
Eighth Eurographics Workshop on Virtual Environments (2002)
S. Müller, W. Stürzlinger (Editors)

The Eurographics Association 2002

Rail-Track Viewer −−−− An Image-Based Virtual Walkthrough System

Lining Yang, Roger Crawfis
Department of Computer and Information Science

The Ohio State University

Abstract
Complex renderings of synthetic scenes or virtual environments, once deemed impossible for consumer
rendering, are becoming available as tools for young artists. These renderings, due to their high-
quality image synthesis, can take minutes to hours to render. Nowadays, as the computing power has
increased dramatically, the size and complexity of the datasets generated by the super-computer can be
overwhelming. It is almost impossible for the visualization techniques to achieve interactive frame
rates. Our work focuses on using Image-Based Rendering (IBR) techniques to manage and explore
large and complex datasets and virtual scenes on a remote display across the world-wide-web. The key
idea for this research is to pre-process the datasets and render key viewpoints on pre-selected paths
inside the dataset. We present new techniques to reconstruct approximations to any view along the
path, which allows the user to roam around inside the datasets with interactive frame rates. We have
implemented the pipeline for generating the sampled key viewpoints and reconstructing panoramic-
based IBR models. Our implementation includes an efficient two-phase caching and pre-fetching
scheme. The system has been successfully tested on several datasets and satisfying results have been
obtained. Analysis of errors is also presented.

Keywords:
Image-based Rendering, Virtual Walkthrough, Virtual Environment, Visibility, Caching

1. Introduction
Complex renderings of synthetic scenes or

virtual environment, due to their high-quality
image synthesis, can take minutes to hours to
render. Ray-tracing or global illumination using
a tool such as POVRAY [20] that can render
high-quality images however is very time
consuming. Nowadays, as the computing power
increases dramatically, the size and complexity
of the datasets generated can be overwhelming.
Building and rendering the geometry of these
large datasets are also time consuming. An
interactive virtual walkthrough of these large and
complex scenes is almost impossible on a low to
mid-end system using traditional rendering
techniques.

Our goal is to determine a solution for
allowing the user to examine and walkthrough
the scene from an internal vantage point on a
relatively high-resolution display. To achieve
this goal, we decided to apply Image-Based
Rendering (IBR) techniques as a post-processing
tool for any traditional renderer.

{yangl, crawfis}@cis.ohio-state.edu
395 Dreese Lab, 2015 Neil Ave., Columbus, OH
43210, USA

IBR is a new research area in both the
computer graphics and visualization community,
and offers advantages over the traditional
rendering techniques. It does not require building
or modeling complicated geometric models. It
can utilize real life images and illumination for
photo-realistic rendering. Finally, IBR requires a
fixed or limited amount of work, regardless of
the view or data context. However, this amount
of work is fixed to the desired output. As a
result, many IBR techniques [9] [10] [11] [12]
focus on accurate rendering of relatively low-
resolution imageries. Here we explore techniques
for large displays having a resolution from
1kx1k to 8Kx3K as in our new video wall.

Our work can be viewed as an extension to
QuickTime VR [3] or other panoramic
representations [19]. Panoramic imagery allows
one to spin around at their current viewing
position, but does not allow the user to move
forward or backward. We developed a system to
allow movement along a linear path in three-
dimensions. At any position on this curve, the
user can interact with the scene as in a panoramic
viewer. We termed this type of viewing, a rail-
track view, in that the user can move forward
and backward along the “track”, while viewing
the outside scenery in any direction. Darsa, et al
[6] investigated techniques to incorporate

Yang / Crawfis: Rail-Track Viewer− An Image-Based Virtual Walkthrough System

 The Eurographics Association 2002

information about the depth of the image into the
panoramic scene. Depth allows for proper re-
projection of the pixels from different viewpoints
and provides a sense of motion parallax to give a
true three-dimensional sense to the imagery. For
efficient rendering, we apply a mesh
simplification method to simplify the depth
image from every pixel to a more manageable
geometric quad-mesh. An intelligent caching and
pre-fetching scheme is employed to further
improve the rendering speed. We also present
and analyze the sources of the errors in our
system.

The paper is organized as follows: First we
discuss relevant background and previous work
in the IBR area. We then present an overview
followed by implementation details of our
system. Next we discuss the pre-processing and
data organization scheme for efficient rendering.
A two-phase caching and pre-fetching technique
is also presented in this section. We will then
discuss the sources and a quantitative
measurement of the errors. Finally we give some
test results and conclude with future work.

