas in a turbine or wind over an airplane wing, blood
flow in the human body - these are all cases where adequate flow
visualization is a necessity. Over decades, a variety of methods
have been developed to visualize flow in two or three dimensions.
Flow over a plane is usually referred to as 2D. Methods that are ap-
plied to cases when flow is close to a 3D surface are often referred
as 2.5D. Methods that deal with cases of overlapping 2D flow are
often also denoted as 2.5D. Visualizing of 2D flow is usually con-
sidered an easier task compared to the three dimensional case. For
three dimensions, problems of clutter and occlusion make flow vi-
sualization a challenge.

One way to reduce occlusion is to utilize semi-transparency. Semi-
transparency provides partial visibility of flow features that oth-
erwise would be fully occluded. An example is shown in Figure
1. However, as we keep decreasing the opacity of the overlapping
primitives to reduce occlusion further and reveal more flow fea-
tures, visualization becomes progressively more blurry and vague
and eventually becomes completely incomprehensible. Thus, it is
important to investigate perceptual limits when semi-transparency
is used. This would allow us to create flow visualizations that reveal
the largest possible number of flow features while not introducing
too much blur and clutter.

We propose a user study that allows us to investigate limits of oc-
clusion perception when visualizing flow with semi-transparent ge-
ometry primitives. The effectiveness of such visualization depends
on how well one perceives overlapping flow directions at differ-
ent depths. For the user study, we propose experimental models
for streamline textures.We introduce two streamline texture mod-
els, which allow us to generate a vast set of textures. We create an
effect of flow motion by moving the textures along the streamlines.
We use a set of overlapping 2D layers of flow as an experimental
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dataset. This model was selected for two reasons. First, we as-
sume that textures that do not work well for 2.5D flow visualization,
won’t perform well for three dimensional flow. Second, we observe
the following: for any sufficiently small neighborhood in screen
space, we can assume that the projection of three dimensional flow
to this neighborhood consists of a number of overlapping linear
flows at different depths. The only exception are vicinities of crit-
ical points. However, as we are dealing with a discretized domain,
for a local neighborhood with a size of several pixels, we get one
flow direction at this location at a given depth. Thus, our experi-
mental dataset is an adequate model for the purposes of our study,
which is primarily focused on occlusion. We explore the parameter
space of streamline texture models and discard those textures that
do not create effective visualizations. We select a set of candidate
textures for our user study. The results of the user study provide
us with qualitative and quantitative guidelines on using semitrans-
parency for flow visualization to mitigate occlusion.

Figure 1:Tornadodataset rendered with opaque (left) and partially
transparent (right) streamlines. Streamlines are velocity-colored,
from blue (low) to red (the highest velocity). Using semitransparent
streamlines reveals the inner structure of the dataset. On the other
hand, visualization becomes more cluttered and blurry.

2 Related Work

Flow visualization is a large and very well developed area of scien-
tific visualization that still attracts much attention. A wide variety
of approaches has been developed to visualize flows in 2D, 2.5D,
and 3D. Approaches to visualize vector fields can be categorized
into dense (texture-based), feature-based, direct, and geometry-
based techniques. A number of very good reviews of the field are
available [Hauser et al. 2002][Laramee et al. 2004][McLoughlin
et al. 2010].

A number of methods to mitigate the problem of occlusion for three
dimensional flow visualization have been proposed over the years.
View dependent methods [Marchesin et al. 2010][Lee et al. 2011]
remove streamlines that occlude important regions for a given view-
point. View independent algorithms seed streamlines in areas of
higher importance [Chen et al. 2007; Xu et al. 2010; Verma et al.
2000]. However, when any of the above methods are used, certain
flow features may still not be represented.

