
Abstract
Volume rendering at interactive frame rates remains a chal-

lenge, especially with today’s increasingly large datasets. We pro-
pose a framework, using concepts from Image-Based Rendering
(IBR), that decreases the required framerate for the volume ren-
derer significantly. All the volume renderer needs to supply is a set
of renderings at ‘key’ view points, and the IBR renderer will inter-
polate the intermittent frames at good accuracy. The IBR provides
methods to handle both opaque and transparent datasets, and is an
inexpensive process that can be run on the user’s desktop machine.

1 Introduction 1

Direct volume renderers can be grouped into raycasting
approaches [6], cell-projection methods [17], Fourier space meth-
ods [9], Shear-warp [4], Splatting [16], and implementations using
3D texture-mapping hardware [1]. Indirect volume renderers
extract the isosurfaces first and use these to build a polygonal mesh
[8]. They then display this mesh employing z-buffer algorithms.
Parallel renderer have also been implemented (see for example
[12]), but may require relatively expensive hardware. Any of these
systems are able to produce volume renderings at interactive rates -
as long as the magnitude of the visualization task is kept within the
system’s feasible limits: For example, Shear-warp [4] and imple-
mentations using 3D texture mapping hardware [1] can produce
interactive renderings even for fairly large datasets of 5123 voxels,
while the Utah parallel raycaster [12] can interactively render the
CT version of the Visible Man [13] dataset.

But the researcher’s and scientist’s desire for bigger, better, and
more detailed datasets is bound to drive even the most sophisti-
cated system to its limits. Let’s assume we have a volume render-
ing system that achieves near-interactive rendering when presented
with datasets of 100 MB, but now we would like to render a dataset
in the GB range. For example, we would like to visualize a high-
resolution MRI dataset of size 1k3 or larger, or the visible woman’s
RGB dataset of size 40GB, or a terascale dataset. In this case, the
system would become overloaded and new images would only be
generated every, say, three seconds. Thus, no longer is the viewing
system responsive to the user’s input, and this makes precise navi-
gation within the dataset difficult. While in immersive displays a
delayed system response causes motion sickness, in screen-based
systems, non-interactive screen updates disconnect the user from
the data and breaks his or her attention to the viewing task. Interac-
tive viewing can be restored by reducing the complexity of the ren-
dering task, which in turn may lower the quality of the delivered
images considerably. Progressive refinement can be used to return
to a high-quality rendering once the user stops. Adaptive refine-
ment techniques focus on important areas first and render others if
there is time. Other systems simply display a bounding box of the
dataset while the user is transforming the object. Common to all
these approaches is, that since the volume renderer is always busy
rendering lower-quality images at interactive rates, the user will
never see a high quality image until he or she stops the transforma-
tion and the system has time to catch up. This is clearly undesir-
able. Rather, we would like to have a more graceful mechanism
that at least presents a high-quality image every second or so, and

otherwise displays a reasonable approximation at the proper orien-
tation. We are currently pursuing research in this direction, using
concepts from image-based rendering (IBR) to generate the near-
accurate intermediate frames. Our novel framework hides any kind
of latencies, be it those due to system overload, other rendering
latencies, and network latencies that may occur when the renderer,
possibly a parallel system, is located in a central location and
delivers the rendering result over the network to a user’s worksta-
tion.

Our IBR renderer is an inexpensive process that operates on
the user’s desktop PC and only requires a low-cost 2D texture map-
ping board. It can use output from most volume renderers and will
generate the intermediate frames from these ‘key’ renderings.

The next section, Section 2, discusses relevant previous work
done in the field of IBR. Then, in Section 3, we will describe our
system. Section 4 will show some results, and Section 5 will draw
some conclusions and give an outlook onto future work.

