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Abstract 
Complex renderings of synthetic scenes or virtual environments, once deemed impossible for consumer 
rendering, are becoming available as tools for young artists. These renderings, due to their high-
quality image synthesis, can take minutes to hours to render. Nowadays, as the computing power has 
increased dramatically, the size and complexity of the datasets generated by the super-computer can be 
overwhelming. It is almost impossible for the visualization techniques to achieve interactive frame 
rates. Our work focuses on using Image-Based Rendering (IBR) techniques to manage and explore 
large and complex datasets and virtual scenes on a remote display across the world-wide-web. The key 
idea for this research is to pre-process the datasets and render key viewpoints on pre-selected paths 
inside the dataset. We present new techniques to reconstruct approximations to any view along the 
path, which allows the user to roam around inside the datasets with interactive frame rates. We have 
implemented the pipeline for generating the sampled key viewpoints and reconstructing panoramic-
based IBR models. Our implementation includes an efficient two-phase caching and pre-fetching 
scheme. The system has been successfully tested on several datasets and satisfying results have been 
obtained. Analysis of errors is also presented.  
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1. Introduction 
Complex renderings of synthetic scenes or 

virtual environment, due to their high-quality 
image synthesis, can take minutes to hours to 
render. Ray-tracing or global illumination using 
a tool such as POVRAY [20] that can render 
high-quality images however is very time 
consuming. Nowadays, as the computing power 
increases dramatically, the size and complexity 
of the datasets generated can be overwhelming. 
Building and rendering the geometry of these 
large datasets are also time consuming. An 
interactive virtual walkthrough of these large and 
complex scenes is almost impossible on a low to 
mid-end system using traditional rendering 
techniques.  

Our goal is to determine a solution for 
allowing the user to examine and walkthrough 
the scene from an internal vantage point on a 
relatively high-resolution display. To achieve 
this goal, we decided to apply Image-Based 
Rendering (IBR) techniques as a post-processing 
tool for any traditional renderer. 
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IBR is a new research area in both the 
computer graphics and visualization community, 
and offers advantages over the traditional 
rendering techniques. It does not require building 
or modeling complicated geometric models. It 
can utilize real life images and illumination for 
photo-realistic rendering. Finally, IBR requires a 
fixed or limited amount of work, regardless of 
the view or data context. However, this amount 
of work is fixed to the desired output. As a 
result, many IBR techniques [9] [10] [11] [12] 
focus on accurate rendering of relatively low-
resolution imageries. Here we explore techniques 
for large displays having a resolution from 
1kx1k to 8Kx3K as in our new video wall.  

Our work can be viewed as an extension to 
QuickTime VR [3] or other panoramic 
representations [19]. Panoramic imagery allows 
one to spin around at their current viewing 
position, but does not allow the user to move 
forward or backward. We developed a system to 
allow movement along a linear path in three-
dimensions. At any position on this curve, the 
user can interact with the scene as in a panoramic 
viewer. We termed this type of viewing, a rail-
track view, in that the user can move forward 
and backward along the “track”, while viewing 
the outside scenery in any direction. Darsa, et al 
[6] investigated techniques to incorporate 
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information about the depth of the image into the 
panoramic scene. Depth allows for proper re-
projection of the pixels from different viewpoints 
and provides a sense of motion parallax to give a 
true three-dimensional sense to the imagery. For 
efficient rendering, we apply a mesh 
simplification method to simplify the depth 
image from every pixel to a more manageable 
geometric quad-mesh. An intelligent caching and 
pre-fetching scheme is employed to further 
improve the rendering speed. We also present 
and analyze the sources of the errors in our 
system.  

The paper is organized as follows: First we 
discuss relevant background and previous work 
in the IBR area. We then present an overview 
followed by implementation details of our 
system. Next we discuss the pre-processing and 
data organization scheme for efficient rendering. 
A two-phase caching and pre-fetching technique 
is also presented in this section. We will then 
discuss the sources and a quantitative 
measurement of the errors. Finally we give some 
test results and conclude with future work. 
 