2. Related Work

Recently, a lot of effort has been put into
Image-Based Rendering systems. Image-based
rendering has the property of a bounded
computation according to the input and output
image size. This is advantageous over traditional
polygonal based rendering where complex
scenes or models can have individual polygons
smaller than a pixel and therefore constructing
and rendering these can be unbounded
complicated.

2.1 Plenoptic Function

 IBR systems are based on the Plenoptic
function. The 7D plenoptic [1] function is
defined as the intensity of light rays passing
through the camera center at every location
defined by zyx VVV ,, , at every possible viewing
angle θ and φ , for every wavelength λ and at
any time t.

),,,,,,(tVVVPlenoptic zyxλφθµ = (1)

Even with faster CPU’s and more memory, this
function overwhelms modern architecture,
making it impractical for interactive applications.
In order to make practical use of Image based
rendering concepts, this model has to be
simplified. McMillan [12] et al simplified the
model to a 5D plenoptic function (equation 2) by
fixing time and breaking up the wavelength as
RGB components.

),,(, Vt

�

φθµµλ = (2)

Note that V
�

is a vector representation of
zyx VVV ,, . McMillan’s image warping system

is based on this 5D plenoptic function. If the user
movement is restricted to lie outside of a box, the
model can be further simplified to a 4D function
such as Lumigraph [9] or Lightfield [10]. A 3D
representation of the plenoptic function is
constructed in Concentric Mosaics [18] as they
restrict the user’s movement to lie within a 2D
circle. QuickTime VR systems [3] [19] reduce
the function to a 2D one by letting the user stand
at a fixed point and look around. This research
focuses on allowing the user to move on a pre-
selected path and look around. Hence it is
modeling a 3D slice through the plenoptic
function.

Having a continuous plenoptic function, we
need to sample and discretize it. Equation 3 is a
discretized version of the 5D plenoptic function.

),,(, iiiti V
�

φθµµ λ= (3)

Obviously we can sample the viewing direction
and views. IBR systems can vary in terms of
how and when to choose view samples. Some
systems choose to sample the viewpoints outside
of the scene [4] [7] while others put their sample
viewpoints inside the scene, on a path [12] [16],
inside a circle [17], or at a fixed point [3].
Systems may choose the reference views a priori,
pre-rendering the sampled plenoptic function.
While other systems [16] choose view samples
on the fly and reconstruct images of new views
from these until the image quality degrades to
where new reference views are needed.

2.2 Depth Function

For opaque scenes, the depth function ξ is
of value for reconstructing the novel views (i.e.
views not located at the sample points). Equation
4 describes the distance to the closest object in
the scene. Sampling and discretizing this
function gives us iξ . Equation 3 and 5 provide a
framework for IBR representation of a scene.

),,(V
�

φθξξ = (4)

),,(iiii V
�

φθξξ = (5)
IBR systems can also differ in how they
represent this depth function (geometric
information). QuickTime VR [3] and spherical
panoramic systems [19] do not store any
geometric information. The images for new
view-points are reconstructed using implicit
geometric relationships. This is adequate for
scenes far away from the user at where the user
is only allowed to look around or zoom.

Yang / Crawfis: Rail-Track Viewer− An Image-Based Virtual Walkthrough System

 The Eurographics Association 2002

2.3 Occlusion and Dis-occlusion
3D warping systems [6] [11] [12] store

depth information per pixel. Users can move
away from the pre-selected viewpoints and the
depth and color information is used to construct
novel viewpoints. The occlusion and dis-
occlusion problems are not addressed by the 3D
warping system, because it only has one layer of
the depth information associated with each pixel.
As the user moves farther away, holes will
appear and information for more than one
reference viewpoint is needed to fill these holes.
Layered Depth Images (LDI) [17] [2] store
several layers of depth and color information for
each pixel. When rendering from an LDI, the
user can move farther away and expose surfaces
that were not visible in the first layer. The
previously occluded information can be rendered
using information from later layers. The model is
inefficient when we have complicated scenes or
when the output image has extremely high
resolutions. Other systems partition the object
space into several slabs along the viewing
direction [8] [13]. The data within a slab is
projected towards the image plane and then
texture mapped onto a quad oriented parallel
with the image plane and perturbed by the z-
values of its corresponding slab. When
reconstructed for a novel view, this can
approximate an image warp.

