
ABSTRACT
Splatting is widely applied in many areas, including volume,

point-based, and image-based rendering. Improvements to
splatting, such as eliminating popping and color bleeding,
occlusion-based acceleration, post-rendering classification and
shading, have all been recently accomplished. These improvements
share a common need for efficient framebuffer accesses. We
present an optimized software splatting package, using a newly
designed primitive, called FastSplat, to scan-convert footprints.
Our approach does not use texture mapping hardware, but
supports the whole pipeline in memory. In such an integrated
pipeline, we are then able to study the optimization strategies and
address image quality issues. While this research is meant for a
study of the inherent trade-off of splatting, our renderer, purley in
software, achieves 3 to 5 times speedups over a top-end texture
hardware (for opaque data sets) implementation. We further
propose a way of efficient occlusion culling using a summed area
table of opacity. 3D solid texturing and bump mapping capabilities
are demonstrated to show the flexibility of such an integrated
rendering pipeline. A detailed numerical error analysis, in
addition to the performance and storage issues, is also presented.
Our approach requires low storage and uses simple operations.
Thus, it is easily implementable in hardware.

1. INTRODUCTION

The splatting approach, introduced by Westover [19] and
improved by the research community over the years [11][12][13],
represents a volume as an array of reconstruction voxel kernels,
which are classified to have colors and opacities based on the
transfer functions applied. Each of these kernels leaves a footprint
or splat on the screen, and the composite of all splats yields the
final image. In recent years, a renewed interest in point-based
methods [16][17] has brought even more attention to splatting.
This interest has evolved in computer graphics and visualization
areas besides volume rendering [12]. Such examples include
image-based rendering [18], texture mapping [2] and object model-
ing [6]. In image-based rendering, Shade et.al. [18] represent their

FastSplats: Optimized Splatting on Rectilinear Grids

Jian Huang+, Klaus Mueller*, Naeem Shareef+ and Roger Crawfis+

+Department of Computer and Information Science, The Ohio State University, Columbus, OH
*Computer Science Department, SUNY-Stony Brook, Stony Brook, NY

layered-depth image (LDI) as an array of points that are subse-
quently projected to the screen. Here, the use of anti-aliased or
“fuzzy” points provides good blending on the image-plane. The
LDIs are very similar to volumes. Chen [2] in his forward-texture
mapping approach also uses non-spherical splats to distribute the
energy of the source pixels onto the destination image. An earlier
approach, taken by Levoy [6], represents solid objects by a hull of
fuzzy point primitives, that are augmented with normal vectors.
Rendering of these objects is performed by projecting these points
to the screen, whereby special care is taken to avoid holes and
other artifacts.

The current splatting algorithm [12][13] has a number of nice
properties in addition to greatly improved image qualities. It uses a
sparse data model, and only requires the projection of the relevant
voxels, i.e., the voxels that fall within a certain density range-of-
interest. Other voxels can be culled from the pipeline at the begin-
ning. This results in a sparse volume representation [21]. As a con-
sequence, we can store large volumes in a space equivalent to that
occupied by much smaller volumes that are being raycast or tex-
ture-mapped. Furthermore, most other point-based approaches and
some image-based rendering approaches all use such a sparse data
model. But despite such interests and advantages in using splatting,
no specific hardware has yet been proposed for splatting. The only
acceleration that splatting could exploit is surface texture mapping
hardware. The community, however, has already seen hardware
accelerations of other volume rendering algorithms. The Volume-
Pro board is a recent product from Mitsubishi [15]. It uses a deeply
pipelined raycasting approach and can render a 2563 volume at 30
frames/sec in orthogonal projection. Volumes larger than what is
allowed require reloading across the system bus, reducing the
frame rate significantly. Such deficiencies are also true for
approaches that use 3D texture mapping hardware [1], which usu-
ally has even more limited on-board storage space (64MB). The
hardware features parallel interpolation planes and composites the
interpolated slices in depth order.

Using texture mapping hardware to render each splat was pro-
posed by Crawfis and Max [3] to alleviate the main CPU from the
computational complexity incurred in to resample the footprint
tables and composite at each pixel of each splat into the frame-
buffer. While this approach is now commonly used, the surface
texture mapping hardware introduces performance bottlenecks in
most current graphics architectures. First, because footprint raster-
ization is purely 2-dimensional, steps in the surface texture map-
ping are unnecessary in splatting. Second, recent improvements in
splatting are now increasingly dependent on direct access to the
framebuffers. Mueller et.al [12] achieved a considerable speed up
in splatting by incorporating opacity-based culling, akin to the
occlusion maps introduced in [22]. Even with the cost of many
expensive framebuffer reads and writes, the speed up is still signif-
icant for opaque renderings. More recent work by Mueller et. al
[13] uses per-pixel post-rasterization classification and shading to
produce sharper images. Both the per-pixel classification and the

{huangj, shareef, crawfis}@cis.ohio-state.edu, 2015 Neil Ave.,
395 Dreese Lab, Columbus, OH, 43210, USA

{mueller}@cs.sunysb.edu, Stony Brook, NY 11794-4400, USA

occlusion test require that the framebuffer be read after each slice
is rasterized, and per-pixel classification requires another frame-
buffer write for each slice. For a 2563 volume, this amounts to
approximately 1000 framebuffer reads and writes in their imple-
mentation. Texture mapping hardware can not be efficiently uti-
lized when using the improvements to splatting. This performance
degradation of splatting using texture hardware is also reported in
other point-based approaches [18]. Flexible sample and pixel
accesses are now highly desired. Due to the inefficiencies in frame-
buffer access using current graphics architectures in the context of
splatting, we explores a fast software alternative to splat rasteriza-
tion. The goal of this paper is to implement this in software exam-
ining different strategies and optimizations for an optimized
splatting pipeline.