Researchers in scientific visualization have long been using prin-
ciples of human perception to achieve best results, but recently
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Figure 2: Examples of texture patterns for flow lines. Horizontal axis corresponds to texture coordinate and vertical axis corresponds to
opacity. Figures (a)-(f) show patterns generated with Model 1 (Tsawtooth), and figures (g)-(o) show patterns generated with Model 2 (Tsin).
Figures (b)-(e) show the highest scoringTsawtoothtextures from Experiment 1, and figures (l)-(o) show the highest scoring Tsin textures from
Experiment 2.

perception has started to receive even more attention [Bartz et al.
2008]. The role of color is covered in many books, for example
[Wong 1996][Itten 1961][Ware 1999], and numerous articles. Re-
cently, the role of motion when creating scientific visualizations
was discussed by Huber and Healy in [Huber and Healey 2005].
Weiskopf [Weiskopf 2004] investigated how color influences per-
ception of motion in animated visualizations, including flow visual-
ization, and provided a set of design guidelines for visualization ap-
plications. Importance of utilizing perceptual principles and theory
of human vision for flow visualization is stated by Ware in [Ware
2008].

Researchers working in a field of vision have studied different as-
pects of human perception of motion for a long time which resulted
in a wealth of important findings. Their work, however, primar-
ily focuses on revealing how the human visual system works and
on creating models of human visual system perception [Wandell
1995][Cochin et al. 1998][Treue et al. 1991].

Visualizing multiple layers of materials is an important topic in
computer graphics and scientific visualization. In many cases there
is a need to overlay materials in the same view, for example, in a
medical visualization different soft tissues should be visible above
the bone. The use of textures to enhance perception of semi-
transparent layers has been covered by Interranteet al. in [Inter-
rante et al. 1995] and by Interrante in [Interrante 1996], and more
perceptual aspects of visualization of textured layers were covered
by Bair et al. [Bair and House 2007][Bair et al. 2005] and House
et al.[House et al. 2005]. Kinetic visualization by Lumet al. [Lum
et al. 2002] employs particle system to provide motion cues that im-
prove shape perception of visualized objects. Visualization of two
overlapping layers of flow is discussed by Urness et al. [Urness
et al. 2006].

There are a number of papers that evaluate different aspects of flow
visualization via user studies. Forsberget al. [Forsberg et al. 2009]
performed user studies in which test subjects were asked to perform
some common tasks in flow visualization, such as locating and find-
ing the type of a critical point and tracing a particle. Weigle and
Banks [Weigle and Banks 2008] compared the use of perspective
and global illumination for flow visualization, when dense tubes
are utilized.

3 Experimental Setup

The goal of our work is to determine the limits of human percep-
tion when three dimensional flow is visualized with partially oc-
cluded animated semi-transparent geometry primitives and to find
a set of guidelines for this visualization approach. To achieve our
goal, we create a user study. For this purpose, we introduce stream-
line and dataset experimental models. Experimental dataset is a
set of constant flow directions at different depths, overlapping each
other, with streamlines being represented as lines with certain tex-
ture patterns and opacities applied to them. This allows us to in-
vestigate the following questions. What is the maximum number
of partially occluded flow directions discerned by the user? What
opacities and textures should be used in visualizations to maximize
the number of discernible depths of flow? What animation speed
should be selected?

The parameter space of the experiments is huge. There are millions
of different combinations of colors, opacities, and texture patterns,
each combination defining a particular visualization. With multiple
user studies we have identified those parameter configurations that
allow discerning a maximum number of partially occluded flow di-
rections. We provide a detailed description of our experiments in
the following sections.

3.1 Experimental Model

3.1.1 Streamline Models

We represent a streamline as a line with a specific width and length.
The simplest way to apply semi-transparency to a streamline is to
set a uniform opacity value for the whole streamline. However,
it doesn’t provide the best results. Utilizing some kind of a time-
dependent texture pattern is beneficial. For example, by moving
the texture along the flow primitive we can create an effect of flow
motion [Gelder and Wilhelms 1992]. We introduce two general
models for the distribution of transparency over a flow primitive.