Most of the IBR systems concentrate on
accurate rendering of relative low-res imageries.
Systems based on 3D warping [2][11][12][17]
use per-pixel operation and do not utilize much
hardware acceleration. They are not suitable for
interactive walkthroughs on very high-
resolution displays. Lumigraph [9] and Light-
field Renderings [10] need very dense
samplings, which is both time consuming and
space inefficient. View dependent texture
mapping (VDTM) [7] is a typical example
utilizing texture hardware to accelerate
rendering. However, for one reference
viewpoint, the complete viewing direction is not
adequately sampled and therefore can not allow
head rotation during the fly-through. Cohen-Or
et al [5] also looked into ways to pre-compute
the geometry and textures on a path and stream
the results across the network. They use
projective texture mapping for close-by views.
Again, their work lacks the ability to allow the
user to change the viewing direction during the

walkthrough because of the incomplete
sampling. Their method focuses on how to
compress the resulting textures and efficiently
stream them down the network. The closest
implementation to ours is Darsa et al’s [6], in
which they used cubical environmental maps
with simplified triangular meshes. Three
blending methods were explored for smooth
walkthroughs between close-by viewpoints. Our
system differs from theirs in that we used
cylindrical models instead of cubical ones.
Cylindrical models have the advantages of
representing texture information homogeneously
without discontinuities at the edges like the
cubical maps. We have also adopted a multi-
layer approach comprised of several depth
meshes to better solve the occlusion and dis-
occlusion problems. We have also investigated
an intelligent two-phase caching and pre-fetching
scheme to improve the performance of our
system. Darsa’s system reports a frame rate of
3.53 FPS on an Infinite Reality Engine using
position weighted blending with a 256x256
window, while our system can achieve around 15
FPS using the same blending method with 1kx1k
resolution on a low-cost Sun Blade 1000
workstation with an Elite 3D graphics board.

Figure 1: two possible tracks into the Nature dataset
we rendered using Povray. The black arrowed curves
represent the tracks and red dots represent the pre-
selected viewpoints.

Yang / Crawfis: Rail-Track Viewer− An Image-Based Virtual Walkthrough System

 The Eurographics Association 2002

Figure 2. shows the system diagram. First datasets are pre-rendered and pre-processed using appropriate rendering
engines, for example, POVRAY, VTK, Radiance and so on and stored on a server-side database. The server keeps a
cache and retrieves from the database and stores into the cache according to the client demand then transmit the data
across the network to the client. The client keeps its own cache and can reconstruct the results using our layered-
panoramic IBR model.

3. Overview

The goal of this research is to interactively
manage complex, time-consuming renderings of
large datasets. We concentrated our efforts to
allow users to roam interactively inside a scene,
exploring interesting features with the ability to
look around at the same time. We achieve this by
restricting the users’ movement on a pre-selected
path and allow them to look around at any point
in both the vertical and horizontal directions.
Figure 1 depicts two possible tracks into the so-
called Nature dataset we rendered using Povray
[21]. The black arrowed curves represent the
tracks and red dots represent the pre-selected
viewpoints. The user is allowed to move back
and forth on this track and change his viewing
directions freely. Although some software
packages allow discrete jumps from one
viewpoint to another, this disturbing
teleportation removes the user’s focus from
smooth walkthrough to one of trying to figure
out where they are and regain their orientation or
bearing.

Figure 2 describes the idea of our IBR
system. First the datasets are pre-rendered and
pre-processed using appropriate rendering

engines, for example, POVRAY, VTK, Radiance
and so on and the resulting imageries and
geometry information are stored on a server-side
database. The server keeps a cache and retrieves
the reference views from the database and stores
them into the cache whenever the client requests.
The cached data is then transmitted across the
network to the client. The client receives the
information and stores it into its own cache.
Novel views can now be reconstructed using our
layered-panoramic IBR model, which will be
described later.

4. Visibility Polyhedrons

Moving from one viewpoint in a complex
scene to another with the freedom of looking
around is a challenging problem. Let’s assume
that we want to move from V1 to V2 in a
complex scene. Consider the following
definitions.

Definition 1: The visibility polyhedron of a
viewpoint is the locus of points visible from the
viewpoint.

Pre−renderer and
Pre−processor

POVRAY
VTK
RADIANCE
AVS ...

Server−side

Caching

Pre−fetching
Network Client−side

Caching

Pre−fetching

Reconstruction

Interpolation

Using Java 3D

Client Display

IBR Database

Yang / Crawfis: Rail-Track Viewer− An Image-Based Virtual Walkthrough System

 The Eurographics Association 2002

Definition 2: A polyhedron P is said to be
star-shaped if there exists a point z not external
to P such that for all points p of P the line
segment pz� lies entirely within P.