This paper presents a simpler and more efficient graphics
primitive, called FastSplat, combined with efficient and flexible
sample point operations. The FastSplat consists of several raster-
ization methods and a couple of associated necessary lookup-
tables. The lookup-tables are compact enough to fit in local caches.
The FastSplat could be easily implemented in a custom chip or as
part of a more general hardware architecture. As point-based
approaches become more and more popular, the FastSplat may
prove beneficial in a wide spectrum of scenarios. Integrating splat-
ting-based point rendering seems a plausible component of a future
unified rendering architecture. While we focus on three-dimen-
sional reconstruction kernels for splatting, the 2D footprints can
also be used for faster image zooming [7], blurring or warping.

The outline of this paper is as follows: in Section 2, we briefly
introduce image-aligned sheet-buffered splatting. Section 3 exam-
ines several design choices for our FastSplat primitive. Section 4
describes the pixel operations that our software splatter supports.
This is followed by an analysis of numerical errors and storage
needs in Section 5 A timings analysis is presented in Section 6.
Finally, we conclude in Section 7 with discussions of future work.

2. IMAGE-ALIGNED SHEET-BASED
SPLATTING

2.1 The General Approach
Volume rendering involves the reconstruction and volume

integration [5] of a 3D raster along sight rays. In practice, volume
rendering algorithms are able to only approximate this projection
[8]. Splatting [19][20] is an object-order approach that performs
both volume reconstruction and integration by projecting and com-
positing weighted reconstruction kernels at each voxel in a depth
sorted order. A reconstruction kernel is centered at each voxel and
its contribution is accumulated onto the image with a 2D projection
called a splat. This projection (or line integration) contains the
integration of the kernel along a ray from infinity to the viewing
plane. The splat is typically precomputed and resampled into what
is called a footprint table. This table is then re-sampled into the
framebuffer for each splat. For orthogonal projections and radially
symmetric interpolation kernels, a single footprint can be pre-com-
puted and used for all views. This is not the case with perspective
projections or non-uniform volumes, which require that the splat
size change and that the shape of the distorted reconstruction ker-
nel be non-spherical. Mueller [11] addresses the issue of aliasing
due to perspective projections with an adaptive footprint size
defined by the z-depth.

Westover’s [19] first approach to splatting suffered from
color bleeding and popping artifacts because of the incorrect vol-
ume integration computation. To alleviate this, he accumulated the
voxels onto axis-aligned sheets [20], which were composited
together to compute the final image. But it introduces a more sub-
stantial popping artifact when the orientation of the sheets change
as the viewpoint moves. Mueller et.al. [12] overcomes this draw-
back, with a scheme that aligns the sheets to be parallel to the
image plane. To further improve the integration accuracy, the spac-
ing between sheets is set to a subvoxel resolution. The 3D recon-
struction kernel is sliced into subsections and the contribution of
each section is integrated and accumulated onto the sheet. While
this significantly improves image quality over previous methods, it
requires much more compositing and several footprint sections per
voxel to be scan-converted. However, by using a front-to-back tra-
versal, this method allows for the culling of occluded voxels by
checking whether the pixels that a voxel projects to have reached
full opacity [12]. An occlusion map, which is an image containing
the accumulated opacities is updated as the renderer steps sheet-
by-sheet in the front-to-back traversal. This is akin to early ray ter-
mination and occlusion maps [22].

The image-aligned sheet based splatting algorithm performs
the following steps. For each viewpoint:

1.Transform each voxel ,
to image space , where all
variables are real;

2. Bucket Sort the voxels according to the transformed z-values,
where each bucket covers the distance between successive
sheet buffers;

3. Initialize the occlusion map to zero opacity;
4. For each sheet in front-to-back order do

For each footprint do
If (the pixels within the extent of the footprint have not

reached full opacity) then
Rasterize and Composite the footprint at sheet loca-

tion ;
End;
Update occlusion map;

 End;
The above pseudo code can be illustrated by Fig. 1. All voxel

sections that fall into the same slice are accumulated together into a
sheet buffer. The sheets are then composited in a front-to-back
order.

To address the blurriness of splatting renderings in close up
views, Mueller et. al [13] move the classification and shading oper-

centerx centery centerz radius, , ,()
projx projy projz proj, radius, ,()

projx projy projradius, ,()

image p
lan

e

slicing slabs
interpolation kernel

com
po

siti
ng

sheet
-bu

ffe
r

slab
 width

contributing
kernel

current
sheet-buffer / slicing

Figure 1: Image-aligned sheet-based splatting.

ations to occur after the accumulation of the splats into each sheet.
In this approach, unlike traditional splatting which renders voxels
classified and shaded, voxels are rendered using their density val-
ues. The sheets rendered with data values resampled at the image
resolution, are then classified, shaded and composited pixel by
pixel. Their results show impressively sharp images.

These improvements need direct read and write access to the
framebuffer. Hardware rasterization requires such accesses to take
place across the system bus, at a high cost. We thus have devel-
oped an optimized software splatter which easily access the pixel
buffers residing in memory.

3. THE FASTSPLAT PRIMITIVES
The first task to implementing splatting in software is to

design an efficient scan-converter of the footprints. Low storage,
high image quality, fast rasterization, and support for flexible pixel
operations are chosen as our design goals.

Traditionally, the footprint is treated as a 2D texture map.
Let’s take a brief look at the costs of using texture mapping hard-
ware for splatting. For each pixel, first, a back transformation into
world space is performed. This involves multiplying a
matrix by a homogeneous space vector (16 multiplications, 12
additions, and 3 divisions). Second, the hardware performs the
footprint resampling using bilinear interpolation (5 additions/sub-
tractions and 8 multiplications). These two steps are costly. Third,
the space needed to store the footprint tables as 2D texture maps is
sizable. The pre-computed tables of footprints that we use consist
of 128 footprint sections, each being a table of real
numbers [12]. Over 8MB of storage is used. As can be seen, tex-
ture mapping hardware is not efficient for splatting.