Texture Model 1 First, we explore a set of ”sawtooth” textures.
Examples of this function with different parameters are shown in
Figure 2 (a-f). The model is defined as:

ψ(x, t) = πx+σ t (1)



κ = atan(
amax−amin

Aπ
) (2)

T(x, t) =

{

scale clamp(κψ(x, t),amin,amax) if ψ(x, t)<C
scale otherwise

(3)

T(x, t) represents the texture opacity, wherex is a texture coordinate
that changes from 0 to 1 - from the start to the end of the stream-
line. The clamp function returnsamin value if its first parameter
is less thanamin and returnsamax value if first parameter is larger
thanamax. Combiningclampandκ functions allows us to create
a variety of texture patterns to control the opacity. Multiplying the
expression byscaleallows us to vary the overall streamline opac-
ity. Theσ t term relates to the animation of the flow:t is time andσ
specifies the speed of the animation. If we setσ to zero, we enforce
non-animated flow pattern. ParameterC controls the width of the
”tooth” of the texture. Other parameters for a particular streamline
(not included in the above formula) are the line widthw, line length
l and colorc. Only textures along the flow direction are studied.
Equation 3 represents a single sawtooth, and to generate multiple
’teeth’ we combineλ number of teeth together, as in Figure 2(f).1

Texture Model 2 We also explore the model based on transcen-
dental functions and defined as:

φ(x, t) = sin(λψ(x, t)) (4)

T(x, t) =

{

scale clamp(φ(x, t),amin,amax) if ψ(x, t)<C
scale otherwise

(5)

In Model 2,λ specifies the frequency ofsin function, and parameter
C allows us to createsin textures with individual ”spikes”, as shown
in Figure 2 l), m), n).

These two models allow a wide range of textures and are easily
controlled for our experiments. The two models do not represent
all possible texture patterns, but we feel they are sufficiently rich
for our study. We do not believe that introducing a different style
of texture would provide substantially different results. We refer
to the textures introduced in this section asTsawtoothandTsin in the
rest of the paper.

(a) (b)

Figure 3: (a) Schematic depiction of the dataset: layers with differ-
ent flow directions are viewed on top of each other. The red arrow
shows the view direction. (b) Experimental dataset visualization:
three flow directions visualized. Dark borders are used to highlight
the fact that this is not a full-size visualization, but only a part of
it. Please notice that we use dark borders for other visualizations in
this paper with the same purpose.

1We experimented with other functions to generate sawtooth patterns,
such asT(x, t) = Aclamp((xλ/π + σ t)− ⌊(xλ/π + σ t)⌋,amin,amax), but
decided to use Equation 3 as it gives us more flexibility.

3.1.2 Dataset Model

The models introduced above define a single flow geometry prim-
itive. However, visualization depends also on the total number of
streamlines and how they are distributed in space. We construct a
set of test datasets based on the following observations. For any
3D flow dataset, the viewer sees streamlines projected to a viewing
plane. As the vector field representation is discrete, for a specific
location (small neighborhood with a size of several pixels) on the
viewing plane, there is only one flow direction at a specific depth.
Projections of these flow directions to planes parallel to a viewing
plane form a ”stack” of overlapping flows. The quality of visual-
ization which utilizes semi-transparency depends on how well one
can discern these overlapping, partially occluded flow directions at
different depths. Thus, for our user study we introduce a test dataset
that consists ofn overlapping flow layers with homogeneous flow.
For each layer, we generate a large candidate set of streamlines.
We select a subset based on a metric from this large set. For the ex-
periments described below we used a random subset of streamlines
from the candidate set. An example of the experimental dataset is
shown in Figure 3.

3.2 Parameter Space Exploration

The parameters for streamline models and dataset model define a
13-dimensional space. The dimensions are:

• amax, amin, λ , C, scale, A (for Model 2), streamline color,
streamline widthw, and streamline lengthl

• steamline density, number of overlapping layers of flow, angle
difference between flow directions, animation speed

Thoroughly exploring13-dimensional parameter space with a user
study is not feasible in any reasonable time. Instead, we have per-
formed a variety of experiments with a limited number of users.
We have identified the areas of the parameter space that should be
explored and the areas that could be discarded from exploration.
In the following subsections we cover in detail how we narrowed
down the paramter space and determined ideal parameters of our
experimental model.