2. Related Work 

Recently, a lot of effort has been put into 
Image-Based Rendering systems. Image-based 
rendering has the property of a bounded 
computation according to the input and output 
image size. This is advantageous over traditional 
polygonal based rendering where complex 
scenes or models can have individual polygons 
smaller than a pixel and therefore constructing 
and rendering these can be unbounded 
complicated.  

 
2.1 Plenoptic Function 

  IBR systems are based on the Plenoptic 
function. The 7D plenoptic [1] function is 
defined as the intensity of light rays passing 
through the camera center at every location 
defined by zyx VVV ,, , at every possible viewing 
angle θ  and φ , for every wavelength λ and at 
any time t.  

),,,,,,( tVVVPlenoptic zyxλφθµ =            (1)      

Even with faster CPU’s and more memory, this 
function overwhelms modern architecture, 
making it impractical for interactive applications. 
In order to make practical use of Image based 
rendering concepts, this model has to be 
simplified. McMillan [12] et al simplified the 
model to a 5D plenoptic function (equation 2) by 
fixing time and breaking up the wavelength as 
RGB components.  

      ),,(, Vt

�

φθµµλ =      (2) 

Note that V
�

is a vector representation of 
zyx VVV ,, .  McMillan’s image warping system 

is based on this 5D plenoptic function. If the user 
movement is restricted to lie outside of a box, the 
model can be further simplified to a 4D function 
such as Lumigraph [9] or Lightfield [10]. A 3D 
representation of the plenoptic function is 
constructed in Concentric Mosaics [18] as they 
restrict the user’s movement to lie within a 2D 
circle. QuickTime VR systems [3] [19] reduce 
the function to a 2D one by letting the user stand 
at a fixed point and look around. This research 
focuses on allowing the user to move on a pre-
selected path and look around. Hence it is 
modeling a 3D slice through the plenoptic 
function. 

Having a continuous plenoptic function, we 
need to sample and discretize it. Equation 3 is a 
discretized version of the 5D plenoptic function. 

),,(, iiiti V
�

φθµµ λ=                                   (3) 

Obviously we can sample the viewing direction 
and views. IBR systems can vary in terms of 
how and when to choose view samples. Some 
systems choose to sample the viewpoints outside 
of the scene [4] [7] while others put their sample 
viewpoints inside the scene, on a path [12] [16], 
inside a circle [17], or at a fixed point [3]. 
Systems may choose the reference views a priori, 
pre-rendering the sampled plenoptic function. 
While other systems [16] choose view samples 
on the fly and reconstruct images of new views 
from these until the image quality degrades to 
where new reference views are needed.  
 
2.2 Depth Function 

For opaque scenes, the depth function ξ  is 
of value for reconstructing the novel views (i.e. 
views not located at the sample points). Equation 
4 describes the distance to the closest object in 
the scene. Sampling and discretizing this 
function gives us iξ . Equation 3 and 5 provide a 
framework for IBR representation of a scene. 

),,( V
�

φθξξ =                                            (4) 

),,( iiii V
�

φθξξ =       (5) 
IBR systems can also differ in how they 
represent this depth function (geometric 
information). QuickTime VR [3] and spherical 
panoramic systems [19] do not store any 
geometric information. The images for new 
view-points are reconstructed using implicit 
geometric relationships. This is adequate for 
scenes far away from the user at where the user 
is only allowed to look around or zoom.  
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2.3 Occlusion and Dis-occlusion 
3D warping systems [6] [11] [12] store 