In the following sections we present four alternatives, collec-
tively called FastSplats. The work presented here addresses both
radially and elliptically symmetric splats. Our methods can be clas-
sified into two categories:
• 1D FastSplats. A 1D footprint table is constructed which

holds the values of the splat along a radial line from the splat
center. Higher resolution splat representations are allowed,
but the radius needs to be computed for each pixel before
referencing into the tables.

• 2D FastSplats. In this category, footprints are aligned such
that footprint samples exactly match pixels, only the
compositing operation is needed at each pixel. In radially
symmetric splats, symmetries about the x-axis, y-axis, and the
diagonal helps to cull storage requirements.

3.1 1D FastSplat
For the 1D FastSplats, only the values along a radial line are

stored in the footprint. To compute the values for pixels within the
splat extent, we calculate the radius from the voxel’s center, use
this to look-up the value in the 1D footprint table, and then com-
posite the resulting value into the pixel. The minimal 1D storage
requirements allow for high resolution footprints. The following
sections present different design decisions for implementing the
1D FastSplats.

3.1.1 1D Linear FastSplat
To map a pixel within the extent of a splat to the footprint

space, the distance between the center of the splat and the pixel is
computed and used to index into the footprint. Since a splat usually
contains a smooth reconstruction kernel, a point sampling of the

footprint suffices. Fig. 2(a)(b) show two volume datasets rendered
using a 1D Linear FastSplat, with 256 sample points of the foot-
print function, and 128 footprint sections. High quality images are
produced. However, the square root calculation involved to com-
pute the radius is too expensive, and as shown in Section 6, greatly
slows down the computation.

3.1.2 1D Square FastSplat
To avoid the expensive square root calculation, we examined

footprint tables indexed with a squared radius:

(1)
Here, the splat center is located at and the pixel is at

. Akin to scan conversion algorithms for 2D shapes using
midpoint algorithms [4], we scan convert the circle described by
(1) incrementally. For a neighboring pixel, , in the scan-
line, the radius squared is:

(2)
The term can be scan converted incrementally as

well, by adding 2 to it for each pixel stepped through on the scan-
line. Hence, keeping two terms of the previous pixel’s calculation,
one can compute the new squared radius for the current pixel with
two additions.

3.1.3 1D Square FastSplat For General Elliptical Ker-
nels

For many applications, the footprint projection is not always a
circle or disk. Voxels on rectilinear grids [12] have elliptical
reconstruction kernels. Mao [9] renders unstructured grids by
resampling them using a weighted Poisson distribution of sample
points and then placing ellipsoidal interpolation kernels at each
sample location. Therefore, it is desired to have a primitive that can
handle elliptical projections.

Given a center position , the equation of a general
ellipse is given by:

(3)
All screen points with equal squared-radii, , are located

on one particular contour of the screen-space ellipse and will have
the same footprint value. Similar to Section 3.1.2, we can still
incrementally scan-convert these radii. For the neighboring pixel
further down on the scanline from the current pixel , we
have:

(4)
The term changes incrementally

by 2a, for every consecutive pixel along a scanline. Thus, the com-
plexity of the 1D squared FastSplat does not change for elliptical
kernels, and we still only need 2 additions and one table look-up
per pixel on a scanline. However, for each consecutive scanline we
need to incrementally update the new term . These calcu-
lations also need to be done in floating point arithmetic to allow for
arbitrary values of a and c.

3.2 2D FastSplat
1D FastSplats require a computation of radius before one can

reference into a footprint table. For speed reasons, we further
explored copying of a block of pixels (footprint) into an image as a
conventional BitBLT operation. In BitBLT, the block is simply
positioned onto the image, and the overlapping pixels are updated
with new values. Similarly, the footprint can also be treated as a

4 4×

128 128×

r2
x y, x xo–()2 y yo–()2+=

xo yo,()
x y,()

x 1+ y(,)

r2
x 1+ y, r2

x y, 2 x xo–() 1++=
2 x xo–()

xo yo,()

r2
x y, a x xo–()2 b y yo–()2 c x xo–() y yo–()()+ +=

r2
x y,

x y,()

r2
x 1+ y, r2

x y, 2a x xo–() a c y yo–()+ ++=
2a x xo–() a c y yo–()+ +

c y yo–()

block, except that now a compositing operation is performed per
pixel instead of a copy. More importantly, the accumulation of
many small splats leads to significant artifacts if the splat centers
are moved to coincide with pixel centers. We thus discretize the
center point positions by partitioning the pixel into a sub-
pixel grid. For each position in the grid, we pre-compute a
set of rasterization maps. This is done for a sequence of discrete
integer radius values. During rendering, after the location of the
splat is determined on the image plane, its center is snapped onto
the sub-pixel grid. Based on its screen extent size, a foot-
print rasterization map is chosen, superimposed onto the pixel grid,
and pixels that overlap with footprint entries are updated.

We compute and store each footprint for all integer radii up to
a predefined maximum radius. The total storage space required is
on the order of

, (5)

where r is the maximum radius supported for a footprint, and
k denotes the dimension of the sub-pixel grid. Symmetries can be
used to save storage space. Using 8-bit precision on a sub-
pixel grid and a maximum footprint radius of 128, this amounts to
354Kbytes, when we use symmetries about the axes and the diago-
nal. This is only for a single footprint, we still need several foot-
prints for the partial integration in the image-aligned splats [12].

We implemented this splat primitive and tested it out on sev-
eral data sets. It achieves very fast speed, but fails on image qual-
ity, as illustrated by the artifacts seen in Fig. 2c. This is due to the
discretization of the splat screen extent to integer values and the
coarseness of the sub-pixel grid used. Increasing the resolu-
tion of the sub-pixel grid results in an improvement in quality, but
this increases our storage requirements on the order of , as
well as the complexity to exploit symmetry for storage savings.