Streamline Models Parameters Our initial sampling in-
cluded using at least 10 different values for each of the streamline
model parameters. We found that the number of ’spikes’ or ’teeth’
for a texture should be 2, 4 or 8. The images with streamlines that
have higher number of ’spikes’ are perceived as excessively noisy
due to large number of high frequencies in the image. Thus the
larger values ofλ were not used. The parameterC should not be
sampled too densely as well. It is almost impossible to recognize
the difference between values forC being less or equal to 0.3. In all
further experiments we have utilized at most four values ofC. We
substituted thescaleparameter withamax term forTsin texture and
with amaxamin term forTsawtoothtexture as our experiments showed
that premultiplying with these terms achieves a goal of having a
scale factor perfectly. The parameteramin is kept low as high val-
ues of this parameter result in high opacity of streamlines and visu-
alizations with such streamlines usually don’t have more than few
layers visible.

Streamline Density, Streamline Width, and Length We
alter the number of streamlines and streamline width and length to
find the level of coverage for a layer. The reason for this is that our
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Figure 4: Low (a), medium (b) and high (c) streamline densities for a flowlayer.

goal is to create a set of guidelines when the domain is densely cov-
ered. We have ensured that there is always a streamline in a given
local neighborhood, which leads to a dense coverage overall. We
have also ensured that the width of a line on the screen should be
at least several pixels, and the line length is much larger than line
width. The width of streamlines was fixed for all further experi-
ments. The length was set to be ’infinite’, i.e. the streamlines are
fully spanning the viewing area. Example visualizations of a flow
layer with different streamline densities are shown in Figure 4.

Animation Speed We have experimented with a variety of an-
imation speeds. One observation is that perceived animation speed
depends not only on theσ t term, but also on the other texture pa-
rameters in the models that we utilize. For the experiments, we
fixed the animation speed in screen space. Faster animation speeds
result in visualizations which are harder to perceive, as the visu-
alization becomes temporally incoherent which is often perceived
as flickering. On the other hand, slower animation speed and thus
slower motion is hard to perceive as well.

Streamline Colors For the user study, we have used grayscale
for the colors of the animated streamlines. Luminance contrast
plays the key role in motion perception [Ramachandran and Gre-
gory 1978].Though color plays a role in the perception of flow ve-
locity magnitude [Weiskopf 2004], in our user study the goal is
to differentiate flow directions, rather than flow velocities. Also,
we primarily focus on occlusion, which depends on texture opacity
and not on texture color. Thus, we use grayscale without any loss of
generality. Each streamline was assigned a random grayscale value.

Dataset Parameters We have experimented with a variety of
number of flow layers in the test dataset. We have found that it is
very hard for the user to discern more than 7 or 8 directions, hence
we limit our test datasets to 10 flow layers. Each layer has only one
particular flow direction. We have used several values as minimal
angle difference between flow directions. We ended up fixing the
minimal angle difference to be at least 10 degrees. This allows us
to focus on discerning significantly different directions. Each of the
flow directions is randomly assigned to a particular layer.

Layer Opacity (Ink) Some of the streamline textures have such
low or high opacities, that in the resulting visualizations it is impos-
sible to discern more than a few flow layers. We use the concept of
layer ink, that is equal to the total amount of opacity of a layer, as a
metric. For a given layer, opacity values for the pixels in the screen
are averaged over the animation time period. Then we sum up all
the values and divide the sum by the total number of pixels. We
find this metric to be useful in describing a particular experiment.
Our preliminary experiments allowed us to define a range of ink

values when visualizing different streamline models. We present
these numbers in Table 1.

Table 1: Parameter ranges before and after parameter space re-
duction, discussed in section 3.2. The center column shows the
ranges that were originally explored while the right column shows
the ranges used for the user study.