depth information per pixel. Users can move 
away from the pre-selected viewpoints and the 
depth and color information is used to construct 
novel viewpoints. The occlusion and dis-
occlusion problems are not addressed by the 3D 
warping system, because it only has one layer of 
the depth information associated with each pixel. 
As the user moves farther away, holes will 
appear and information for more than one 
reference viewpoint is needed to fill these holes. 
Layered Depth Images (LDI) [17] [2] store 
several layers of depth and color information for 
each pixel. When rendering from an LDI, the 
user can move farther away and expose surfaces 
that were not visible in the first layer. The 
previously occluded information can be rendered 
using information from later layers. The model is 
inefficient when we have complicated scenes or 
when the output image has extremely high 
resolutions. Other systems partition the object 
space into several slabs along the viewing 
direction [8] [13]. The data within a slab is 
projected towards the image plane and then 
texture mapped onto a quad oriented parallel 
with the image plane and perturbed by the z-
values of its corresponding slab. When 
reconstructed for a novel view, this can 
approximate an image warp.  

Most of the IBR systems concentrate on 
accurate rendering of relative low-res imageries. 
Systems based on 3D warping [2][11][12][17] 
use per-pixel operation and do not utilize much 
hardware acceleration. They are not suitable for 
interactive walkthroughs on very high- 
resolution displays. Lumigraph [9] and Light-
field Renderings [10] need very dense 
samplings, which is both time consuming and 
space inefficient. View dependent texture 
mapping (VDTM) [7] is a typical example 
utilizing texture hardware to accelerate 
rendering. However, for one reference 
viewpoint, the complete viewing direction is not 
adequately sampled and therefore can not allow 
head rotation during the fly-through. Cohen-Or 
et al [5] also looked into ways to pre-compute 
the geometry and textures on a path and stream 
the results across the network. They use 
projective texture mapping for close-by views. 
Again, their work lacks the ability to allow the 
user to change the viewing direction during the 

walkthrough because of the incomplete 
sampling. Their method focuses on how to 
compress the resulting textures and efficiently 
stream them down the network. The closest 
implementation to ours is Darsa et al’s [6], in 
which they used cubical environmental maps 
with simplified triangular meshes. Three 
blending methods were explored for smooth 
walkthroughs between close-by viewpoints. Our 
system differs from theirs in that we used 
cylindrical models instead of cubical ones. 
Cylindrical models have the advantages of 
representing texture information homogeneously 
without discontinuities at the edges like the 
cubical maps. We have also adopted a multi-
layer approach comprised of several depth 
meshes to better solve the occlusion and dis-
occlusion problems. We have also investigated 
an intelligent two-phase caching and pre-fetching 
scheme to improve the performance of our 
system. Darsa’s system reports a frame rate of 
3.53 FPS on an Infinite Reality Engine using 
position weighted blending with a 256x256 
window, while our system can achieve around 15 
FPS using the same blending method with 1kx1k 
resolution on a low-cost Sun Blade 1000 
workstation with an Elite 3D graphics board. 
 

 
Figure 1: two possible tracks into the Nature dataset 
we rendered using Povray. The black arrowed curves 
represent the tracks and red dots represent the pre-
selected viewpoints. 
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Figure 2.  shows the system diagram. First datasets are pre-rendered and pre-processed using appropriate rendering 
engines, for example, POVRAY, VTK, Radiance and so on and stored on a server-side database. The server keeps a 
cache and retrieves from the database and stores into the cache according to the client demand then transmit the data 
across the network to the client. The client keeps its own cache and can reconstruct the results using our layered-
panoramic IBR model. 
 
3. Overview 

The goal of this research is to interactively 
manage complex, time-consuming renderings of 
large datasets. We concentrated our efforts to 
allow users to roam interactively inside a scene, 
exploring interesting features with the ability to 
look around at the same time. We achieve this by 
restricting the users’ movement on a pre-selected 
path and allow them to look around at any point 
in both the vertical and horizontal directions. 
Figure 1 depicts two possible tracks into the so-
called Nature dataset we rendered using Povray 
[21]. The black arrowed curves represent the 
tracks and red dots represent the pre-selected 
viewpoints. The user is allowed to move back 
and forth on this track and change his viewing 
directions freely. Although some software 
packages allow discrete jumps from one 
viewpoint to another, this disturbing 
teleportation removes the user’s focus from 
smooth walkthrough to one of trying to figure 
out where they are and regain their orientation or 
bearing.  

