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ABSTRACT

Visualization of flow fields with geometric primitives is often chal-
lenging due to occlusion that is inevitably introduced by 3D stream-
lines. In this paper, we present a novel view-dependent algorithm
that can minimize occlusion and reveal important flow features for
three dimensional flow fields. To analyze regions of higher impor-
tance, we utilize Shannon’s entropy as a measure of vector com-
plexity. An entropy field in the form of a three dimensional vol-
ume is extracted from the input vector field. To utilize this view-
independent complexity measure for view-dependent calculations,
we introduce the notion of a maximal entropy projection (MEP)
framebuffer, which stores maximal entropy values as well as the
corresponding depth values for a given viewpoint. With this in-
formation, we develop a view-dependent streamline selection al-
gorithm that can evaluate and choose streamlines that will cause
minimum occlusion to regions of higher importance. Based on a
similar concept, we also propose a viewpoint selection algorithm
that works hand-in-hand with our streamline selection algorithm to
maximize the visibility of high complexity regions in the flow field.

Index Terms: I.3.3 [Computing Methodologies]: Computer
Graphics—Picture/Image Generation

1 INTRODUCTION

When visualizing 3D datasets, having a clear visibility of important
features is crucial but occlusion often gets in the way. For 3D flow
data, displaying a large number of long and winding particle traces
can easily block the view to more important regions, and hence
hinder understanding of the data.

To reduce occlusion and highlight salient flow features, existing
work can be roughly categorized as view-independent and view-
dependent. For view-independent methods [3, 22, 23], the goal
is to highlight salient flow features by placing denser streamlines
around more important regions. However, since the features are
detected in object space, they may still be occluded when viewed
from certain viewpoints. To remedy this problem, view-dependent
methods [11, 12] control the density of streamlines placed on the
screen to minimize occlusion. These methods, however, do not al-
ways consider the locations of features due to the lack of a feature
identification stage.

Occlusion of flow features can be caused not only by an ex-
cessive amount of streamlines, but also by an improper choice of
viewpoint. If from a given viewpoint the features are mostly self-
occluded, there is very little that the streamline placement algorithm
can do to alleviate the occlusion problem. While a number of al-
gorithms have been proposed to find good viewpoints for triangle
meshes [19], isosurfaces [17] and volumes [1, 7, 21], very little
work has been done to address issues related to the visualization of
three-dimensional flow fields.

To effectively visualize salient features in a static flow field, in
this paper we propose an algorithm that considers both viewpoint
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selection and view-dependent streamline placement. To identify
salient flow regions, the proposed algorithm computes the entropy
of the flow data based on the information-theoretic framework de-
scribed in Xu et al. [22]. The idea behind the framework is that,
vectors near regions that contain salient flow features typically dis-
tribute more randomly and hence contain higher entropy. Conse-
quently, the complexity of each region in a flow field can be com-
puted as a scalar field called the entropy field. From a given im-
age plane, to identify regions with maximal entropy we use the
conventional maximal intensity projection (MIP) method to render
the entropy field into an image called Maximal Entropy Projection
(MEP). We also store the depth value associated with the maximum
entropy value for each pixel. We refer to the buffer that stores these
two entities as the MEP-framebuffer. Once regions relative to the
given viewpoint that have higher entropy are located, streamlines
are placed accordingly to minimize the occlusion to these regions.
We also utilize the view-dependent projection of entropy values to
search for an optimal viewpoint.

This paper has two distinct contributions. First, we introduce a
novel streamline selection algorithm that ensures good visibility for
salient flow features from a given viewpoint. Second, we present an
algorithm that can find the optimal viewpoint for three-dimensional
vector fields. To the best of our knowledge, our paper is the first
that considers viewpoint selection and streamline placement simul-
taneously.

This paper is organized as follows. After related work is re-
viewed in Section 2, the relationship between flow features and
flow complexity and the MEP framebuffer is presented in Section
3. Sections 4 and 5 present our view-dependent streamline place-
ment and viewpoint selection algorithms. Comparison between our
algorithms and related approaches is presented in Section 6, and the
implementation and performance of the tests is provided in Section
7. This paper is concluded with future work in Section 8.