2 Previous work in IBR
Image-based rendering (IBR) enables interactive visualization

of a scene without having to pay the time-consuming costs of
directly rendering the scene for every frame. Instead, renderings of
the scene at arbitrary viewpoints are computed from nearby pre-
rendered images, or even photographs, that are positioned at
defined viewpoints. These images are then used as representations
of the scene instead of the model data itself. Using IBR, high-qual-
ity walk-throughs and fly-throughs of complex environments can
be performed in real-time on PC’s and low-end workstations.

IBR capitalizes on frame-to-frame coherence: As the viewer
moves through the scene, it is assumed that only few changes occur
from one viewpoint to the next [2]. Typical IBR systems consist of
three steps: acquisition of pre-computed or sample images, resam-
pling of these images, and image reconstruction. A well-known
example for IBR is the Apple QuickTime VR system [2], which
reconstructs new views from pre-computed panoramic images for
fly-throughs of an environment.

In IBR, we are interested in reconstructing the plenoptic func-
tion [10] of an object from its samples. The plenoptic function is a
5D function and describes the flow of light at all locations in space
in all directions. If we assume that the viewed object is opaque, and
if we limit our interest to light leaving the object’s convex hull,
then we can reduce the plenoptic function to 4D [3][7]. For exam-
ple, the Lumigraph [3] stores samples of an object’s 4D plenoptic
function, and images from any arbitrary viewpoint can be com-
puted via interpolation of this sample space. The 4D samples are
obtained from a set of precomputed or acquired images taken
around the object. Lightfield Rendering [7] uses similar ideas.
When the Lumigraph is created, the acquired images are not only
used to establish the discretized 4D plenoptic function, but also to
reconstruct an approximation of the underlying object on a 3D
cubic grid. Then, each time an image is calculated from the Lumi-
graph, this voxelized object is projected into a z-buffer, and the
projection is used to pick and weight the most appropriate samples
from the Lumigraph for interpolation of the new image. While the
Lumigraph uses static, pre-computed imagery, Shade [14] com-
putes images on the fly and expires them when they no longer sat-
isfy an error criterion. He utilizes projective image representations
of scene objects in the form of sprites to quickly display successive

1. email: {mueller, shareef, huangj, crawfis] @cis.ohio-state.edu

IBR-Assisted Volume Rendering

Klaus Mueller, Naeem Shareef, Jian Huang, and Roger Crawfis

Department of Computer and Information Science, The Ohio State University, Columbus, OH 43212

views. In a later paper, Shade [15] employs sprites that have depth
values, called Layered Depth Images (LDIs). An image for a new
view is then reconstructed from multiple LDI’s in a back-to-front
visibility order, which solves the occlusion problem.

While IBR has been successfully applied in a variety of ways
for surface graphics, there have been no efforts so far to exploit
IBR concepts for volume graphics. Part of the reason may be that
using IBR for scientific volume visualization is more difficult,
since here we often have highly transparent data, for which we can-
not reduce the plenoptic function to 4D. We have obtained prelimi-
nary results for an approach that reconstructs the full 5D plenoptic
function, using a reasonable approximation. On the other hand, if
the volumetric data are opaque, then our approach yields a good
reconstruction of the 4D function.

3 The new approach: IBR-assisted volume rendering
We shall now explore how we can exploit the concepts of IBR

in the special scenario of volume visualization. Consider Fig. 1a:
The dotted arrows show the path of a set of rays, integrating the
volume for a certain viewpoint Va. The solid arrows show the ray
paths for a slightly different viewpoint Vb. A very simple IBR
implementation would use the integrals computed for Va, and re-
use them for Vb by mapping the image of Va onto a billboard and
viewing this billboard from Vb (as shown in Fig. 1b). However, we
observe in Fig. 4a that the 3D illusion vanishes rapidly, even for
small differences of Va and Vb: The viewer recognizes quickly that
he or she is looking at a 2D billboard of a 3D object, and not at a
true 3D object. This comes at no surprise (see again Fig. 1a): The
linear paths of the integrals for Vb (the ones we should be using)
differ significantly from the linear paths of the integrals for Va (the
ones we are using).