Figure 2 describes the idea of our IBR 
system. First the datasets are pre-rendered and 
pre-processed using appropriate rendering 

engines, for example, POVRAY, VTK, Radiance 
and so on and the resulting imageries and 
geometry information are stored on a server-side 
database. The server keeps a cache and retrieves 
the reference views from the database and stores 
them into the cache whenever the client requests. 
The cached data is then transmitted across the 
network to the client. The client receives the 
information and stores it into its own cache.  
Novel views can now be reconstructed using our 
layered-panoramic IBR model, which will be 
described later. 

 
4. Visibility Polyhedrons 

Moving from one viewpoint in a complex 
scene to another with the freedom of looking 
around is a challenging problem. Let’s assume 
that we want to move from V1 to V2 in a 
complex scene. Consider the following 
definitions. 
 

Definition 1: The visibility polyhedron of a 
viewpoint is the locus of points visible from the 
viewpoint.  
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Definition 2: A polyhedron P is said to be 
star-shaped if there exists a point z not external 
to P such that for all points p of P the line 
segment pz� lies entirely within P.  

 
Definition 3: The locus of the points z’s 

having the above property is called the kernel of 
P.   
 

Theorem 1: The visibility polyhedron of the 
viewpoint is a star-shaped polyhedron and has a 
kernel that at least contains the viewpoint. 
 
These definitions are extensions from those on 
polygons [14]. Let’s assume that V1 and V2 lie 
inside each other’s kernels. The visibility 
polyhedrons of the two viewpoints are therefore 
identical. Any points V3 in between the line 
segment connecting the two points are also 
inside that kernel due to definition 2. Therefore, 
the visibility polyhedron of V3 is the same as V1 
or V2’s. We can use the combination of these 
two to represent V3’s as described in equation 6.  

        
21213 VVVVV PPPPP === t                   (6) 

The assumption of two close-by viewpoints lying 
inside each other’s kernels does not always hold. 
We can approximate V3’s visibility polyhedron 
from V1 and V2’s visibility polyhedrons.  If V1 
and V2 are close enough this approximation is 
quite reasonable. The sampling rate can be either 
user defined, chosen by the database designer or 
at fixed intervals. It can also be controlled by the 
maximum mean squared errors allowed for the 
reconstructed scenes along the track, which will 
be one of the future works.  

We approximate the visibility polyhedron 
for each viewpoint to make the system more 
efficient, and texture-map it with the initial 
rendering. We then use equation (6) to combine 
the close-by reference views as the user walks 
between them. In the Next section we will 
address details of how we implemented our 
system. 

 
5. Implementation Details 

In practice, we use a pre-renderer to 
generate the imageries and the associated depth 
information. The depth values are obtained either 
from the z-buffer or the first intersection points 
with the viewing rays. In either case, we connect 
the depth values to form a polyhedron ZP, which 
is a discretized representation of the visibility 
polyhedron P. We need to simplify ZP since 
rendering each pixel with its own depth value is 
too time-consuming for high-resolution 
imageries. Therefore, we reduce the geometric 
complexity by down-sampling the depth buffer 

into quad-meshes. We call this simplified mesh 
QZP. The reason we chose to use a quad-mesh as 
our simplified geometry is because of its 
simplicity and resulting efficiency issues for our 
caching and pre-fetching scheme. The vertices of 
each tile of the quad-mesh have their actual 
depth values. Color and opacity are represented 
by texture maps. We assume a bilinear function 
for reconstructing the depth values of the interior 
points of the tiles, which is not always valid. 
Therefore, this mesh simplification scheme 
introduces errors, which will be talked about in 
more details in a later section.  

In order to allow for occluded information at 
a view to be retained [17], we divide the viewing 
frustum into several depth ranges, by setting the 
near and far clipping planes. We call each range 
a slab iQZP . A binary opacity mask is assigned 
to enable per-pixel occlusion. By compositing 
the slabs, we achieve the complete scene for one 
viewpoint.  