Definition 3: The locus of the points z’s

having the above property is called the kernel of
P.

Theorem 1: The visibility polyhedron of the
viewpoint is a star-shaped polyhedron and has a
kernel that at least contains the viewpoint.

These definitions are extensions from those on
polygons [14]. Let’s assume that V1 and V2 lie
inside each other’s kernels. The visibility
polyhedrons of the two viewpoints are therefore
identical. Any points V3 in between the line
segment connecting the two points are also
inside that kernel due to definition 2. Therefore,
the visibility polyhedron of V3 is the same as V1
or V2’s. We can use the combination of these
two to represent V3’s as described in equation 6.

21213 VVVVV PPPPP === t (6)

The assumption of two close-by viewpoints lying
inside each other’s kernels does not always hold.
We can approximate V3’s visibility polyhedron
from V1 and V2’s visibility polyhedrons. If V1
and V2 are close enough this approximation is
quite reasonable. The sampling rate can be either
user defined, chosen by the database designer or
at fixed intervals. It can also be controlled by the
maximum mean squared errors allowed for the
reconstructed scenes along the track, which will
be one of the future works.

We approximate the visibility polyhedron
for each viewpoint to make the system more
efficient, and texture-map it with the initial
rendering. We then use equation (6) to combine
the close-by reference views as the user walks
between them. In the Next section we will
address details of how we implemented our
system.

5. Implementation Details

In practice, we use a pre-renderer to
generate the imageries and the associated depth
information. The depth values are obtained either
from the z-buffer or the first intersection points
with the viewing rays. In either case, we connect
the depth values to form a polyhedron ZP, which
is a discretized representation of the visibility
polyhedron P. We need to simplify ZP since
rendering each pixel with its own depth value is
too time-consuming for high-resolution
imageries. Therefore, we reduce the geometric
complexity by down-sampling the depth buffer

into quad-meshes. We call this simplified mesh
QZP. The reason we chose to use a quad-mesh as
our simplified geometry is because of its
simplicity and resulting efficiency issues for our
caching and pre-fetching scheme. The vertices of
each tile of the quad-mesh have their actual
depth values. Color and opacity are represented
by texture maps. We assume a bilinear function
for reconstructing the depth values of the interior
points of the tiles, which is not always valid.
Therefore, this mesh simplification scheme
introduces errors, which will be talked about in
more details in a later section.

In order to allow for occluded information at
a view to be retained [17], we divide the viewing
frustum into several depth ranges, by setting the
near and far clipping planes. We call each range
a slab iQZP . A binary opacity mask is assigned
to enable per-pixel occlusion. By compositing
the slabs, we achieve the complete scene for one
viewpoint.

321)(QZPQZPQZPQZPZPPdiscretize ++=≈=

 (7)

This will allow the user to move away from the
pre-selected viewpoints while revealing the
previously occluded information using additional
slabs.

Figure 3 Shows depth meshes for one
viewpoint. Figure 3(a) is the mesh viewed from
the original viewpoint that provides a seamless
view. Figure 3(b) shows a side view of the mesh
for illustration purpose. Note the individual slab
meshes that comprise the visibility polyhedron
for this viewpoint.

We now have the simplified visibility
polyhedrons, constructed using the slab meshes
for both V1 and V2 with color as texture maps.
How do we smoothly move from one point to
another? To walk between two viewpoints we
simply combine the two slab-mesh sets. To make
the transition smooth, we interpolate the slab
image sets of two nearby reference views. The
correct way to do the interpolation is to use an
over operation on corresponding slabs of the two
views and then compute the result of slab1 over
the result of slab2 and so on. This can be
implemented using a special p-buffer, which is
normally not available for consumer-level
graphics board. Instead, we compute slab1 for V1
over slab1 for V2 and then compute this over
slab2 of V1 and so on. The interpolation requires
a weight w based on the difference (normalized
to be between 0 and 1) between the new view
and one of the reference views. The
corresponding reference image sets have their
opacities modulated by the corresponding weight

Yang / Crawfis: Rail-Track Viewer− An Image-Based Virtual Walkthrough System

 The Eurographics Association 2002

factor, and then projected in an interleaved
fashion in depth sort-order from the new
viewpoint. The equation for the resulting color
after slab1 image sets are weighted is:

22111 *)1(**)*1(** ααα wCwwCC −−+=
 (8)
Here C is the final computed color at the new
viewpoint, C1 and C2 are colors of slab images
from the two neighboring reference views, and