A better approximation can be obtained by breaking the vol-
ume into several image-aligned slabs, rendering these slabs sepa-
rately, and compositing the slab images for other viewpoints. A
complete ray integral is then constructed by combining the appro-
priate partial integrals stored in consecutive slab images (see Fig.
2a). Interpolation is used to obtain partial integrals at non-grid
positions in the slab images. The integration error is now reduced
to the error due to the angular deviation within a slab. This method
of retaining and utilizing partial volume integrals for the recon-
struction of images at arbitrary views represents a novel way to
reconstruct the 5D plenoptic function from its samples in the IBR
framework. Although this reconstruction is only approximate as it
compounds samples along a ray into a slab ray, we can control the
error by varying the thickness of the slabs.

The IBR compositor places the slab images in the center plane

of their respective slabs and uses them to render other viewpoints
(see Fig. 2b). This is conveniently achieved by placing a polygon
into each slab centerplane and mapping the respective slab image
as a texture onto it. These texture-mapped polygons are then
rotated, translated, zoomed, and projected, according to the current
viewing parameters. This is accomplished using a scene graph and
commodity graphics boards. Fig. 4b confirms that this works well
for a transparent and X-rayed volumes, in which all rays traverse
the volume entirely. However, for opaque objects, we expect the
IBR approximation of the volume rendering process to be more
quickly revealed. Consider Fig. 4c: Although the process holds up
very well for angles up to 6˚, the pre-integrated object slices seem
to be pulled apart as the object is rotated further. Holes appear
when viewing rays hit regions in the slab images that were only
covered by invisible voxels in the interior of the object (see Fig. 3).

To address this issue, we devise a scheme that enhances our
(slab image) billboards with depth information. We achieve this by
subdividing a slab image into a grid of small tiles, say of size
16×16 pixels. Then, when rendering a slab image, we record, for
every tile, the z-value of the frontmost (z-near) and backmost (z-
far) splat that was projected onto it. This is implemented using a
simple counter-set and results in a coarse-scale z-buffer. From this
we can generate a C0-continuous quadmesh for each slab image
and map the tile images onto it. The (x, y)-vertex coordinate of a
mesh quadrilateral corresponding to a tile is given by the (x, y)
coordinate of the respective tile vertex, while the z-coordinate is

Fig. 1. (a) Paths of ray integrals for two different integration
directions of a volumetric object, Va (dotted) and Vb (solid).
(b) A billboard is constructed by mapping the image obtained
from rendering the volume from direction Va onto a polygon.
This billboard is then viewed from different directions. The
observer quickly realizes that he/she is watching a billboard
painted with a 2D image of a 3D object, and not a true 3D
object.

Va
Vb

object

(a) (b)

billboard

due to Va

Vb

Fig. 2. (a) The volume is decomposed into slabs, and each slab
is rendered into an image from view direction Va. The ray
integrals for view direction Vb can now be approximated with
higher accuracy by combining the appropriate partial ray
integrals from view Va (stored in the slab image). Interpolation
is used to obtain partial integrals at non-grid positions. (b) The
three billboard images can be composited for any view, such
as Vb shown here.

Va
Vb

object

(a) (b)

billboard 3

billboard 2

billboard 1

slab 3

slab 2

slab 1

Vb

Fig. 3. (a) Rendering of an opaque object into slabs from view
direction Va. (b) The slab images only contain the iso-surface of
the object. The ray r4 penetrates billboard image 2 and hits the
black background. A hole appears in the composited image.

slab 1

slab 3

slab 2

slab 1

ray hits hole

(a) (b)
Va

Vb

billboard 4

billboard 3

billboard 2

billboard 1

r2r1 r4 r5r3

given by the average of the z-values of the four tiles that have that
vertex in common. This yields a polygonal object in which the
quadmeshes represent a close spatial approximation of the underly-
ing object surface, while the tile textures provide the object detail.
Fig. 4d shows the mesh-augmented IBR rendering of the head
dataset at a rotation angle of 7˚. We observe that the gap has almost
disappeared: A small gap remains since the polygonal slab meshes
are still disjoint at the boundaries. The zippering of adjacent
meshes is the goal of future work. Fig. 5 shows the corresponding
poly mesh, rotated out for illustrative purposes. The texture
mapped quadmeshes can be transformed to any new viewpoint and
then composited. Note that if the quadmesh is viewed from the
direction at which the slab images were obtained, then the rendered
image is correct, at least for orthographic projection, This is
because the quadmesh retains the (x, y) coordinates of the tiles, and
a projection of a tile that was warped in z only will yield the same
image as the projection of a flat one.