321)( QZPQZPQZPQZPZPPdiscretize ++=≈=   

       (7) 

This will allow the user to move away from the 
pre-selected viewpoints while revealing the 
previously occluded information using additional 
slabs.  

Figure 3 Shows depth meshes for one 
viewpoint. Figure 3(a) is the mesh viewed from 
the original viewpoint that provides a seamless 
view. Figure 3(b) shows a side view of the mesh 
for illustration purpose. Note the individual slab 
meshes that comprise the visibility polyhedron 
for this viewpoint. 

We now have the simplified visibility 
polyhedrons, constructed using the slab meshes 
for both V1 and V2 with color as texture maps. 
How do we smoothly move from one point to 
another? To walk between two viewpoints we 
simply combine the two slab-mesh sets. To make 
the transition smooth, we interpolate the slab 
image sets of two nearby reference views. The 
correct way to do the interpolation is to use an 
over operation on corresponding slabs of the two 
views and then compute the result of slab1 over 
the result of slab2 and so on. This can be 
implemented using a special p-buffer, which is 
normally not available for consumer-level 
graphics board. Instead, we compute slab1 for V1 
over slab1 for V2 and then compute this over 
slab2 of V1 and so on. The interpolation requires 
a weight w based on the difference (normalized 
to be between 0 and 1) between the new view 
and one of the reference views. The 
corresponding reference image sets have their 
opacities modulated by the corresponding weight 
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factor, and then projected in an interleaved 
fashion in depth sort-order from the new 
viewpoint. The equation for the resulting color 
after slab1 image sets are weighted is:  

22111 *)1(**)*1(** ααα wCwwCC −−+=      
                                                                        (8) 
Here C is the final computed color at the new 
viewpoint, C1 and C2 are colors of slab images 
from the two neighboring reference views, and 

1α  and 2α  are alpha values from opacity maps 
of the slab images. Results show that when using 
linear interpolation the computed image looks 
very close to a correct rendering when the new 
viewpoint is close to a reference view.  However, 
when the new view is located at the middle 
between reference views, the computed image is 
darker and transparent looking. The reason for 
this is due to the fact that when the new 
viewpoint is near the middle of the two 
references, C is less than the original C1 or C2 
colors, and thus appears more transparent. For 
example, assuming C1 equals C2 and both pixels 
have α ’s of 1, and our weight w equals 0.5. We 
have a resulting 
 121 *75.05.0**5.0*5.0 CCCC =+=          (9) 
An alternative interpolation is to use a nonlinear 
weighting scheme. We define a non-linear 
blending equation as:  

)*)),(1(
**)*1(**

2

2111

α
αα

bwpow
CwwCC

−
−+=

                (10) 

Here b is a constant. Let’s assume the same 
example as before with b equaling 2. We have a 
resulting color of  

121 *875.075.0**5.0*5.0 CCCC =+=       (11) 
By using this equation, the dark and transparent 
problem is alleviated. In practice we choose a 
value of 3 for b 
 
6. Preprocessing 

We could use the whole rendered image as a 
texture map to map to the simplified depth mesh. 
However, there are areas of the image that 
contain no information. Storing and rendering 
those is a waste of resource. Therefore, we break 
the resulting image into tiles that are 
corresponding to the depth mesh. The size of the 
image tiles and the quad-mesh affects the image 
loading time, storage, performance and the 
errors. These will be addressed in a later section. 
Those image tiles containing no information are 

detected and labeled as empty tiles. Thus we 
treat each image tile as a texture map for the 
corresponding quad. The problem with rendering 
each image tile as a texture map is that the 
system has limits on texture binding units. 
Texture-map thrashing results when too many 
small image tiles are produced, and interactivity 
is lost. 