1α and 2α are alpha values from opacity maps
of the slab images. Results show that when using
linear interpolation the computed image looks
very close to a correct rendering when the new
viewpoint is close to a reference view. However,
when the new view is located at the middle
between reference views, the computed image is
darker and transparent looking. The reason for
this is due to the fact that when the new
viewpoint is near the middle of the two
references, C is less than the original C1 or C2
colors, and thus appears more transparent. For
example, assuming C1 equals C2 and both pixels
have α ’s of 1, and our weight w equals 0.5. We
have a resulting
 121 *75.05.0**5.0*5.0 CCCC =+= (9)
An alternative interpolation is to use a nonlinear
weighting scheme. We define a non-linear
blending equation as:

)*)),(1(
)*1(

2

2111

α
αα

bwpow
CwwCC

−
−+=

 (10)

Here b is a constant. Let’s assume the same
example as before with b equaling 2. We have a
resulting color of

121 *875.075.0**5.0*5.0 CCCC =+= (11)
By using this equation, the dark and transparent
problem is alleviated. In practice we choose a
value of 3 for b

6. Preprocessing

We could use the whole rendered image as a
texture map to map to the simplified depth mesh.
However, there are areas of the image that
contain no information. Storing and rendering
those is a waste of resource. Therefore, we break
the resulting image into tiles that are
corresponding to the depth mesh. The size of the
image tiles and the quad-mesh affects the image
loading time, storage, performance and the
errors. These will be addressed in a later section.
Those image tiles containing no information are

detected and labeled as empty tiles. Thus we
treat each image tile as a texture map for the
corresponding quad. The problem with rendering
each image tile as a texture map is that the
system has limits on texture binding units.
Texture-map thrashing results when too many
small image tiles are produced, and interactivity
is lost.

To alleviate this problem we group
individual image tiles into bigger texture units
for rendering. Consider a full image of size W by
H, we divide the image into equal sized small
tiles w x h so that each row has W / w tiles and
each column has H / h tiles. To remove empty
tiles and merge the remaining into a larger
texture map, we squeeze each column, removing
the empty tiles, and linking the resulting columns
of tiles into a one-dimensional tile array and use
this as the texture unit. A simple indexing
scheme is implemented to quickly calculate the
position of the columns needed for our caching
and pre-fetching engine.

The IBR rendering engine determines the
closest two reference viewpoints on the path. At
any given time, only the information of at most
two reference viewpoints are needed to
reconstruct novel views. Therefore, it is
reasonable to have only two reference views in
memory at a given time. When the users move to
a new path segment, requiring a new reference
view, they will encounter severe latency while
the needed data for reconstruction is read into
memory. Instead of loading just two sampled
views, the system loads several views into
memory and stores them into a cache. The pre-
fetching engine, which is implemented as a
separate thread, continually fetches texture maps
as the user moves along the track and stores them
into the cache. The cache is organized using a
Least Recently Used (LRU) rule. The maximum
number of views allowed in cache is determined
by memory size, disc latency and the view-
sampling rate. Our first experiment treats the
whole panorama as a caching unit. It alleviated,
but did not eliminated, the latency problem.
When the user moved quickly along the track,
noticeable latency still occurred since the disk
reading could not keep up with the demand.

Yang / Crawfis: Rail-Track Viewer− An Image-Based Virtual Walkthrough System

 The Eurographics Association 2002

Figure 3: Shows depth meshes for one viewpoint. (a) The mesh viewed from the original viewpoint. (b) The mesh
viewed from a viewpoint off of the track for illustration purpose. We can see the slab meshes which comprise the
visibility polyhedron for that viewpoint.

V 1

V
V

2

3

4V
V 5

V 6

Segment 1

Segment 2

V V V V V V

V V V V V V

1

1

2

2

3

3

4

4

5

5

6

6

6

(a)

(c)

(b)

Figure 4 (a) defines a path with V1 through V6. A track segment is defined between the two closest-by viewpoints. The
current novel viewpoint is on segment number 1 which is between V1 and V2. (b) The entire panorama for V1 and V2
are loaded into the cache, while only parts of the panoramas (tiles) are loaded in for V3, V4 and V5. And less
information is actually loaded for V5 over V3. (c) The user moves into segment 2, the novel view lies between V2 and
V3, we use another thread to load in the remaining information for V3 and pre-fetch partial information for V6 which
currently has no information in the cache.