2 RELATED WORK

The number of papers on flow visualization is very high as it has
been and continues to be an area of active research. For a good
overview we refer the reader to state of the art reports by Hauser et
al., [6], Laramee et al. [10], and McLoughlin et al. [13]. Among
this research, many approaches have been developed for streamline
placement in two dimensional [8, 14, 18, 20] and three dimensional
vector fields [3, 5, 11, 12, 22, 23]. Since our goal here is to visualize
3D vector fields, we will focus on those techniques for 3D domain.

Chen et al. [3] propose a method that employs a similarity metric
for placing streamlines, which can be used for both two- and three-
dimensional visualization. Ye et al. [23] extract critical points from
a vector field and generate view-independent streamlines by apply-
ing specific seeding patterns that depend on types of critical points.
Marchesin et al. [12] rank streamlines for a particular view accord-
ing to their curvatures and occlusion that an individual streamline
adds. To evaluate streamline curvature, they introduce a notion of
streamline angular entropy similar to streamline entropy of [5]. Li
and Shen [11] discuss image-based streamline placement. Instead
of placing streamlines in three-dimensional space they first analyze
projections of streamlines to a user-specified 2D surface and then
unproject those streamlines that do not cause clutter and occlusion
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Figure 1: Entropy and complexity in flow fields. (a): A vector field
with homogeneous flow and the polar histogram of the vector orien-
tations. (b): A more complex flow field with its polar histogram. The
entropies are measured from histograms of 16 bins, and thus the
range is [0, log2(16)]. The entropies for (a) and (b) are 0.38 and 3.73,
respectively.

in 3D. Recently Spencer et al. proposed an image-based method to
place streamlines evenly on 3D surfaces [16].

In recent years, information theory has been applied to various
problems in computer graphics and visualization, where different
information-theoretic approaches are proposed [2, 22]. Our work
is based on the framework in [22], which extracts regions of high
complexity from a vector field and places more streamlines there in
a view independent manner, while the algorithms in this paper are
view-dependent.

Viewpoint selection algorithms for volume rendering and geo-
metric meshes have been studied extensively. Bordoloi and Shen
[1] utilize information theory to evaluate views for volume render-
ing. Takahashi et al. [17] decompose volumetric data into feature
subvolumes and then use the views that are optimal for these sub-
volumes to find the best global view, where the isosurfaces are used
as the feature descriptor. Viola et al. [21] search for optimal view-
points for volume data based on mutual information between a view
and volume dataset features. Kohlmann et al. [9] demonstrated a
system that synchronizes selecting features in 2D slices with the
best corresponding view of a three-dimensional medical volumet-
ric dataset. For polygon meshes, Vázquez et al. [19] measure the
distribution of the projected mesh polygons to evaluate the com-
plexity of the views. For three-dimensional vector fields, no study
has addressed the question about finding the optimal viewpoint yet.

3 FLOW FIELD COMPLEXITY

The key component of the algorithms in this paper is the notion of
flow data complexity. It is directly related to identifying the loca-
tions of regions that have more complex flow patterns. Recently, Xu
et al. [22] proposed a framework using information theory for quan-
titative measurements of data complexity in vector fields. Their
work also includes a view-independent streamline placement algo-
rithm as the result of information analysis. In this paper we apply a
similar measure but focus on view-dependent streamline placement
and viewpoint selection. In the following subsections, we first give
a general overview of information theory for vector data, and then
present the concept of using MEP framebuffers for view-dependent
computation.

3.1 Information theory

In information theory, complexity of a distribution is measured by
its entropy. Given the probability distribution function P(X = xi),
i = 1 . . .n, for a discrete random variable X , Shannon’s entropy, de-
noted as H(X), for this distribution, can be computed as in Equation
1:

H(X) = − ∑
i=1...n

p(xi)log2 p(xi) (1)

Shannon’s entropy has two important properties. First, the range
of the entropy is [0, log2(n)]. As a result, by dividing H(X) by
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Figure 2: Illustration of the MEP-framebuffer. A MEP-framebuffer
consists of two buffers Hmax and Zmax that, for a given viewpoint, store
the maximal entropies for all pixels and the corresponding depths of
the voxels with maximal entropy.

log2(n), we can get a normalized entropy in the range of [0,1]. Sec-
ond, and more important, Shannon’s entropy is maximal when all
outcomes have equal probabilities and is minimal when only one
outcome has a non-zero probability.