To alleviate this problem we group 
individual image tiles into bigger texture units 
for rendering. Consider a full image of size W by 
H, we divide the image into equal sized small 
tiles w x h so that each row has W / w tiles and 
each column has H / h tiles. To remove empty 
tiles and merge the remaining into a larger 
texture map, we squeeze each column, removing 
the empty tiles, and linking the resulting columns 
of tiles into a one-dimensional tile array and use 
this as the texture unit. A simple indexing 
scheme is implemented to quickly calculate the 
position of the columns needed for our caching 
and pre-fetching engine.  

The IBR rendering engine determines the 
closest two reference viewpoints on the path. At 
any given time, only the information of at most 
two reference viewpoints are needed to 
reconstruct novel views. Therefore, it is 
reasonable to have only two reference views in 
memory at a given time. When the users move to 
a new path segment, requiring a new reference 
view, they will encounter severe latency while 
the needed data for reconstruction is read into 
memory. Instead of loading just two sampled 
views, the system loads several views into 
memory and stores them into a cache. The pre-
fetching engine, which is implemented as a 
separate thread, continually fetches texture maps 
as the user moves along the track and stores them 
into the cache. The cache is organized using a 
Least Recently Used (LRU) rule. The maximum 
number of views allowed in cache is determined 
by memory size, disc latency and the view-
sampling rate. Our first experiment treats the 
whole panorama as a caching unit. It alleviated, 
but did not eliminated, the latency problem. 
When the user moved quickly along the track, 
noticeable latency still occurred since the disk 
reading could not keep up with the demand.  
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Figure 3: Shows depth meshes for one viewpoint. (a) The mesh viewed from the original viewpoint. (b) The mesh 
viewed from a viewpoint off of the track for illustration purpose. We can see the slab meshes which comprise the 
visibility polyhedron for that viewpoint. 
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Figure 4 (a) defines a path with V1 through V6. A track segment is defined between the two closest-by viewpoints. The 
current novel viewpoint is on segment number 1 which is between V1 and V2. (b) The entire panorama for V1 and V2 
are loaded into the cache, while only parts of the panoramas (tiles) are loaded in for V3, V4 and V5. And less 
information is actually loaded for V5 over V3. (c) The user moves into segment 2, the novel view lies between V2 and 
V3, we use another thread to load in the remaining information for V3 and pre-fetch partial information for V6 which 
currently has no information in the cache. 
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Keeping the whole panorama in the memory 
allows the user to look around in horizontal and 
vertical directions interactively, but it requires 
too much memory and disk I/O. By examining 
the minimal information needed to reconstruct a 
novel view, we can reduce these demands and 
increase our pre-fetching length. We consider 
two scenarios. The first case is when the user 
heads straight down the track and keeps the view 
plane normal constant all the time. In this case, 
only the information within the user’s viewing 
direction is needed. However, for fast movement, 
more than the two closest reference views are 
required. The second case is when the user only 
looks around and never moves on the track. This 
requires only the information of the whole 
panoramic of the current two closest reference 
views. Usually, the user can both move along the 
track and stop to look around. This means that a 
fair amount but not all of the panoramic is 
needed for more than the two closest reference 
views. Therefore, we have the choice of pre-
fetching more of the panoramic of current views 
or more of the next views along the track. This is 
determined by the user – whether moving along 
the track fast or looking around interactively is 
more important. A compromise was achieved 
using an adaptive two-phase pre-fetching scheme 
– one along the track and the other along the 
viewing direction.  

We adaptively reduce the information we 
pre-fetch as the pre-fetched views are farther 
away from the current viewpoint. Therefore for 
the closest two sampled views we load in most 
of the panorama. As we pre-fetch information of 
the farther away view samples we pre-fetch less 
and less of the information into the cache. This is 
illustrated in Figure 4. Figure 4 (a) defines a path 
with V1 through V6 reference views. A track 
segment is defined between the two close-by 
viewpoints. We have labeled these segments 1 
through 5. The current novel viewpoint is on 
segment number 1 which is between V1 and V2. 
V3, V4 and V5 are farther and farther away from 
the current view. Figure 4 (b) shows that the 
whole panoramas for V1 and V2 are loaded into 
the cache, while only parts of the panorama 
(tiles) are loaded in for V3, V4 and V5. When we 
move to segment number 2, the novel view lies 
between V2 and V3, we use another thread to 
fetch the remaining information for V3 and pre-
fetch partial information for V6 which currently 
has no information in the cache. This is shown in 
Figure 4 (c). 