Parameter Name Original After reduction
Streamline width 10 (from 1 to 10) 1 (fixed width)
Animation speed 5 (slow to fast) 1 (fixed speed)
Streamline colors 113 11
Streamline density 10 (low to high) 1 (fixed density)
Layer Opacity (Ink) 0.0 to 1.0 0.001 to 0.2
Number of layers 5 (from 5 to 10) 1 (fixed at 10)
Angle between flow 5 (different angles) 1 (fixed - at least
directions 10 degrees)
C 10 4
amin 10 7
amax 11 11 (not changed)
λ 10 4

4 Experiments

After parameter space reduction, we have created two experiments
that we describe in detail in the current section. Each test subject
was presented with a set of animated flow visualizations. For ev-
ery visualization in this set the test subject was asked to record the
number of flow directions which he or she could discern. There
was no maximum time enforced for displaying a particular visual-
ization, the test subjects could spend any amount of time on any
visualization. The time spent for decision making, however, was
recorded.

4.1 Experiment 1

For Experiment 1, ”sawtooth” texture patterns were used. Based
on the observations from the experiments discussed in Section 3.2,
we have selected one hundred texture patterns. Texture parame-
ters used were from a set [0.01, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5] for
amin, and from a set [0, 0.1, 0.2, ..., 1.0] for A andamax, while
C was from a set [0.67, 1.57, 2, 3.14]. Ink (layer opacity) using
these texture parameters ranged from 0.001 to 0.06. The number of
streamlines (density), streamline width and streamline height were
all kept unmodified. The resolution for all experiments was a 512
by 512 image. All experiments were conducted looking top-down
at the layers. The number of layers was set to 10. Each layer had
only one specific flow direction. Flow directions differed by 18 de-
grees. Each flow direction was assigned to a random flow layer.
This random order was not altered when switching between differ-
ent texture patterns. All streamlines in the dataset (in each layer)
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Figure 5: Single frames of animated visualizations used in Experiment 1. Top row: example visualizations with some of the highest scoring
textures from Experiment 1. Bottom row: example visualizations with some of the lowest scoring textures from Experiment 1. Bottom row,
left (e): too little opacity makes directions hard to discern. Bottom row, (f),(g), (h): high opacity of the front layers results in poor visibility
of the further layers. Please notice that without animation, single frames of low scoring visualizations may look more preferable than the
highest scoring ones.

used the same texture pattern. The colors for every streamline was
selected randomly from a [0, 1] interval (black to white). The back-
ground was kept black.

Eleven test subjects have participated in the user study. All had
normal or corrected to normal vision. All were graduate students
majoring in Computer Science, 10 males and 1 female. Three
were familiar with flow visualization. Each of the test subjects was
shown 100 visualizations. For every visualization the number of
discernible directions was recorded.

The numbers from the user study form a 2D matrix of resultsR,
with rows corresponding to textures and columns corresponding to
test subjects. If we usei as a row index andj as a column index,
thenR(i, j) is the number of directions for visualization with tex-
ture i, discerned by a test subjectj. For each texturei, we average
the number of discerned directions over all test subjects. This al-
lows us to find textures performing better on average and minimize
importance of outliers. We present maximum, minimum, and mean
texture scores and times in Table 2(a).

Table 2: (a) Maximum, minimum, and mean texture scores and
times (in seconds) for Experiment 1. The score for each texture
was calculated by averaging the number of discerned directions for
the texture over all test subjects. (b) Details of the highest and the
lowest scoring textures for Experiment 1.

Max number of directions discernible 6.3
Min number of directions discernible 2.0
Mean number of directions discernible 5.0
Max time 63s
Min time 8s
Mean time 18s

(a)

Highest scoring textures Lowest scoring textures
(average score≥ 5.9) (average score≤ 4)
Number: 10 out of 100 Number: 10 out of 100
Average ink: 0.038
Maximum ink: 0.051 Low scoring high opacity textures

average ink 0.054
Minimum ink: 0.025 Low scoring low opacity textures

average ink 0.012

(b)

There is an interesting observation about the results of Experiment
1. While the best scoring textures look relatively similar and have
similar opacity distributions, the lowest scoring textures fall into
one of the two categories: the ones with too high or too low ink. We
show ink values for these textures in Table 2(b). Figure 5 shows ex-
ample visualizations with some of the highest and the lowest scor-
ing textures.