We can apply the concept of entropy to measure the complexity
of vector data: if in a vector field the vectors are all pointing to a
similar direction, as shown in Figure 1 (a), the complexity of this
field is considered low. On the other hand, if the vector directions
spread across many different directions, as shown in Figure 1 (b),
the flow field is more complex. Based on this concept, we can mea-
sure the complexity of vector data in a local region: for each point
in a vector field, the distribution in its neighborhood can be approx-
imated by a histogram of vector orientations in the area. Entropy
of this distribution is assigned as the flow complexity at this point.
When we compute the entropy score for every data point, we obtain
a scalar field called entropy field. In [22], Xu et al. have empirically
demonstrated that entropy in the regions near certain flow features,
including critical points and separation lines, is higher than that
of other regions. This implies that the entropy field can indicate
saliency in the corresponding flow field. Consequently, to effec-
tively visualize salient regions in a flow field, streamlines should
be placed and viewpoints should be selected in such a way that the
visibility of regions with higher entropy is maximized.

3.2 Maximal Entropy Projection Framebuffer

The entropy field described above represents flow complexity in
object space. However, to evaluate viewpoints and minimize oc-
clusion caused by an excessive amount of streamlines, a view-
dependent measure of the flow complexity is needed. Such a mea-
sure, however, could be nontrivial to calculate, since each pixel in
the screen can have contributions from multiple voxels in the en-
tropy volume. Since our goal is to visualize complex flow inside a
vector field, we define view-dependent flow complexity as the max-
imal flow complexity visible from a given viewpoint. More specif-
ically, when visualizing a flow field, a user should be able to see
the most complex regions of the flow after the 3D to 2D projection
takes place.

Based on this idea, we measure view-dependent flow complex-
ity using a conventional maximal intensity projection (MIP) devel-
oped for volume rendering. For each pixel (x,y) on the screen, a
ray is cast into the entropy volume and the voxel with the maxi-
mal entropy is searched along the ray. The entropy value of the
voxel is stored in the corresponding pixel Hmax(x,y) in the Maxi-
mal Entropy Projection (MEP) entropy buffer, and its correspond-
ing depth Zmax(x,y) is stored in the MEP z-buffer. We refer to these
two buffers as the MEP-framebuffer. Figure 2 illustrates the MEP-
framebuffer, which displays the two buffers as grayscale images.

We utilize the MEP-framebuffer for view-dependent streamline
placement and viewpoint selection, described in the following sec-
tions.
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Figure 3: View-dependent streamline evaluation for Tornado. (a):
The initial set of streamlines where the blue and red ones have neg-
ative and positive scores, respectively. (b): The streamlines with pos-
itive scores. (c): The streamlines with negative scores.

4 VIEW-DEPENDENT STREAMLINE PLACEMENT

Before we select suitable streamlines for any given view, a pool of
candidate streamlines is first computed from a set of seeds. The
criterion to generate such a pool is to have enough streamlines that
will sufficiently cover the domain, hence different streamlines from
the pool will be used for different view points. In this work, we use
the seeding algorithm proposed by Xu et al. [22] to generate a pool
of streamlines since the algorithm there provides a stopping crite-
ria based on the information content of the selected streamlines.
We note that it is possible to use other seeding methods as long as
the resulting streamlines can properly cover the entire vector field.
After the streamline pool has been created, for a given view our
view-dependent streamline placement algorithm is invoked. The
placement algorithm consists of two steps. In the first step, each
streamline in the pool is evaluated based on whether it occludes the
regions that have higher entropy scores. Then, we scan through
the streamline pool to select streamlines that cause minimum oc-
clusion. In the following subsections, we explain our algorithm in
detail.

4.1 Streamline Evaluation

To evaluate the streamlines for a given view, a scalar value ωs for
each streamline s is computed to decide the priority of a streamline.
A streamline has a higher priority if it reveals more complex flow
features and a lower priority if it causes occlusion.

To compute ωs, a score ω f for each fragment f in the image
plane along the streamline s is calculated. The sum of all fragments
for the streamline defines the overall score as:

ωs = ∑
f∈s

ω f (2)

For a fragment with object coordinates (xo,yo,zo) and window
coordinates (xw,yw,zw), the entropy of the region in object space
occupied by the fragment is denoted as H(xo,yo,zo). The score ω f

is computed in such a way that its value is higher when the depth
of this fragment zw is closer to the depth in the MEP framebuffer
Zmax(xw,yw). This is because in this case the fragment is closer to
the most complex region along the view ray. The value of ω f , on
the other hand, should be lower if zw is smaller than Zmax(xw,yw),
since this fragment can cause occlusion to the more complex region.