 
 

7. Error analysis 
 
7.1 Depth-Mesh Errors 

We consider two sources of errors. The first 
source of errors comes from down-sampling the 
depth-meshes. Reconstruction using standard 
graphics cards utilizes a bi-linear function to 
determine the depth values in the interior. This 
assumption, of course, is not always valid. 
Therefore, some errors are introduced when we 
reconstruct the reference views and novel views. 
We can certainly reduce this kind of error by 
using a finer quad-mesh (smaller tile size). 
However, this increases the rendering time, 
image and geometry loading time and storage 
requirements. Table 1 shows the Mean Squared 
Error (MSE), the image and geometry loading 
time, the rendering time (FPS) and the storage 
requirement using varying tile sizes for the 
POVRAY rendered Nature dataset. These are 
also plotted graphically in Figure 5. From the 
Figure we can see that the MSE decreases almost 
linearly when we decrease the tile size. However, 
the loading time increases quite dramatically 
with smaller tile sizes. The rendering speed 
decreases with decreased tile size. As tile size 
increases, the storage first decreases, hits a low 
value and then increases. The decrease at first is 
due to the fact that we need to store more depth 
values when we have more tiles with smaller 
size. The later increase is because when the tiles 
are too big, there are fewer empty tiles to 
remove. This is also the reason why the 
rendering speed levels off when the size 
increases to a certain value – we have more 
empty space to rasterize. After observations, we 
found that 16x16 or 32x32 tile sizes are good 
candidates for our application.  

 
 Loading 

Time(s) 
FPS MSE Storage 

(MB) 
64x64 0.47 18 11.72 12.6 
32x32 0.52 17 8.99 11.1 
16x16 0.83 15 6.82 10.0 
8x8 1.28 8 4.85 10.1 
4x4 3.04 3 2.88 12.0 
2x2 9.63 1 0 20.4 
Table 1: shows the change of loading time, rendering 
speed, Mean Squared Error and Storage of one typical 
viewpoint with different tile size. This is for the 
Nature dataset. MSE is based on the maximum 
number of 256. 
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Loading Time, FPS, MSE, Storage vs. 
Tile Size
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Figure 5: Shows the Mean Square Error (MSE), the 
loading time, Frame Per Second (FPS) and the storage 
requirement with different tile sizes for a typical 
sampled viewpoint of the POVRAY rendered Nature 
dataset. 

Visibility Errors
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Figure 6: Mean Square Error of interpolated views 
against actual rendered views. Interpolated views have 
a tile size of 32x32  
 
7.2 Visibility Errors 

Another source of errors are the visibility 
errors that come from reconstructing the novel 
view by cross-dissolving the two close-by 
sampled views. As described previously, if the 
visibility polyhedrons of the two sampled views 
coincide with each other perfectly, no visibility 
errors will occur. Figure 6 shows the MSE of the 
resulting images for interpolated views against 
Povray rendered views at corresponding 
positions along our path. Three different 
sampling rates are examined and a tile size of 
32x32 is used. We can see that the peak errors 
occur somewhere close to the middle of the two 

sampled viewpoints for all three cases. This is 
expected because the visibility errors are most 
serious in the middle of the two samples. The 
curve which uses 2 sampled viewpoints has the 
coarsest sampling rate and therefore has the 
highest mean square error. The Peak is about 17 
out of 256, which is approximately 6.7%. The 
curve which uses 5 views has the finest sampling 
rate and peaks out with an MSE of about 14 - 15. 
The minimum MSE occurs at the sampled 
viewpoints, which comes entirely from the 
down-sampling errors. Figures 8 and 9 (see color 
section) show the interpolated and actually 
rendered images using the same viewpoint, 
Figure 10 (see color section) shows the 
difference image. Here we see the majority of the 
errors occur on silluoettes where the depth values 
change substantially. 
 