Yang / Crawfis: Rail-Track Viewer− An Image-Based Virtual Walkthrough System

 The Eurographics Association 2002

Keeping the whole panorama in the memory
allows the user to look around in horizontal and
vertical directions interactively, but it requires
too much memory and disk I/O. By examining
the minimal information needed to reconstruct a
novel view, we can reduce these demands and
increase our pre-fetching length. We consider
two scenarios. The first case is when the user
heads straight down the track and keeps the view
plane normal constant all the time. In this case,
only the information within the user’s viewing
direction is needed. However, for fast movement,
more than the two closest reference views are
required. The second case is when the user only
looks around and never moves on the track. This
requires only the information of the whole
panoramic of the current two closest reference
views. Usually, the user can both move along the
track and stop to look around. This means that a
fair amount but not all of the panoramic is
needed for more than the two closest reference
views. Therefore, we have the choice of pre-
fetching more of the panoramic of current views
or more of the next views along the track. This is
determined by the user – whether moving along
the track fast or looking around interactively is
more important. A compromise was achieved
using an adaptive two-phase pre-fetching scheme
– one along the track and the other along the
viewing direction.

We adaptively reduce the information we
pre-fetch as the pre-fetched views are farther
away from the current viewpoint. Therefore for
the closest two sampled views we load in most
of the panorama. As we pre-fetch information of
the farther away view samples we pre-fetch less
and less of the information into the cache. This is
illustrated in Figure 4. Figure 4 (a) defines a path
with V1 through V6 reference views. A track
segment is defined between the two close-by
viewpoints. We have labeled these segments 1
through 5. The current novel viewpoint is on
segment number 1 which is between V1 and V2.
V3, V4 and V5 are farther and farther away from
the current view. Figure 4 (b) shows that the
whole panoramas for V1 and V2 are loaded into
the cache, while only parts of the panorama
(tiles) are loaded in for V3, V4 and V5. When we
move to segment number 2, the novel view lies
between V2 and V3, we use another thread to
fetch the remaining information for V3 and pre-
fetch partial information for V6 which currently
has no information in the cache. This is shown in
Figure 4 (c).

7. Error analysis

7.1 Depth-Mesh Errors

We consider two sources of errors. The first
source of errors comes from down-sampling the
depth-meshes. Reconstruction using standard
graphics cards utilizes a bi-linear function to
determine the depth values in the interior. This
assumption, of course, is not always valid.
Therefore, some errors are introduced when we
reconstruct the reference views and novel views.
We can certainly reduce this kind of error by
using a finer quad-mesh (smaller tile size).
However, this increases the rendering time,
image and geometry loading time and storage
requirements. Table 1 shows the Mean Squared
Error (MSE), the image and geometry loading
time, the rendering time (FPS) and the storage
requirement using varying tile sizes for the
POVRAY rendered Nature dataset. These are
also plotted graphically in Figure 5. From the
Figure we can see that the MSE decreases almost
linearly when we decrease the tile size. However,
the loading time increases quite dramatically
with smaller tile sizes. The rendering speed
decreases with decreased tile size. As tile size
increases, the storage first decreases, hits a low
value and then increases. The decrease at first is
due to the fact that we need to store more depth
values when we have more tiles with smaller
size. The later increase is because when the tiles
are too big, there are fewer empty tiles to
remove. This is also the reason why the
rendering speed levels off when the size
increases to a certain value – we have more
empty space to rasterize. After observations, we
found that 16x16 or 32x32 tile sizes are good
candidates for our application.

 Loading

Time(s)
FPS MSE Storage

(MB)
64x64 0.47 18 11.72 12.6
32x32 0.52 17 8.99 11.1
16x16 0.83 15 6.82 10.0
8x8 1.28 8 4.85 10.1
4x4 3.04 3 2.88 12.0
2x2 9.63 1 0 20.4
Table 1: shows the change of loading time, rendering
speed, Mean Squared Error and Storage of one typical
viewpoint with different tile size. This is for the
Nature dataset. MSE is based on the maximum
number of 256.

Yang / Crawfis: Rail-Track Viewer− An Image-Based Virtual Walkthrough System

 The Eurographics Association 2002

Loading Time, FPS, MSE, Storage vs.
Tile Size

0

5

10

15

20

25

2x2 4x4 8x8 16x16 32x32 64x64

Tile Size

Loading Time (s) FPS MSE Storage (MB)

Figure 5: Shows the Mean Square Error (MSE), the
loading time, Frame Per Second (FPS) and the storage
requirement with different tile sizes for a typical
sampled viewpoint of the POVRAY rendered Nature
dataset.