More specifically, if zw is smaller than Zmax(xw,yw), the value of
ω f is computed as ω f ront in Equation 5.

△H = Hmax(xw,yw)−H(xo,yo,zo) (3)

△Z = zw −Zmax(xw,yw) (4)

ω f = ω f ront = −Hmax(xw,yw)(1− e−|△H||△Z|) (5)

where Hmax(xw,yw) is the maximum entropy along the current view
ray, and △H and △Z, respectively, are the difference of entropy
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Figure 4: Placing streamlines using entropy density. (a): Original
set of streamlines. (b): The MEP framebuffer. (c): The expected
streamline density for each screen tile, which is equal to the average
entropy in the corresponding tile in the MEP framebuffer. (d): Stream-
line density after streamline placement. (e): The placed streamlines.
Red streamlines have nonnegative scores, while blue have negative
scores.

and depth from the this fragment to the values in the correspond-
ing pixel in the MEP framebuffer. Since this fragment can cause
occlusion, its weight is negative so it can reduce the score of this
streamline, while the amount of reduction in the score depends on
the difference of depth and the entropy. If the depth or entropy of
this fragment are near to those in the MEP framebuffer, it is near
the salient flow feature that is visible from this pixel and thus the
reduction should be small. We design this equation such that the
reduction is zero when △H or △Z is zero, close to Hmax(xw,yw)
when |△H| and |△Z| is very large.

For the fragments that are behind the maximum entropy point,
i.e., the depth of the fragment zw is larger than or equal to
Zmax(xw,yw), since they do not cause occlusion, the score ωback

is computed as in Equation 6.

ω f = ωback = H(xo,yo,zo)e
−|△H||△Z| (6)

where △H are △Z are defined in Equations 3 and 4, respectively.
While ωback is always positive, it becomes smaller as the fragment
moves farther away from the point of maximal entropy, or as the
difference between the entropy values becomes larger. Meanwhile,
similar to ω f ront , ωback considers the entropy of the fragment and
receives a lower score if the entropy is low.

The proposed streamline score has two properties. First, this
score can be either positive or negative. Second, and most impor-
tantly, the score indicates whether this streamline helps reveal the
flow near the salient flow features or cause occlusion. For stream-
lines with higher scores, it means that these streamlines can either
show more information near the flow feature or cause less occlu-
sion than those with lower scores. For instance, Figure 3 shows
the streamlines evaluation for the dataset Tornado, in which it can
be seen that the streamlines with positive scores are around the eye
of the tornado or at the bottom of the flow since they do not cause
occlusion to the tornado eye, while the streamlines with negative
scores can cause occlusion to the tornado eye.
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Figure 5: Streamline placement using different line widths. Line width
changes from 1 in (a) to 4 in (d). Number of generated streamlines
is 181, 85, 59 and 52, respectively. Meanwhile, streamline selection
with even density. (e): 87 streamlines with width w = 6. (f) 59 stream-
lines with width w = 10. The resolution of all images is 192×384 pixels
and 16×16 tiles were used.

4.2 Entropy-dependent Streamline Selection

The scores we compute for the streamlines provide a ranked order
over the entire set of possible streamlines. For this, one simple way
to select the streamlines is to discard streamlines that have scores
lower than a threshold, as shown in Figure 3 where the threshold
was set to zero. However, specifying a threshold might not be trivial
and the value of the threshold can influence the results dramatically,
which can be seen in the accompanying videos. Here we present a
fully automatic entropy-based streamline selection algorithm. The
algorithm not only minimizes occlusion, but also reveals areas of
high complexity in the field.

We design our streamline selection algorithm such that the den-
sity of streamlines in a given region on the screen is proportional
to the complexity of the flow projected to this area. In other words,
areas with more complex flow patterns in image space should dis-
play more streamlines. To realize this idea, for a given screen area,
we can estimate the streamline density by dividing the number of
pixels occupied by the streamlines by the total area of the region
in pixels. We can also compute for each region on the screen an
expected streamline density, which is defined as the average nor-
malized entropy of the region in the MEP framebuffer. A region
is called overflowed if the streamline density exceeds the expected
streamline density, or underflowed otherwise.