8. Results and Discussions 

Our rail-track viewer was implemented in 
Java/Java3D. We ran our IBR framework on 2 
datasets. The first one is a virtual scene rendered 
using Povray [21]. The scene is fairly 
complicated containing trees, bushes, rocks and 
birds. It requires almost 30 minutes to render one 
frame using Povray on our dual Pentium II 
500MHZ, 512MB SGI visual workstation. One 
path was chosen for this scene with 20 sampled 
viewpoints along the track. Three panoramic 
layers with a resolution of 1024x4096 per layer 
were pre-computed for each view sample. The 
total size for the image database after pre-
processing was 220MB. The geometry and 
imagery was broken up into 32x32 quads. The 
pre-rendering takes about 40 hours on the visual 
workstation. Our second dataset is the LOX post 
dataset which Visualization Toolkit (VTK) [22] 
provides. This dataset simulates the flow of 
liquid oxygen across a flat plate with a 
cylindrical post perpendicular to the flow. It is a 
complex scientific dataset which contains both 
scalar and vector fields in the data. A rendering 
was chosen with the post, a slice plane and 
several stream-polygons. One path was pre-
selected going into the stream-polygons region 
with 23 view samples. Four panoramic layers 
with a resolution of 512x2048 per layer were 
pre-computed for each view sample. The 
reference image database was pre-rendered using 
VTK and the total size for the image database is 
138MB. The geometry and imagery was broken 
up into 16x16 quads. This database required 9.2 
hours to pre-render.  

For the Povray dataset, our IBR viewer 
achieves 10-15 frames per second with a 1kx1k 
image resolution on the Sun Blade 1000 
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workstation with dual Ultra-Sparc III 750MHZ, 
1 GB of memory and Elite 3D graphics card. For 
the LOX dataset, we see 15-20 frames per 
second with a 512x512 resolution on the same 
platform. Figure 7 (see color section) shows one 
rendered view for the nature dataset with the 
quad-meshes represented by white squares and 
color information as texture maps. Figures 8, 11 
and 12 (see color section) show some resulting 
images from our IBR system. 

 
9. Conclusions and Future Work 

This paper presents our framework for 
allowing the user to examine and walkthrough 
the scene from an internal vantage point on a 
relatively high-resolution display interactively. 
We achieved this goal by limiting the user 
movement on a track and utilizing IBR 
techniques. Intelligent data organization, caching 
and pre-fetching make our system more efficient. 
We prove by results that our system is suitable 
for exploring complex virtual environments and 
large datasets with reasonably small errors.  

Triangular meshes would decrease the 
down-sampling error [6]. We are looking at ways 
of using triangular meshes to replace fixed size 
quad-meshes. Even with the empty tile removal 
scheme, our IBR database still tends to be very 
large, especially with larger resolution and finer 
sampling. Future work entails looking at 
appropriate compression techniques to reduce the 
data storage requirements.  
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Figure 7: shows one rendered view with quad-meshes represented by white squares and color information as texture 
maps. This figure also shows our empty tile removal scheme. Any tiles with no useful information won’t be 
reconstructed or rendered. 
    

  
Figure 8: The interpolated image for one viewpoint which is in the middle of the two reference viewpoints 
Figure 9: The actual rendered image for the viewpoint at the same position as in Figure 8 
Figure 10: The difference image between Figure 8 and Figure 9 
 

 
Figure 11: The interpolated image for one viewpoint which is outside of the stream-polygon region of the LOX dataset 
Figure 12: The interpolated image for one viewpoint which is inside of the stream-polygon region of the LOX dataset 
 
 