3.3 1D FastSplat With RLUT
The 1D Squared FastSplat introduces a dependency among

pixels on the same scanline. The pixels on the same scanline must
be scan converted one after another. In hardware implementations,
one may want to explore parallelism at a finer level, i.e. the pixel
level. In that case, inter-pixel dependencies are not desirable. But
pre-computing the values of all pixels in a footprint for all possible
voxel center positions, as we discussed in Section 3.2, seems
impossible due to the overwhelming storage requirement.

We observe that the square of radius in (1) is separable in x
and y. Further, given the splat’s screen extent and center, ,

both and for all the pixels covered by the splat
are determined. Hence, after snapping the splat centers to a discrete
subpixel grid, a set of 1D Radius Look-Up Tables (RLUT) can be
built for all subpixel points. These 1D tables store the squared term
and are indexed by the 1D offset (either the x or y coordinate) of
each pixel to the splat center. That is, we keep one single set of 1D
RLUT tables which are shared by both x and y components. While
rendering, assuming orthogonal projection, all splats have the same
size of screen extent. This extent, e, can be computed for each
view. Suppose the subpixel grid is , we compute a set of k
RLUT tables, with each table being of a length e. To render a splat,
one snaps its center onto the grid, lookup the squared terms,

 and , from the RLUT tables, using the x and y
offsets of each pixel in its extent. The two terms are added and the
resulting radius squared is used to index the footprint table built in
Section 3.1.3. With little storage and computation overhead, the
RLUTs for a high sub-pixel resolution, e.g. , can be
built.

This approach is compact, simple, and allows more parallel-
ism exploitable within scanlines, which is not possible with 1D
Squared FastSplat. For perspective projection, the RLUTs have to
be re-built for each sheet, as defined in IASB splatting [12],
because in the case, only splat sections within the same sheet will
be of the same screen extent.

3.4 Comparisons
For all the 1D FastSplats, since it is always affordable to

maintain the look-up tables in high resolution (above 128), the
visual image quality rendered with any 1D FastSplats is indistin-
guishable from the images in Fig. 2(a) and (b). We present a
detailed numerical error analysis in Section 5 The major difference
among them is that the 1D Linear FastSplat stores evenly sampled
footprints and is most accurate, or it can use a smaller table with
the same level of accuracy as the other 1D FastSplats. Both 1D
Squared and RLUT FastSplats use unevenly sampled footprints to
avoid the expensive square root operation. The RLUT FastSplat
assumes one further compromise in accuracy by snapping voxel
center projections to a fine sub-pixel grid (e.g.). This
approximation introduces more errors, but eliminates all inter-pixel
dependency within a footprint. Hence, it allows finer grained paral-
lelism in the stage that rasterizes footprints.

The 2D FastSplat requires overwhelmingly high storage space
to prevent rendering artifacts. It is deemed unsuitable for our pur-
poses.

k k×
k k×

k k×

Figure 2: (a,b) Sample images rendered with a 1D Linear FastSplat at a 512 image resolution, and a 256 sized footprint
tables. (a) The UNC Brain data set. (b) The Nerve Ganglion data set. (c) The UNC Brain data set rendered with 2D
FastSplat, with 2 by 2 sub-pixel resolution.

 (a) (b) (c)

k2 i2×
i 1=

r∑

2 2×

2 2×

O r3k2()

xo yo,()

x xo–()2 y yo–()2

k k×

k k×
x xo–()2 y yo–()2

100 100×

100 100×

4. PIXEL OPERATION SUPPORT FOR
SPLATTING

Using FastSplat, our whole pipeline resides in the main mem-
ory. Pixel access is therefore straightforward. Once we have a
sheet of footprint sections rasterized, this allows us to incorporate
several pixel operations such as occlusion culling, post rendering
classification and shading, pixel operations in support of image-
based rendering, 3D texture mapping, hyper-textures and even
non-photo realistic rendering.

4.1 Occlusion Culling
The approach Mueller et. al [12] devised for occlusion culling

is straightforward. After each sheet is obtained, they perform a
hardware convolution using a box filter the size of the screen
extent of a splat with the opacity buffer. At each pixel, the resulting
value in the convolved opacity map is the average opacity of all
pixels covered by the splat with its center projecting to that pixel.
All voxels with their centers projecting to the pixels with opaque
value in the convolved opacity map are occluded. The draw back is
that the convolution filter is very large for close-up views, and it
only allows checking the opacity in regions of exactly the same
size and shape. For anti-aliased perspective rendering, the convolu-
tion box filter changes in size for each new sheet. Extra traffic to
load the box filters is introduced on the system bus.

In this paper, we have devised a more efficient alternative.
We build a summed area table (SAT) from the opacity map to
facilitate occlusion culling. To test whether a rectangular region is
completely opaque or not, we only need the values corresponding
to the upper-right, Our, upper-left, Oul, lower-right, Olr, and lower-
left, Oll, corners of the region, from the summed area table. This
value, (Our - Oul - Olr + Oll) divided by the area of the rectangle
tells the average opacity within the region. If the average value is
1.0, this whole region is opaque. The first advantage for this
approach is speed. The convolution using a box filter is avoided.
Secondly, it allows flexible testing of opaqueness of rectangular
regions of arbitrary size. This occlusion culling approach is similar
to [22]. But the hierarchical occlusion maps in [22] are different
from ours in that we achieve occlusion culling using a single flat
hierarchy. The cost of traversing an occlusion pyramid is avoided.

In both pre-classified and post-classified splatting, we use this
approach to cull away voxels. Unlike [12], here we further improve
timing by culling away voxel sets, or bricks. In our splatting archi-
tecture, there two levels of data primitives, brick and voxel. A
brick is an entity with attributes describing the center position and
size of the brick, it also contains a list of voxels residing within the
spatial range of the brick. Our current brick size is . We
can cull away bricks in our software splatting pipeline as easily as
individual splats. This was very difficult with the approach pre-
sented in [12].