To decide whether a new streamline should be selected, the local
neighborhood around the pixels along the streamline is checked. If
the underflowed region in the neighborhood in terms of the num-
ber of pixels is larger than the overflowed region, the streamline is
selected, otherwise it is skipped.

To implement the idea discussed above, we use a simplified al-
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Figure 6: Streamline placement using reverted order. Streamlines
with lowest scores are placed first and thus important regions are
occluded. Line widths are 1 in (a) to 4 in (d).

gorithm that involves less cost, as illustrated in Figure 4. First of all,
screen space is divided into tiles, as shown in Figure 4 (b), and the
expected streamline density for each tile is computed as the aver-
age entropy of the MEP framebuffer, shown in Figure 4 (c). Given
a streamline, screen tiles are checked to see whether the streamline
density is going to change if the streamline is placed. Among these
tiles, if there exist more underflowed tiles than overflowed tiles, the
streamline is allowed to be placed, and streamline densities for all
occupied tiles are updated. Figure 4 (e) shows the final result of
our algorithm for the streamlines used in Figure 4 (a) with 8× 8
tiles, and Figure 4 (d) shows corresponding streamline density for
all tiles. It can be seen that in Figure 4 (e) few of the selected
streamlines have negative scores. The reason is that as all nonneg-
ative streamlines have been examined but the required density has
not been achieved, streamlines with negative scores are allowed to
be placed until the density is reached.

It is worth mentioning that this streamline selection algorithm
may generate different results if the streamlines are processed in
different order. Streamlines that are checked earlier will have
a higher probability to be selected. Therefore, to place stream-
lines that can highlight more complex regions with less occlusion,
streamlines with higher scores should be checked first. Otherwise,
streamlines that are selected earlier can preclude streamlines even
with higher importance from being selected. Examples of such
cases are shown in the following subsection.

4.3 Discussion

When using the above streamline selection algorithm, several pa-
rameters can alter results. This subsection discusses the effect of the
parameters with various examples. These examples use the dataset
Plume from the same viewpoint. The images have 384× 192 pix-
els, and are divided into 32× 32 tiles unless explicitly mentioned.
Streamlines are colored according to the sign of their score. The
negative, zero, and positive scores are respectively mapped to blue,
green, and red.

Streamline width When updating the streamline density for
the image tiles, the amount of density contributed by the new
streamline can be modulated. In our algorithm the user can specify
the width of the streamline to be drawn. When width w is larger
than one, a streamline can contribute w times more pixels to the oc-
cupied region. To prevent more streamlines from being placed, the
expected streamline density for all regions should be divided by w
if so desired. Figures 5 (a) - (d) present the streamlines with dif-
ferent line widths. This example shows how streamline density is
changed on the screen.

Even versus uneven streamline density By changing the
expected streamline density of each tile to a constant value in-



Figure 7: Streamline evaluation from a poor viewpoint for Plume. (a):
The MEP framebuffer. (b): Streamlines with positive scores. Since
regions of high-complexity are self-occluded, the flow in the complex
regions cannot be effectively represented even after removing low-
scoring streamlines.

stead of the average entropy in the MEP framebuffer, our stream-
line placement selection can distribute streamlines more evenly on
the screen without any changes. In Figures 5 (e) and (f), we show
streamlines selected by our algorithm, with even streamline density
and width w equal to 6 and 10, respectively. By comparing Fig-
ure 5 (e) against Figure 5 (b), we can see that fewer streamlines
are placed near the turbulent eddies when using constant streamline
density in Figure 5 (e) even though the numbers of streamlines in
both figures are close. Similarly, Figure 5 (f) has fewer streamlines
near the eddies than Figure 5 (c) in spite that both figures have the
same number of streamlines.

Streamline order As mentioned in the Section 4.2, the order
in which streamlines are placed can significantly influence the re-
sult. To demonstrate this, in Figure 6 we show an example when the
algorithm processes streamlines with the lowest scores first. From
the color of the placed streamline, it can be seen that most of the
selected streamlines have negative scores, causing occlusion to the
region of more complex flow and thus generating poorer visualiza-
tion of the flow field.

5 FINDING OPTIMAL VIEWPOINTS

While the view-dependent streamline selection algorithm presented
in the previous section can increase the visibility of the more im-
portant regions, they can still be unseen if a poor viewpoint is used.
Figure 7, for instance, shows the streamlines with top 20% scores
for Plume from a poor viewpoint, which reveals very little about the
actual flow. To remedy the problem, selecting an optimal viewpoint
to visualize the streamlines is crucial.