Visibility Errors

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5

t

M
SE

2 views 3 views 5 views

Figure 6: Mean Square Error of interpolated views
against actual rendered views. Interpolated views have
a tile size of 32x32

7.2 Visibility Errors

Another source of errors are the visibility
errors that come from reconstructing the novel
view by cross-dissolving the two close-by
sampled views. As described previously, if the
visibility polyhedrons of the two sampled views
coincide with each other perfectly, no visibility
errors will occur. Figure 6 shows the MSE of the
resulting images for interpolated views against
Povray rendered views at corresponding
positions along our path. Three different
sampling rates are examined and a tile size of
32x32 is used. We can see that the peak errors
occur somewhere close to the middle of the two

sampled viewpoints for all three cases. This is
expected because the visibility errors are most
serious in the middle of the two samples. The
curve which uses 2 sampled viewpoints has the
coarsest sampling rate and therefore has the
highest mean square error. The Peak is about 17
out of 256, which is approximately 6.7%. The
curve which uses 5 views has the finest sampling
rate and peaks out with an MSE of about 14 - 15.
The minimum MSE occurs at the sampled
viewpoints, which comes entirely from the
down-sampling errors. Figures 8 and 9 (see color
section) show the interpolated and actually
rendered images using the same viewpoint,
Figure 10 (see color section) shows the
difference image. Here we see the majority of the
errors occur on silluoettes where the depth values
change substantially.

8. Results and Discussions

Our rail-track viewer was implemented in
Java/Java3D. We ran our IBR framework on 2
datasets. The first one is a virtual scene rendered
using Povray [21]. The scene is fairly
complicated containing trees, bushes, rocks and
birds. It requires almost 30 minutes to render one
frame using Povray on our dual Pentium II
500MHZ, 512MB SGI visual workstation. One
path was chosen for this scene with 20 sampled
viewpoints along the track. Three panoramic
layers with a resolution of 1024x4096 per layer
were pre-computed for each view sample. The
total size for the image database after pre-
processing was 220MB. The geometry and
imagery was broken up into 32x32 quads. The
pre-rendering takes about 40 hours on the visual
workstation. Our second dataset is the LOX post
dataset which Visualization Toolkit (VTK) [22]
provides. This dataset simulates the flow of
liquid oxygen across a flat plate with a
cylindrical post perpendicular to the flow. It is a
complex scientific dataset which contains both
scalar and vector fields in the data. A rendering
was chosen with the post, a slice plane and
several stream-polygons. One path was pre-
selected going into the stream-polygons region
with 23 view samples. Four panoramic layers
with a resolution of 512x2048 per layer were
pre-computed for each view sample. The
reference image database was pre-rendered using
VTK and the total size for the image database is
138MB. The geometry and imagery was broken
up into 16x16 quads. This database required 9.2
hours to pre-render.

For the Povray dataset, our IBR viewer
achieves 10-15 frames per second with a 1kx1k
image resolution on the Sun Blade 1000

Yang / Crawfis: Rail-Track Viewer− An Image-Based Virtual Walkthrough System

 The Eurographics Association 2002

workstation with dual Ultra-Sparc III 750MHZ,
1 GB of memory and Elite 3D graphics card. For
the LOX dataset, we see 15-20 frames per
second with a 512x512 resolution on the same
platform. Figure 7 (see color section) shows one
rendered view for the nature dataset with the
quad-meshes represented by white squares and
color information as texture maps. Figures 8, 11
and 12 (see color section) show some resulting
images from our IBR system.

9. Conclusions and Future Work

This paper presents our framework for
allowing the user to examine and walkthrough
the scene from an internal vantage point on a
relatively high-resolution display interactively.
We achieved this goal by limiting the user
movement on a track and utilizing IBR
techniques. Intelligent data organization, caching
and pre-fetching make our system more efficient.
We prove by results that our system is suitable
for exploring complex virtual environments and
large datasets with reasonably small errors.

Triangular meshes would decrease the
down-sampling error [6]. We are looking at ways
of using triangular meshes to replace fixed size
quad-meshes. Even with the empty tile removal
scheme, our IBR database still tends to be very
large, especially with larger resolution and finer
sampling. Future work entails looking at
appropriate compression techniques to reduce the
data storage requirements.

10. Acknowledgements

We would like to thank the Department of
Energy ASCI Program for generous support for
this project. Additional support was provided
through an NSF Career Award (#9876022).
Equipment was provided by the ASCI project
and by NSF grants (#9818319) and (9986052).