Updating this opacity SAT is done incrementally. It is not a
very costly routine, but since for most transfer functions, the opac-
ity situation does not vary abruptly in-between sheets. It may be
extra computation that does not add in the performance. We there-
fore only update the opacity SAT, if there are un-occluded bricks
whose z-depth range starts at the current sheet.

4.2 Splatting for Object-Space Point-Based
Rendering

Image-based rendering algorithms that are based on the con-
cept of pixel mapping, such as image warping and LDI, frequently

employ splatting to properly reconstruct the image[18]. A back-to-
front traversal is also required for LDI to provide for proper occlu-
sion. For very large LDIs, our software splatter with occlusion
culling can also provide substantial speed-ups. These algorithms
do not assume a three-dimensional reconstruction, nor do they use
a full-fledged volume integration. Rather, they use an image recon-
struction operation in 2D and then allow each pixel to be warped
under viewing. This warping is accomplished by stretching a circu-
lar reconstruction function based on the factors such as viewing
matrix, position, etc. Our splatter supports such applications easily.
We already have the framework to rasterize a footprint function to
an elliptical disk, and our pre-integrated kernel sections can easily
be replaced with a 2D reconstruction function.

However, several extensions are needed for our software
splatter to handle point-based rendering [6], in which each object
space point is equipped with an extra normal. This 2D function is
oriented in 3D space however. For this, we also need to slice or
clip this function to our world space sheets to avoid the popping
artifacts prevalent in these techniques. This can be accomplished
best by rasterizing the plane that the 2D kernel lies in. Once a scan-
line reaches a z-value that lies outside of the current sheet, we sim-
ply move on to the next scanline in the current sheet, and leave
what is left for the next sheet to work on. This requires one more
addition and a per-pixel test of the z-value. Alternatively, we can
determine the fragment of the scanline that lies within the sheet
and loop only over these pixels. This avoids the expensive test on
z. For small images of size 256x256, we only need to rasterize
O(100K) splats of small screen extents. Interactive rates are thus
possible. This is an interesting topic for future work.

4.3 Flexible Texturing
Since in post-classified splatting, each pixel on a sheet must

be classified anyway. Classification can be extended to be depen-
dent on the gray-scale value, the gradient, the position of the pixel
and some other variables.

3D solid texturing, bump mapping, environmental mapping,
etc., are good examples of the flexibility of classification. Our
pipeline supports such flexible classification efficiently. Based on
the position of each pixel on each sheet, we applied a marble tex-
ture generating function [14] to each pixel, and generated a marble
textured UNC Head rendering (Fig. 9a, color plate). This requires
9.41 seconds rendering time on a 300MHz Octane. The procedural
3D texture is computed on the fly. We have also implemented a
sample cylindrical bump mapping, with the word ‘splat’ pasted
onto the UNC Head data set (Fig. 9b) in 7.99 seconds. For the same
view, not doing either 3D texturing or bump mapping, post-classi-
fied splatting needs 7.25 seconds. These timings are for 512 by 512
images, using a 1D Squared FastSplat with 8-bit precision, and 128
table size.

5. ERROR AND TABLE SIZES

5.1 1D FastSplats
In our work, several sources of numerical errors exist. First,

we incur quantization errors when representing the footprint func-
tions using finite precision. Second, we point sample the footprint

8 8× 8×

tables. Third, our FastSplat tables are organized in squared radius,
or using a non-uniform discretization of the footprint function.

We use either 8-bit or 16-bit precision footprint tables, and 8-
bit precision (rgba, for pre-classified) or 16-bit (gray value, for
post-classified) framebuffers. While some newer hardware sup-
ports these precisions, our flexible software architecture allows
higher bit precisions easily. The quantization error is always half
the quantization scale. The 8-bit precision has a quantization error
of 1.95e-3, while the 16-bit has an error of 7.63e-6 (shown by the
lower two curves in Fig. 3).

An error is introduced when one point samples the footprint
tables. This error is bounded by half the maximal difference
between any two neighboring entries in the footprint tables. For
our Gaussian kernel, with 128 sections, we compute footprint
tables in floating point for error analysis purpose. The tables are
then traversed in search of the maximum difference between
neighboring entries for footprint table sizes of 32, 64, 128 and 256.
To gauge the error introduced by the non-uniform discretization of
the footprint function, we collect the maximum neighbor differ-
ence in tables organized both in squared radius and linear radius
(the upper two curves in Fig. 3). The gap between the two curves
depicts the non-uniform discretization error. As shown in Fig. 3,
quantization error is a low constant, whereas the non-uniform dis-
cretization error, as well as the error introduced in point sampling,
decrease sharply as the table size increases, until the table size is
256. Both of the curves drop to the same order of magnitude as the
quantization error with 8-bit precision. We then compute the bound
of the total numerical error, which is a combination of all three
sources of error, and show the total error bound in 8-bit scale (Fig.
4). When the footprint table size is 256, both squared and linear
radius tables have an error bound less than 2 8-bit scales, while the
error bound of the squared radius table is about 1 scale larger than
that of the linear radius table in the corresponding precision. Using
16-bit precision reduces the error bound by half an 8-bit scale. For
rendering purposes, the non-uniform discretization error is man-
ageable with large table sizes.

The average error introduced, however, is much lower than
the error bound. At table size 256, using 8-bit squared radius
tables, the average error in a value retrieved for a pixel is only a
negligible 0.56 unit in 8-bit precision.

Larger sized footprint tables provide better accuracy, as does
higher precisions. However, the storage space also increases. With
kernel of 128 sections, 8-bit precision tables of size 64 only take
8KB, but using tables of size 256 increases the storage to 32KB.

Adopting 16-bit precision further doubles the storage. We have
found that visually, 128 table size and 8-bit precision 1D Squared
FastSplats offers high enough quality for both pre-classified and
post-classified splatting. The only difference is that post-classified
splatting needs at least 16-bit precision sheet buffers for high qual-
ity renderings. The main reason is that after being magnified by the
per-pixel gradient calculation, the quantization noise of the 8-bit
sheet buffers becomes visible.