4.2 Experiment 2

For Experiment 2, the setup was the same as for Experiment 1,
except for a different streamline texture pattern and adding 0.0 to
a set ofamin values. ”Sin wave” texture patterns were utilized. A
candidate set of 100 textures was selected. As in Experiment 1, the
same eleven test subjects have participated in Experiment 2.

Table 3: (a) Maximum, minimum, and mean texture scores and
times (in seconds) for Experiment 2. The score for each texture
was calculated by averaging the number of discerned directions for
the texture over all test subjects. (b) Details of the highest and the
lowest scoring textures for Experiment 2.

Max number of directions discernible 5.7
Min number of directions discernible 3.7
Mean number of directions discernible 4.7
Max time 70s
Min time 11s
Mean time 19s

(a)

Highest scoring textures Lowest scoring textures
(average score≥ 5.4) (average score≤ 4.1)
Number: 12 out of 100 Number: 12 out of 100
Average ink: 0.083
Maximum ink: 0.154 Low scoring high opacity textures

average ink 0.165
Minimum ink: 0.027 Low scoring low opacity textures

average ink 0.017

(b)

We present the results of Experiment 2 in Tables 3(a) and (b).
As with Experiment 1, there are two sets of the highest and the
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Figure 6: Top row shows example visualizations and bottom row shows theircorresponding 2D Fourier transforms. Left: two visible flow
directions result in two lines in Fourier space. However, as the further flow direction visibility is low due to occlusion, its ’stripe’ in frequency
domain is blurred and less sharp than that of the front layer. Center: Even a single well visible horizontal streamline results in a new direction
in the frequency domain (notice a vertical line in Fourier space). Right: a total of six directions are visualized and all six directions in the top
visualization are discernible. Corresponding directions in the frequencydomain are visible.

lowest scoring textures, respectively. We present the exact pa-
rameters of the highest-scoring textures, along with the scores
and standard deviations for both experiments online atwww.cse.ohio-

state.edu/research/graphics/. Figures 2 (b)-(e) show the highest scoring
Tsawtoothtextures from Experiment 1, and figures 2 (l)-(o) show the
highest scoringTsin textures from Experiment 2.

4.3 Analysis in Frequency Space

To get a better understanding of why certain visualizations in our
user studies have larger number of discernible directions than the
others, we found it useful to look at the visualizations in the fre-
quency domain. Figure 6 shows three example visualizations and
their corresponding 2D Fourier transforms. The top left image
shows visualization with only two flow directions discernible. Two
flow directions correspond to two directions in the Fourier space.
The opacities of the streamlines are high, occluding the other flow
directions, which results in blurred and vague corresponding stripes
in the frequency domain. The center image adds a single horizontal
streamline and thus flow direction which adds a vertical stripe to
the frequency domain. The right image has six different flow di-
rections. All of them are discernible and are represented in Fourier
space by corresponding stripes. Overall, clear, discernible direc-
tion in image space results in a sharp, clear stripe in frequency do-
main. Barely discernible directions, on the other hand, result in
more vague and blurry stripes in frequency domain.

4.4 Visualization Guidelines

Based on the results from the experiments with a limited number
of users, as well as results from Experiments 1 and 2, we for-
mulated the following guidelines for visualizing semitransparent
flow. Guidelines for opacities and number of discernible flow
directions follow directly from Tables 2 and 3, while the rest of
the guidelines summarize our observations discussed in Section 3.2.

Opacity

• Opacity of a small neighborhood at a particular depth should

not be less than approximately 0.03, and should not exceed
approximately 0.15.

Number of flow directions

• It is difficult to perceive more than 7 overlapping flow direc-
tions at different depths. As a guideline, when designing a
visualization, one can not expect users to discern more than 7
depths of flow.

Ink distribution

• Using animated opacity along a streamline provides both bet-
ter flow visualization and reduced occlusion.

• While opacity along the streamline can be distributed in a va-
riety of ways, it should cover at least 50 percent of the stream-
line.

• The difference between minimum and maximum opacities for
a streamline should be at least 10 percent. Otherwise, the re-
sult would be an ’almost solid’ streamline with hard to discern
flow motion.