The meaning of optimality when referring to viewpoints for a
vector field dataset requires some clarification. When the user tries
to find the best viewpoint, intuitively s/he would like to see as many
interesting features of the flow, preferably with minimum clutter
and occlusion. The algorithm that we propose is based on the ob-
servation that the larger the area of complex regions projected to
the screen, the better those features are visible to the viewer.

From this idea, the optimality of a viewpoint can be evaluated
based on the complexity of the projected flow on the screen. This
can be analyzed using the previously described MEP-framebuffer.
In the MEP-framebuffer, each pixel records the maximal entropy
encountered by a viewing ray. The sum of the entropy values in the
MEP-framebuffer can provide an upper bound of the complexity,
and the mean entropy can provide an average complexity visible
from each pixel. As a result, we can quantantively measure the
quality for a viewpoint based on the statistics computed from the
MEP-framebuffer. Since our goal is to maximize the flow com-
plexity visible to the viewer after projection, we choose the sum of
the entropy values as the score.

To search for the optimal viewpoint, we first form the domain

of the viewpoints, which is assumed to be a sphere centered at the
center of the flow field. This sphere is then tessellated into uniform
triangles, where each viewpoint is placed at the center of a trian-
gle. In our experiments, 780 viewpoints across the viewing sphere
were used. Once the entropy sum in the MEP-framebuffer for each
viewpoint has been computed, the viewpoint with the highest score
is then selected as the optimal viewpoint.

It should be noted that there can exist multiple good viewpoints
for a given flow field. The leftmost column in Figure 8, for instance,
display the scores of the viewpoints for the dataset Tornado, where
the color from blue to red represents the score from low to high.
We can see that more than one viewpoint receive high scores. In
the three examples we present, the center of the sphere in each of
the images is used as the viewpoint to generate the corresponding
images in the following columns. From the image, it can be seen
that the scores of the viewpoints are smoothly changed, which is
consistent with our expectation in terms of spatial coherence.

Visualizations from better and worse viewpoints for the dataset
Tornado [4] are compared in Figure 8. As mentioned earlier, bet-
ter viewpoints reveal more information about the flow, which im-
plies that the image should display better depth cues to highlight
the shapes of the streamlines. From the images in the top two rows
of Figure 8, it can be seen that there exist two types of bad view-
points for this dataset. One type of viewpoints display the data from
the side, as shown in Figure 8 (a). In Figure 8 (a-1), a blue stripe
surrounds the tornado, where the corresponding viewpoints do not
allow the viewer to see the streamlines that have high curvature.
The other type of bad viewpoint is the one that views the stream-
lines from the top, as shown in Figure 8 (b-2). Although from this
viewpoint one can visualize the streamlines with high curvature,
the depth cue is lost. By comparing with Figure 8 (a-3) and (c-3),
the MEP-framebuffer in (b-3) shows that the region of high entropy
is self-occluded. The bottom row of the figure represents a good
viewpoint for this dataset. Compared to the bad viewpoints, Figure
8 (c-2) shows the viewpoint with the highest score, which can dis-
play not only the streamlines with high curvatures but also display
the 3D nature of the dataset quite well.

The rightmost column in Figure 8 shows the streamlines selected
by our streamline selection algorithm for the corresponding view-
points. While visual clutter and occlusion are reduced compared
to using all streamlines as shown in the second column, because of
the use of non-optimal viewpoints the results in Figure 8 (a-4) and
(b-4) are not as good as in Figure 8 (c-4).

6 COMPARISON

This section compares our algorithms with related techniques. The
streamline evaluation measurement described in Section 4.1 is com-
pared with the metric used by Marchesin et al. in their view-
dependent streamline placement algorithm [12]. Given a set of
streamlines, their metric assigns scores to all streamlines based
on their shape complexity and the degree of cluttering. Their al-
gorithm then places the streamlines in an order according to the
scores. Based on the linear entropy proposed by Furuya and Itoh
[5], which measures the complexity of a streamline according to
the lengths of its line segments, the measurement of shape com-
plexity proposed by Marchesin et al. also considers angle entropy
derived from the angles of consecutive line segments. Besides, they
count the number of streamlines overlapped with the streamline in
question, and compute the average number of overlapped stream-
lines per occupied pixel. Their final metric uses the sum of linear
entropy and angle entropy to measure the shape complexity, and di-
vides the sum by the number of overlapped streamlines to penalize
the streamlines in cluttered regions.