We present here the absolute difference of the pixel-to-pixel
image comparisons of a phantom cube data set (Fig. 9c) rendered
in 8-bit gray scale using the three 1D methods. We use the image
of 1D Linear FastSplat with 16-bit precision footprint tables, sized
256, which is accurate but not likely to be used in practice, as the
reference. The images rendered with two practical alternatives, 1D
Squared and RLUT FastSplats, both with an 8-bit preci-
sion footprint table of size 128, are tested against the reference
image. For all pixels affected in the image, on average, the pixel-
to-pixel difference is 3.36 8-bit scales using the 1D Squared FastS-
plat, while with the 1D RLUT FastSplat, the absolute difference is
3.73 per pixel on average. Maximally, the difference is 14 and 17
8-bit scales with 1D Squared and RLUT FastSplats. As shown, the
actual main error comes from the accumulation of errors during the
rendering process.

5.2 2D FastSplats
The 2D FastSplat produces inferior image quality, and thus is

not viable for practical use. The numerical error of 2D FastSplat
comes from the quantized splat centers and the quantized splat
extents, in addition to the numerical errors that 1D FastSplats have.

6. RESULTS AND ANALYSIS
In this section we present statistics and analysis of our FastS-

plat primitives on several volume datasets. One data set is the UNC
Brain data set, which is a uniform grid MRI
dataset, rendered opaquely. The Nerve Ganglion Cell is a confocal
microscopy data set defined on a rectilinear grid with a 1:1:5
aspect ratio. Its dimensions are . The Berkeley
Tomato data set (Fig. 7) is a CT scan at . We ren-
der this data set semi-transparently with very low overall opacity.
All results shown here were run on an SGI Octane with a 300MHz
R12000 CPU. The sheet thickness is set to 1.0 in world space. All
images shown in this section are and the reconstruction

Figure 3: The maximum error incurred by point sampling and
the quantization error in 1D FastSplat.

N u m e ric a l E r r o r A n a l y s i s F o r 1 D F a s t S p lats

0
0 .005

0 .01
0 .015

0 .02
0 .025

0 .03
0 .035

0 .04
0 .045

0 .05

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0

R e s o lu t i o n o f t h e 1 D f o o t p r i n t t a b l e s

N
um

er
ic

al
 E

rr
or

er ro r i n po in t sampl ing a squared rad ius tab le
er ror in po in t sampl ing a l inear rad ius tab le
quan t i za t ion e r ro r us ing 8 -b i t
quan t i za t ion e r ro r us ing 16-b i t

Figure 4: The error bound of total error shown in 8-bit values,
with 8-bit or 16-bit precision numbers stored in either squared or
linear radius tables.

Maximum Bound of The Total Numerical Error
Shown in 8-bit Scale

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

0 50 100 150 200 250 300

Resolution of the 1D footprint tables

8-
bi

t v
al

ue
s

total error in 8-bit squared radius table

total error in 16-bit squared radius table

total error in 8-bit linear radius table

total error in 16-bit linear address table

10 10×

256 256× 145×

512 512× 76×
256 256× 256×

512 512×

kernel is a Gaussian kernel of radius 2.0, sliced to 128 sections. We
used 8-bit FastSplats with 128 table size. 16-bit sheet buffers are
used for post-classified splatting. All renderings use the occlusion
acceleration method to cull voxels, as well as bricks.

6.1 Rendering Time of Pre-Classified Splat-
ting

In Table 1, we show timings of each FastSplat primitive for
each of our datasets as well as times for the hardware implementa-
tion using texture mapping.

TABLE 1. Pre-shaded Rendering Times (sec)

The 2D FastSplat achieves the fastest rendering times, while
the 1D Linear FastSplat is the slowest FastSplat implementation.
The two optimized 1D FastSplats are able to render with times
approaching the 2D FastSplat, but with much higher image quality.
Due to better cache coherency and better instruction level pipelin-
ing on the CPU, the 1D Squared FastSplat is a little faster than the
1D RLUT FastSplat.

Overall, the 1D Square FastSplat and RLUT FastSplat pro-
duce good images and fast timings. In heavily occluded scenarios,
they are 3 times faster than the hardware implementation. This is
not achieved by the CPU out performing texture hardware, but
rather it is achieved by eliminating the framebuffer access bottle-
neck. Because in occlusion heavy cases, the portion of time spent
in framebuffer reads in the hardware approach is large, while the
rendering portion is relatively low. Although our software splatter
has a lower scan-conversion rate (shown in Section 6.3), the time
we save in framebuffer accesses still produces a speedup. For the
semi-transparent Berkeley Tomato data set, more voxel rendering
and pixel compositing occur, texture mapping hardware achieve
better results.

6.2 Rendering Times for Post-Classified Splat-
ting

Post-classified splatting spends extra time in the classification
and shading of each pixel affected in a sheet. However, using tex-
ture hardware for post-classified splatting incurs the bottleneck in
framebuffer access too. Using our software splatter, we achieved
6.60 seconds rendering time for the UNC Brain data set (Fig. 8a),
while the hardware approach took 29.9 seconds for a similar view
[13]. With the nerve data set, such comparisons still hold. Our soft-
ware approach needs only 10.87 seconds to render Fig. 8b, but the
hardware solution takes 25.6 seconds. We also demonstrate the
post-classified splatter with two other data sets. One data set is a

 volume simulating diesel engine injection. In semi-
transparent mode, we need 3.33 seconds for rendering of the per-
spective view shown in Fig. 8c. Another data set is a CT scan at

 resolution, segmented to show the human brain
vessel. Our renderer takes only 4.18 seconds to render it in a per-
spective view (Fig. 8d). A comparison paper [10] provides more
timing for these and other data sets.