Animation

• Using animation to reveal flow features with motion is cru-
cial. When the speed is too slow, animation does not help in
revealing flow features. High animation speed results in inco-
herency and perceived flickering of the visualization.

• Streamline texture models create a periodic pattern. The an-
imation speed should be selected in a way that the texture
does not move for more than a half of a function period in
two successive frames. This implies that texture models with
larger frequencies (the larger number of ’spikes’) should be
animated with a slower speed than the ones with the lower
frequencies.

We would like to stress the following. Despite the fact that the
results confirm our common sense that too little opacity or too
much opacity are equally bad and that the opacity on the individ-
ual streamline should occupy more than just a small fraction of the
streamline, randomly picking a texture that ’seems right’ may not
generate effective visualizations.



Figure 7: A single frame of animated Plume dataset visualization. We used semi-transparent streamlines with one of the highest scoringTsin
textures to create it. Highlighted is a part of Plume dataset that is later used in visualizations in Figure 8.

5 Evaluation and Comparison

To evaluate the results of our user study, we created visualizations
of the Plumedataset. In Figures 7 and 8 we show different visu-
alizations ofPlume. All visualizations use the same color scheme
based on streamline curvature. Streamlines with higher curvature
are colored red and streamlines with lower curvature are colored
blue. Figure 7 shows one frame of the animated visualization of
Plumewith one of the highest scoringTsin textures. With semi-
transparent streamlines, complex inner flow features are visible.
The animated visualization is included as an accompanying video
with the paper2.

In Figure 8, we provide a comparison of visualizations of a part
of Plumedataset that is highlighted in Figure 7. Utilizing opaque
streamlines with halos, as shown in Figure 8(a) introduces oc-
clusion which makes it hard to reveal complex inner flow struc-
tures. For example, circular structure with red streamlines, which
is clearly visible in Figures 8(b) and (c), is fully occluded and not
discernible in Figure 8(a). Figure 8 (b) shows one frame of ani-
mated visualization that uses one of the highest scoringTsin tex-
tures. Figure 8 (c) uses semi-transparent streamlines with uniform
opacity distribution. Total opacity for a streamline is the same
as for streamlines shown in Figure 8(b). Both images with semi-
transparency ((b) and (c)) reveal the complex flow features well.
However, there is an important difference. While streamlines with
uniformly distributed opacity provide smoothness and coherency,
animated streamlines with non-uniform opacities greatly enhance
perception of the flow. In the accompanying video2 we show side-
by-side comparison of flow visualizations that use animated and
non-animated flow, with single frames shown in Figures 8 (b) and
(c), respectively.

6 Conclusion and Future Work

In this paper, we have described the details of a user study that ex-
plored how semitransparency can be applied to three dimensional
flow visualization. Experimental setup was the following. Dense
textured lines were used to visualize flow. We have introduced
streamline texture models and used overlapping layers of flow with
different directions as experimental datasets. We explored the ex-
perimental parameter space and performed a user study to find the

2The videos are available at www.cse.ohio-state.edu/research/graphics/

parameters that allow the user to discern a maximal number of flow
directions. Based on these results, we formulated a set of visualiza-
tion guidelines.

There are multiple research directions that we would like to pursue
in the future. We would like to extend the current study to answer
the following question. Given that a number of occluded flow direc-
tions in the dataset is larger than a user can perceive at once, how do
we select which flow directions to show the user at a given spatial
location? We would like to analyze and cluster the top performing
parameters. This should give us insights on how the top performing
parameters are distributed inn-dimensional space. Picking the best
texture from each cluster, we can then explore the effectiveness of
using different textures for each layer. Another interesting prob-
lem is quantizing arbitrary flow directions in a dataset to, say, 10
predefined ones. Thus, for a given view, the user doesn’t have to
perceive more than 10 flow directions simultaneously. Of course,
the question on the quality and error bounds of the visualization
arises in such scenario. We also plan to extend our study to LIC
with multiple overlapping flow layers.
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