References
[1] E. H. Adelson, J. R. Bergen, “The plenoptic
Function and the Elements of Early Vision,”
Computational Models of Visual Processing,
Chapter 1, Edited by Michael Landy and J.
Anthony Movshon, The MIT Press, Cambridge,
Massachusetts, 1991
[2] Chun-Fa Chang, Gary Bishop, Anselmo
Lastra, “LDI Tree: A Hierarchical
Representation for Image-Based Rendering,”
Proc. SIGGRAPH ’99, pp. 291-298, 1999
[3] S. E. Chen, “QuickTime VR – An Image-
Based Approach to Virtual Environment
Navigation,” Proc. SIGGRAPH ’95, pp. 29-38,
1995

[4] J-J Choi and Y. Shin, “Efficient Image-Based
Rendering of Volume Data,” Proc. Pacific
Graphics ’98, pp. 70-78, 1998
[5] D. Cohen-Or, Y. Mann and S. Fleishman,
“Deep Compression for Streaming Texture
Intensive Animations,” Proc SIGGRAPH ’99,
pp. 261-268
[6] L. Darsa, B. Costa, and A. Varshney,
“Navigating static environments using image-
space simplification and morphing,” 1997
Symposium on Interactive 3D Graphics, pp. 25-
34, 1997
[7] P. Debevee, Y. Yu and G. Borshukov,
“Efficient View-Dependent Image-Based
Rendering with Projective Texture Mapping,” In
9th Eurographics Rendering Workshop, Vienna,
Austria, June 1998
[8] X. Decoret, G. Schaufler, F. Sillion, J.
Dorsey, “Multilayered imposters for accelerated
rendering,” Proc. Eurographics ’99, pp. 145-
156, 1999
[9] S. Gortler, R. Grzeszczuk, R. Szeliski, and
M. Cohen, “The Lumigraph,” Proc SIGGRAPH
’96, pp. 43-54, 1996
[10] M. Levoy and P. Hanrahan, “Light Field
Rendering,” Proc. SIGGRAPH ’96, 1996.
[11] W. Mark, L. McMillan, and G. Bishop,
“Post-Rendering 3D Warping,” 1997 Symposium
on Interactive 3D Graphics, pp. 7-16, 1997
[12] L. McMillan and G. Bishop, “Plenoptic
Modeling: An Image-Based Rendering System,”
Proc. SIGGRAPH ’95, pp. 39-46, 1995
[13] K. Mueller, N. Shareef, J. Huang, and R.
Crawfis, “IBR-Assisted Volume Rendering,”
LBHT IEEE Visualization ’99, pp. 5-8, 1999
[14] F. P. Preparata, M. I. Shamos,
“Computational Geometry, An Introduction,”
Chapter 1, Springer-Verlag New York Inc, 1985
[15] B. Oh, M. Chen, J. Dorsey and F. Durand,
“Image Based Modeling and Photo Editing,”
Proc. SIGGRAPH ’01, pp 433 – 442, 2001
[16] H. Qu, M. Wan, J. Qin and A. Kaufman,
“Image Based Rendering With Stable Frame
Rates,” Proc. IEEE Vis 2000, pp 251-258, 2000
[17] J. Shade, S. Gortler, Li-Wei He, and R.
Szeliski, “Layered Depth Images,” Proc.
SIGGRAPH ’98, pp 231-242, 1998
[18] Heung-Yeung Shum, Li-Wei He,
“Rendering With Concentric Mosaics,” Proc.
SIGGRAPH ’99, pp. 299-306, 1999
[19] R. Szeliski and H. Y. Shum, “Creating Full
View Panoramic image Mosaics and Texture-
Mapped Models,” Proc. SIGGRAPH ’97, pp
251-258, 1997
[20] http://www.povray.org
[21] http://www.irtc.org/stills/1998-06-30.html
[22] http://www.kitware.com/vtk

http://www.povray.org/
http://www.irtc.org/stills/1998-06-30.html
http://www.kitware.com/vtk

Yang / Crawfis: Rail-Track Viewer− An Image-Based Virtual Walkthrough System

 The Eurographics Association 2002

Figure 7: shows one rendered view with quad-meshes represented by white squares and color information as texture
maps. This figure also shows our empty tile removal scheme. Any tiles with no useful information won’t be
reconstructed or rendered.

Figure 8: The interpolated image for one viewpoint which is in the middle of the two reference viewpoints
Figure 9: The actual rendered image for the viewpoint at the same position as in Figure 8
Figure 10: The difference image between Figure 8 and Figure 9

Figure 11: The interpolated image for one viewpoint which is outside of the stream-polygon region of the LOX dataset
Figure 12: The interpolated image for one viewpoint which is inside of the stream-polygon region of the LOX dataset