6.3 Analysis of Pixel Scan-Conversion Rates
We wrote a test suite to test out the pixel scan-conversion

rates of our FastSplats. By ‘scan-convert’, we mean, to retrieve the
footprint value from the footprint table and composite the weighted
r, g, b, tuple into the sheet-buffer. In our test suite, we render
splats of a certain radius. These splats are scattered at different
locations on the image plane and use different footprint sections.

In the pre-classified approach, we splat classified and shaded
r, g, b, alpha tuples, whereas, in the post-shaded approach, only
one channel is processed. We tested both approaches, using a 128
footprint table size to render 512 by 512 images.

The scan-conversion rates of the four FastSplats used in the
pre-shaded mode (4-channel) are shown in Fig. 5, for splat radii of
2, 4, 8, 12, 16 and 24 pixels.

Due to the overhead to set up a FastSplat call, for large splat
sizes, higher rates are achieved. But as the radius approaches 24
pixels, the scan conversion rates for all four algorithms level off.
Clearly, 2D FastSplat is the fastest, because it is a copy and com-
posite approach. One interesting point worth mentioning is that
with 8-bit and 16-bit FastSplats, we get the same scan-conversion
rates. The reason is that the Octane we are using has 32KB L1
cache, capable of retaining the footprint table. For the same reason,
the 1D RLUT FastSplats run at the same speed for radius lookup
tables of resolutions up to 100 by 100. However, although 1D
Square FastSplat spends one more operation on each pixel, it is still
faster than 1D RLUT. This is because 1D Square FastSplat is much
better pipelined at the instruction level, and less cache reads occur.

In post-shaded splatting, FastSplat calls only need to process
one value for each pixel, rather than a 4-tuple in pre-classified
mode.

Data Set
Name

Using
Hardware

2D
FastSplat

1D FastSplats

linear square RLUT

UNC Brain 12.7 3.51 7.11 4.33 4.41

OSU Nerve 12.5 6.02 10.06 6.36 7.52

Berkeley
Tomato

15.5 16.66 60.00 25.23 27.00

64 64× 64×

256 256× 256×

α

Figure 5: 4-channel scan-conversion rates of the four FastSplats
algorithms.

4-Channel Scan-Conversion Rates

0

5

10

15

20

25

30

0 10 20 30

splat radius in pixels

sc
an

-c
on

ve
rs

io
n

ra
te

s
(m

ill
io

n
pi

xe
ls

/s
ec

)

2D FastSplat

1D Linear
FastSplat

1D Square
FastSplat

1D RLUT
FastSplat

Figure 6: Single-channel scan conversion rates achieved by
different FastSplat alternatives.

Single-Channel Scan-Conversion Rates

0

5
10

15

20
25

30

35
40

45

0 10 20 30

splat radius in pixels

sc
an

-c
on

ve
rs

io
n

ra
te

s
(m

ill
io

n
pi

xe
ls

/s
ec

)

2D FastSplat

1D Linear
FastSplat

1D Square
FastSplat

1D RLUT
FastSplat

In Fig. 6, the curves depict the scan-conversion trend of the
four FastSplats using a single channel. The same pattern is fol-
lowed as that of pre-classified splatting, but higher rates are
achieved. Unlike the pre-classified approach, FastSplat calls need
to spend 12 operations to splat the 4-tuple for each pixel. While in
post-classified splatting, only 3 operations are needed for each
pixel. With the number of operations needed to index into the foot-
print tables being on the order of 2 or 1 operations, the rates
reported by single channel splatting is now close to the throughput
limit of a general purpose computer. One might also notice that
while the work on each pixel decreased from about 15 operations
to about 5 operations, the increase in scan-conversion rates is far
less than 3 times. Research into the specific computing system at a
lower level of detail, which is beyond the scope of this paper, is
necessary.

7. CONCLUSIONS AND FUTURE WORK
We have implemented a flexible software architecture for

splatting. An optimized splat primitive, FastSplat, has been
designed. Among the four alternatives explored, 1D Squared
FastSplat offer the best balance for speed and quality. Per-pixel
operations which improve image quality, such as per-pixel classifi-
cation and Phong shading, flexible occlusion culling using
summed area tables, 3D textures and bump mapping, are supported
inherently. Although this software system is meant for a study of
trade-off issues intrinsic to splatting, interestingly, for some data
sets, our system is 3 to 5 times faster than that using a most high-
end Octane. Please note that, only the very high end graphics
boards are equipped with alpha buffers, which are essential for
occlusion culling. Without alpha buffers, occlusion can not be uti-
lized, which slows down the rendering by a factor of five. There-
fore, compared with splatting using common graphics hardware,
our software system is 15 to 20 times faster. Another contribution
is that our architecture only needs very limited resources (small
storage and simple operations), which is also a major win for our
intended hardware implementation. Due to the compactness of our
FastSplat design, this hardware solution might be integrated as part
of a general processor.

Hybrid schemes should also be explored, where small foot-
prints use one approach while larger splats can use a different
method. The future work includes implementing parallel software
splatting renderers on MPPs or PC-clusters using FastSplat and
research into hardware supported accelerations with custom-
designed chips or DSPs. More research into per-pixel classifiers
and shaders is also needed.

8. ACKNOWLEDGEMENT
We acknowledge funding to our project from the DOE ASCI

program and the NSF Career Award received by Dr. Roger Craw-
fis. The GRIS group at University of Tuebingen, Germany, pro-
vided us with the diesel injection simulation data set and the
human brain vessel data set. The tomato data set that we used was
obtained from Lawrence Berkeley National Lab.

References
[1] Cabral, B., Cam, N., and Foran, J., Accelerated Volume Rendering

and Tomographic Reconstruction Using Texture Mapping Hardware,
1994 Symposium on Vol. Vis., pp. 91-98, 1994.

[2] Chen, B., Dachille, F., and Kaufman, A., Forward Image Mapping,
IEEE Visualization ‘99, Proceedings, October 1999, pp. 89-96.