4 Results
We applied our algorithm to three volume datasets: Thehead

dataset is an MRI volume obtained from UNC, Chapel Hill and has
256×256×163 voxels. Thetomato dataset is an MRI volume
obtained from Lawrence Berkeley Lab [5] and has 256×256×64
voxels. The tomato has been segmented into five structures: core,
endocarp, locule, placenta, and seeds. Thenervedataset is volu-
metric sample of a ganglion nerve, acquired with a confocal micro-
scope. It has 512×512×76 voxels. We have used our image-aligned
sheet-buffered splatting algorithm [11] to render the slab images,
but any other renderer could have been used as well. Occlusion
culling was used inside the individual slabs, but was not used in-
between slabs. All slab images were rendered at a resolution of

512×512 pixels.
Fig. 6 shows a collection of images rendered with the IBR

algorithm at progressively increasing angular discrepancies from
the orientation at which the slab images were calculated from the
slab renderers. We show discrepancies of 8˚, 16˚, and 24˚ for each
dataset. We observe that artifacts start to appear around 16˚. Gener-
ally, transparent datasets, such as the tomato, and dispersed
datasets, such as the nerve, allow larger angular deviations than
opaque, more regular objects, such as the head. Thus the IBR ren-
dering allows the viewing angles to be varied within a cone with
angle 16˚. Thus, the user can tilt the object back and forth within a
range of 32˚. The IBR framerate was close to 30/s for all cases.

The images can be viewed in color in the pdf-file on theVis’99
CD-ROM and also (along with quicktime movies) on our website
www.cis.ohio-state.edu/~mueller/research/IBR.

5 Conclusions and future work
We have presented a back-end IBR module that can be used

with almost any volume renderer, including polygonal. Without
IBR assistance the volume renderer would have to produce a new
image every 1/30s for interactive viewing, which is quite ambi-
tious, even for smaller datasets. The IBR takes this load off from
the renderer, and allows interactive viewing with little artifacts
until the volume renderer has produced a set of high-quality slab
images for the next key viewpoint.

The volume renderer that feeds the IBR can be located at a
remote site, sending its images via ATM, or it can reside as a sepa-
rate process directly on the user’s local workstation. The only con-
dition on the volume renderer is that it produces a set of partial
images due to image-aligned slabs. Future research may relax this
condition. The IBR is an inexpensive process and uses a low-cost
commodity texture mapping hardware to perform the compositing

We are currently investigating schemes that deal with the
update of the IBR slab image sets as the user roams out of the
applicable range of one slab image set into another. Here we would
like to know: Do we simply switch to the more appropriate set, or
do we cross-dissolve between two or more slab image sets that
were computed at viewpoints close by. The issue of cross-dissolv-
ing brings up another issue: Do we cross-dissolve between two or
more completed IBRs or do we cross-dissolve two or more slab
images and compute the IBR from those. Also, we need to develop
methods that predict where the user is headed to. Ideally, the ren-
derer should supply a slab image set before the user actually
reaches the position at which the set was rendered. That way, the
full rotational range of the set can be utilized for the IBR.

Fig. 5. The polymesh for
the head dataset for the
view in Fig. 4d, rotated for
illustrative purposes.