Figure 9 shows the streamlines with highest scores from the mea-
surements proposed by Marchesin et al., and our metric for the
dataset Plume. Figure 9 (a-1) shows the streamlines with positive



(a-1) (a-2) (a-3) (a-4)

(b-1) (b-2) (b-3) (b-4)

(c-1) (c-2) (c-3) (c-4)

Figure 8: Viewpoint selection for Tornado. The figures from left to right, respectively, represent scores for the corresponding viewpoints, the
vector field, the obtained MEP framebuffer, and the result from our view-dependent streamline placement algorithm. In the leftmost column, the
center of the sphere’s projection encodes the score for the corresponding viewpoint. Scores are mapped from blue (low) to red (high). Figures
in the top two rows show two poor viewpoints. The top row shows one of the low scoring views. The tornado is viewed from one of the sides and
thus the circular pattern of the flow field is not revealed. The middle row represents another low scoring view. The tornado is viewed from the
top and thus the depth cue of the flow is not revealed. Bottom row: one of the good viewpoints.

scores by using our metric, which contains 251 streamlines. Figure
9 (b-1) shows the top 251 streamlines according to their shape com-
plexity measure without being divided by the overlapping stream-
line count. It can be seen that the eddies inside the flow, features
that are considered more important, are occluded. Figure 9 (c-1)
shows the top 251 streamlines according to Marchesin et al.’s fi-
nal metric. We can see that no streamlines near the eddies are se-
lected. To explain this, our hypothesis is that their metric penalizes
the streamlines in regions of high density, while the initial stream-
lines here were created by the algorithm proposed by Xu et al. [22]
that places denser streamlines near more salient flow features. To
verify our hypothesis, we tested the three metrics using another set
of streamlines, which are randomly placed in space. By compar-
ing Figures 9 (c-1) and (c-2), it can be seen that more streamlines
near the eddies are selected by the metric proposed by Marchesin
et al., but the selected streamlines can still cause occlusion, while
our evaluation prefers streamlines not only near the flow features
but also cause less occlusion, as shown in Figures 9 (a-1) and (a-2).

Our streamline selection algorithm is also compared with the

information-theoretic framework proposed by Xu et al. [22] since
both methods try to control the placement of streamlines according
to flow complexity, except that their method is view-independent
and streamlines are placed according to object-space criteria. Due
to object-based nature of their method, it may cause occlusion of
regions of high complexity. For testing, we used streamlines gener-
ated by their algorithm as the input streamlines for our method. We
compare visualization with n streamlines selected by our algorithm
and visualization with the first n streamlines generated by their al-
gorithm. Comparison of approaches is presented in Figure 10. We
see that occlusion in Figure 10 (b) exists and hence it hinders a
clear view of the more turbulent region. We also note that stream-
lines generated by their method do not provide a complete coverage
of the flow in the dataset. With the same number of streamlines in
both methods, our method does not display streamlines that cause
occlusion. Therefore, we can produce a better coverage of the flow
field for the given streamline count.



(a-1) (b-1) (c-1)

(a-2) (b-2) (c-2)

Figure 9: Comparison of our streamline evaluation scheme with the
metrics proposed by Marchesin et al. [12] for Plume. The first row
shows the results using the testing set of streamlines for other fig-
ures, while the bottom row uses another set of 1991 streamlines that
are randomly placed. (a-1) and (a-2): The streamlines with positive
scores from our streamline evaluation. 312 and 229 streamlines are
rendered, respectively. The metrics used in (b) and (c) are the sum of
linear entropy and angle entropy and the sum divided by the overlap,
respectively. The screen resolution is 192×384.

Table 1: Test datasets and performance (milliseconds) under differ-
ent screen sizes

Dataset Tornado Plume

Size 100×100×100 126×126×512

# Seeds 417 1991

Screen MEP EVAL SEL MEP EVAL SEL

Size CPU/GPU CPU/GPU

5122 14 1234/6 821 32 5490/8 3362

7682 33 1696/11 1721 49 6751/12 6286

10242 58 2099/18 3324 76 8041/18 10662

7 PERFORMANCE

In this section we discuss the performance of our algorithm. We
tested our implementation on a machine with Intel Core 2 Duo 6700

(a)

(b)

Figure 10: Comparison between our method (a) and the algorithm by
Xu et al. [22] (b). In both cases 131 streamlines are used. Image (a)
has size of 512× 256 pixels and uses 64× 64 tiles. Streamline width
is width = 4.