[3] Crawfis, R., Max, N., Texture Splats for 3D Scalar and Vector Field
Visualization, IEEE Visualization’93 Proceedings, October, 1993,
261-267.

[4] Foley, J., van Dam, A., Feiner, S. Hughes, J., Computer Graphics:
Principles and Practice, Addison-Wesley Inc., 1997, pp. 83-91.

[5] Kajiya, J., and Von Herzen, B., Ray Tracing Volume Densities,
Computer Graphics (Proceedings of SIGGRAPH 84), 18(3), pp. 165-
174, 1984.

[6] Levoy, M., and Whitted, T., The Use of Points as a Display Primitive,
UNC-Chapel Hill Computer Science Technical Report #85-022,
1985.

[7] Max, N., An Optimal Filter for Image Reconstruction, Graphics
Gems II, James Arvo(ed), Academic Press, N.Y., pp. 101-104.

[8] Max, N., Optical Models for Direct Volume Rendering, IEEE
Transactions on Visualization and Computer Graphics, Vol. 1, No. 2,
1995.

[9] Mao, X., Splatting of Non Rectilinear Volumes Through Stochastic
Resampling, IEEE Transactions on Visualization and Computer
Graphics, Vol. 2, No. 2, June 1996.

[10] Meissner, M., Huang, J., Bartz, D., Mueller, K., Crawfis, R., A
Practical Evaluation of Popular Volume Rendering Algorithms, Proc.
of Symposium of Volume Graphics 2000, Salt Late City, Utah.

[11] Mueller, K., Moeller, T., Swan, J.E., Crawfis, R., Shareef, N., Yagel,
R., Splatting Errors and Anti-aliasing, IEEE Transactions on
Visualization and Computer Graphics, Vol. 4., No. 2, pp. 178-191,
1998.

[12] Muller, K., Shareef, N., Huang, J., Crawfis, R., High-Quality
Splatting on Rectilinear Grids with Efficient Culling of Occluded
Voxels, IEEE Transaction on Visualization and Computer Graphics,
Vol. 5, No. 2, pp 116-135, 1999.

[13] Mueller, K., Moller T., Crawfis, R., Splatting Without the Blur, Proc.
Visualization’99, pp. 363-371, 1999.

[14] Peachey, D.R., Solid Texturing of Complex Surfaces, SIGGRAPH
85, pp. 279-286, 1985.

[15] Pfister, H., Hardenbergh, J., Knittel, J., Lauer, H., and Seiler, L., The
VolumePro Real-Time Ray-Casting System, Proc. of Siggraph’99,
Los Angeles, 1999.

[16] Pfister, H., Barr, J., Zwicker, M., Gross, M., Surfel: Surface Elements
as Rendering Primitives, Proc. of Siggraph 2000, New Orleans, 2000.

[17] Rusinkiewicz, S., Levoy, M., QSplat: A Multi-resolution Point
Rendering System for Large Meshes, Proc. of Siggraph 2000, New
Orleans, 2000.

[18] Shade, J., Gortler, S., He, L., Szeliski, R., Layered Depth Images,
Proc. SIGGRAPH’98, pp. 231-242, 1998.

[19] Westover, L.A., Interactive Volume Rendering, Proceedings of
Volume Visualization Workshop (Chapel Hill, N.C., May 18-19),
Department of Computer Science, University of North Carolina,
Chapel Hill, N.C., 1989, pp. 9-16.

[20] Westover, L. A., Footprint Evaluation for Volume Rendering,
Computer Graphics (proceedings of SIGGRAPH), 24(4), August
1990.

[21] Wilhelms, J., and Van Gelder, A., A Coherent Projection Approach
for Direct Volume Rendering, Proceedings of SIGGRAPH ‘91, pp.
275-284, 1991.

[22] Zhang, H., Manoch, D., Hudson, T., Hoff, K., Visibility Culling using
Hierarchical Occlusion Maps, Proceedings of SIGGRAPH 97, Vol.
31, No.3., 1997.

Figure 1: Sample images rendered with FastSplat using pre-classified splatting, orthogonal projec-
tion, at a 512 by 512 image resolution. (a) (b) UNC Brain and Nerve Ganglion Data Sets with 1D
FastSplats, 128 table size, 8-bit precision. (c) UNC Brain with 2D FastSplat.

 (a) (b) (c)
Figure 7: Sample image of the
B e r k e l e y t o m a t o d a t a s e t
rendered semi-transparently.

 (a) (b) (c) (d)
Figure 8: Sample images of post-classified splatting, at a 512 by 512 image resolution. (a) UNC Brain using 1D Square FastSplat,
orthogonal projection, opaque transfer function. (6.60 sec rendering time). (b) An oblique view of the Nerve Cell data set, rectilinear grid
(1:1:5), orthogonal projection, opaque transfer function. (10.87 sec rendering time). (c) Diesel injection data set, perspective projection,
semi-transparent transfer function. (3.33 sec rendering time). (d) Blood vessel data set, perspective projection, opaque transfer function.
(4.18 sec rendering time). All four images are rendered with 1D Squared FastSplat, 128 table size, 8-bit precision footprint, 16-bit single
channel sheet buffer, 32-bit (RGBA) framebuffer.

(a) (b) (c)
Figure 9: Sample images to demonstrate the flexibility of the software splatting pipeline with support of direct pixel operations. 1D
Squared FastSplat, 128 table size, 8-bit precision footprint, 16-bit single-channel sheet buffer, 32-bit (RGBA) framebuffer is the
configuration used. (a) 3D solid textured UNC Brain data set. (9.41 sec rendering time) (b) Cylindrical bump-mapped UNC Brain data
set. (7.99 sec rendering time). Such pixel operation capabilities are supported in the post-classified splatting framework. For the same
view, using the same FastSplat configuration, post-shaded splatting, without 3D texturing or bump-map, takes 7.25 sec to render. (c)
Phantom cube used in error analysis, 512 image resolution.