Fig. 4. A single billboard, mapped with an image of a semitransparently volume rendered tomato, and rotated by 20˚. (b) The LBL tomato
data set was partitioned into 6 slabs, and each slab was rendered separately. The resulting images were mapped onto billboards, rotated by
20˚, and composited. While the rotated object in (a) reveals that it is merely a 2D polygon with a tomato image painted onto it, the
composited object in (b) retains its 3D appearance. (c) The head dataset, composited at 7˚ with 6 planar slab images. We observe the
appearing gap between the two front-most images. (d) The same dataset and rotation angle, but now the images were mapped onto a
polymesh. The gaps have disappeared.

(a) (b) (c) (d)

Finally, what makes our system different from the Lumigraph
and Lightfield Rendering is that we perform a lazy sampling of the
plenoptic function. This lazy evaluation enables us to change the
volume’s transfer function or the isorange on the fly, and the IBR
can also interpolate between slab image sets obtained with differ-
ent transfer functions.

References

[1] B. Cabral, N. Cam, J. Foran, “Accelerated volume rendering and
tomographic reconstruction using texture mapping hardware,”1994
Symp. on Vol. Vis., pp. 91-98, 1994.

[2] S.E. Chen, “QuickTime VR - An Image-Based Approach to Virtual
Environment Navigation,”Proc. SIGGRAPH ‘95, pp. 29-38, 1995.

[3] S. Gortler, R. Grzeszczuk, R. Szeliski, and M. Cohen, “The Lumi-
graph,”Proc. SIGGRAPH ‘96, pp. 43-54, 1996.

[4] P. Lacroute, M. Levoy, “Fast volume rendering using a shear-warp fac-
torization of the viewing transformation,”Proc. SIGGRAPH ‘94, pp.
451-458, 1994.

[5] Lawrence Berkely Lab, “Whole Frog Project”, from http://www-
itg.lbl.gov/, 1994.

[6] M. Levoy, “Efficient ray tracing of volume data,”ACM Trans. Graph.,
vol. 9, no. 3, pp. 245 - 261, 1990.

[7] M. Levoy, P. Hanrahan. “Light Field Rendering,”Proc. SIGGRAPH

96, pp. 31-42, 1996.
[8] W. Lorensen, H. Cline. “Marching Cubes: A High Resolution 3D Sur-

face Construction Algorithm,”Proc. SIGGRAPH ’87, pp. 163-169,
1987.

[9] T. Malzbender, “Fourier volume rendering,”ACM Trans. Graph.vol.
12, no. 3, pp. 233-250, 1993.

[10] L. McMillan and G. Bishop, “Plenoptic Modeling: An Image- Based
Rendering System,”Proc. SIGGRAPH ‘95, pp. 39-46, 1995.

[11] K. Mueller, N. Shareef. J. Huang, R. Crawfis, “High-quality splatting
on rectilinear grids with efficient culling of occluded voxels,”IEEE
Trans. Vis. and Comp. Graph., (to appear), June, 1999.

[12] S. Parker, P. Shirley, Y. Livnat, C. Hansen, P. Sloan, “Interactive ray
tracing for isosurface rendering,”Proc. Vis. ‘98, pp. 233-238, 1998.

[13] http://www.nlm.nih.gov/research/visible/visible_human.html
[14] J. Shade, D. Lischinski, D. Salesin, T. DeRose, J. Snyder, “Hierarchi-

cal image caching for accelerated walkthroughs of complex
environments,”Proc. SIGGRAPH ‘96, pp. 75-82, 1996.

[15] J. Shade, S. Gortler, Li-Wei He, R. Szeliski, “Layered depth images,”
Proc. SIGGRAPH ‘98, pp. 231-242, 1998.

[16] L. Westover, “Footprint evaluation for volume rendering,” Proc. SIG-
GRAPH’90, pp. 367-376, 1990.

[17] J. Wilhelms, A. Van Gelder, “A coherent projection approach for
direct volume rendering,”Proc. SIGGRAPH ‘91,pp. 275-284, 1991.

0˚ 8˚ 16˚ 24˚

Fig. 6. IBR renderings of head, tomato and nerve datasets.

angle of rotation