CPU with 2.66GHz, 3GB of RAM, and nVidia GeForce 460GTX
GPU. Table 1 lists the timing of our streamline placement algorithm
for test datasets with different screen resolutions, where the num-
bers represent average computation time measured from different
viewpoints.

The columns MEP in Table 1 show the time needed to construct
the MEP framebuffer in milliseconds, which is achieved with a
GLSL-based ray-caster on the GPU. We can see that the evalua-
tion can be done interactively even for a large resolution such as
1024× 1024. Consequently, our viewpoint selection algorithm is
also fast since it essentially constructs MEP framebuffers from dif-
ferent viewpoints. For viewpoint selection, we set the resolution
of the MEP framebuffer to 512× 512 pixels, and it only took 24
seconds in total to evaluate 780 viewpoints for Plume.

The columns EVAL in Table 1 show the timings of stream-
line evaluation, using both CPU-based and GPU-based imple-
mentations. To utilize GPUs for streamline evaluation, we use
nVidia CUDA. A straightforward implementation is to evaluate one
streamline by a single CUDA thread, but the workload of the CUDA
threads can be unbalanced as the streamlines can have different
lengths. To address this, our implementation uses one CUDA thread
to evaluate the score for one single streamline segment. Once the
scores of the segments of all streamlines have been computed, we
use the scan primitives proposed in [15] implemented in CUDPP,
a CUDA-based utility library for GPGPU, to efficiently obtain the
scores for all streamlines from their line segments in parallel. By
comparing the timings of CPU and GPU implementations, we see
that performance is accelerated by at least 100 times using GPUs.

Compared to streamline evaluation, accelerating streamline se-
lection using GPUs is more complicated. The major reason is that
the selection result depends on the order in which streamlines are
examined, which will in turn influence the streamline densities of
the image tiles in the intermediate steps. Consequently, the stream-



lines cannot be examined in parallel. The columns SEL in Table
1 show the timings of streamline selection. It is the major perfor-
mance bottleneck of our algorithm and therefore further study is
necessary to improve performance.

Regarding memory requirement, our algorithm has small mem-
ory footprint. For streamline placement, an array is needed to store
the scores for all streamlines, and another array is required to store
the scores for all viewpoints for the purpose of viewpoint selection,
in addition to a 2D array for the MEP framebuffer. In our tests,
the MEP framebuffer consumed most of the memory since its res-
olution was at least 512x512 while less than 10000 streamlines and
780 viewpoints were tested. The required memory space, never-
theless, for a 1024×1024 MEP frambuffer in single precision was
only 4MB, which is not an issue for moderate personal computers.

8 CONCLUSION AND FUTURE WORK

In this paper we present algorithms that minimize occlusion for
geometry-based vector field visualization using an information-
theoretic approach. Our algorithms measure the local complexity
within a vector field using entropy and store the entropy as a three-
dimensional volume. It is then used to evaluate a Maximal Entropy
Projection (MEP) framebuffer which utilizes the entropy in a view-
dependent manner. The MEP framebuffer stores the maximal en-
tropy values and corresponding z-values for a given view, allowing
our algorithms to select streamlines or viewpoints based on the oc-
clusion and visibility of salient flow features. We demonstrate the
benefits of our algorithms with a number of test cases and compare
our results with related approaches.

For future work, we plan to perform a user study to get feed-
back from domain scientists about the usefulness and quality of
our approach. We also plan to extend the idea of view-dependent
flow complexity to generate view-independent streamlines. Since
our algorithm is view-dependent, the coherence between different
viewpoints for streamline placement needs to be considered, other-
wise potential popping artifacts can occur when changing the view-
point. We will consider to adapt our viewpoint selection algorithm
to work with other flow rendering methods. For instance, while
we currently render streamlines as opaque polylines, using trans-
parency might be helpful to reveal the overlapped flow features, re-
quiring the revision of our MEP-framebuffer-based metric. Finally,
we would like to extend our algorithm to handle time-varying vec-
tor fields.
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