
Light Propagation for Mixed Polygonal
and Volumetric Data

Caixia Zhang*, Daqing Xue*, Roger Crawfis*
The Ohio State University

ABSTRACT

Some applications require scenes mixing polygonal and
volumetric objects and shadows make the scenes more realistic.
This paper describes a shadow algorithm for mixed polygonal and
volumetric data, including the generation of soft shadows for area
light sources. Our volume shader leverages advanced graphics
GPU for an accelerated and feasible solution. The shadow and
soft shadow algorithm applies to all combinations of volumes and
polygons, without any restriction on the geometric positioning and
overlap of the volumes and polygons.
 For realistic rendering where we have a high albedo
participating media, multiple scattering is significant. We extend
our algorithm to handle both multiple forward scattering and back
scattering with light attenuation. This constitutes a complete
system for shadow generation and light propagation.

CR Categories and Subject Descriptors: I.3.3 [Computer
Graphics]: Picture/Image Generation - Display Algorithms; I.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism
- Color, shading, shadowing and texture.

Keywords: visualization, shadows, soft shadows, multiple
scattering, illumination

1 INTRODUCTION
A shadow is a region of relative darkness within an illuminated
region caused by an object totally or partially occluding a light
source. Shadows are essential to realistic images. In volume
rendering, as the light traverses the volume, the light intensity is
continuously attenuated by the volumetric densities. The
generation of soft shadows for extended light sources is a difficult
topic in computer graphics. It requires integrating the
contributions of extended light sources for each point of
illumination on an object.
 Some applications require both volumetric and geometrical
objects together in a single image. For example, geometrically
defined objects may be surrounded by clouds, smoke, fog, or
other gaseous phenomena. In this paper, we will generate shadows
and soft shadows for a scene including both volumetric datasets
and polygonal geometries using a texture-based volume rendering
method.
 For a high-albedo participating media, such as clouds, multiple
scattering cannot be ignored. Here, we implement multiple
forward scattering and back scattering, and incorporate the
multiple scattering into our shadow algorithm.
 In the following section, previous work is reviewed and
motivation for this work is given. Section 3 discusses multiple
scattering for high-albedo participating media. Section 4 describes

our shadow algorithm for mixed polygonal and volumetric data,
while Section 5 describes the soft shadow algorithm for a scene
including both volumes and polygons. Conclusions and future
work are given in Section 6.

2 PREVIOUS WORK

Our work is related to both light transport and the rendering of
mixed polygonal and volumetric data. In this section, we will
briefly summarize prior research in shadow algorithms, multiple
scattering and rendering techniques for mixed volumes and
polygons.

2.1 Shadow Algorithms

Earlier implementations of shadows focused primarily on hard
shadows, in which a value of 0 or 1 is multiplied with the
incoming light intensity. The shadow volume algorithm by Crow
[3] introduces the concept of shadow volumes. A 2-pass hidden
surface algorithm is proposed by Nishita and Nakamae [21,22]
and Atherton et al. [1]. Williams [30] uses a z-buffer depth-map
algorithm to generate shadows.
 These shadow algorithms can only determine if a point on an
object is in shadow or not, resulting in only binary values for the
light intensity. These algorithms are not suitable for volume
rendering. In volume rendering, as the light traverses through the
volume, the light intensity is continuously scattered and
attenuated by the volumetric material. Ray tracing offers the
flexibility to deal with the attenuation of the light intensity and
has been used to generate shadows for both surface
representations [29] and volumetric datasets [4,9]. Lokovic and
Veach [16] proposed the concept of deep shadow map to keep
track of the light attenuation in the volume. For splatting, Nulkar
and Mueller[24] have implemented an algorithm to add shadows
to volumetric scenes using a 3D buffer. A new algorithm has been
proposed to implement shadows and soft shadows using splatting
that requires only a 2D buffer for each light source [32,33]. Kniss
et al. [11,13] also utilize an off screen buffer to accumulate the
light attenuation in their volume rendering using 3D texture
slicing.

2.2 Multiple Scattering
For low albedo media, the scattering is insignificant compared to
the light attenuation. However, for realistic rendering of high
albedo participating media, for example, clouds or water vapor,
multiple scattering is very important. Multiple scattering must
account for scattering in all directions. It is more physically
accurate, but much more complicated and expensive to evaluate.
Max [18] gives an excellent survey of optical models, including
multiple scattering.
 The calculation of multiple scattering can be divided into four
methods [18]: the zonal method, the Monte Carlo method, the P-N
method and the discrete ordinates method. In the zonal method
[26], the volume is divided into a number of finite elements which
are assumed to have constant radiosity. This method is valid only
for isotropic scattering. In the Monte Carlo method [27], a random
collection of photons or flux packets are traced through the

*{zhangc, xue, crawfis}@cse.ohio-state.edu

volume, undergoing random scattering and absorption. The
resulting images tend to appear noisy and/or take a long time to
compute. The P-N method [2,9] uses spherical harmonics to
expand the light intensity at each point as a function of direction.
The discrete ordinates method uses a collection of M discrete
directions, chosen to give optimal Gaussian quadrature in the
integrals over a solid angle. Lathrop [14] points out that this
process produces ray effects and presents modifications to avoid
these ray effects. Max [19] describes an approximation to the
discrete ordinates method, which reduces the ray effects by
shooting radiosity into the whole solid angle bin, instead of in a
discrete representative direction.
 Recently, some research on approximate methods to multiple
scattering has been examined to achieve real-time rendering.
Harris and Lastra [7] provide a cloud shading algorithm that
approximates multiple forward scattering along the light direction.
Kniss et al. [12,13] use an empirical volume shading model and
add a blurred indirect light contribution at each sample. They
approximate the diffusion by convolving several random sampling
points and use graphics hardware to do the volume rendering. All
their work used slice-based methods. Some other work [4,5,20]
also used slice-based techniques to calculate the scattering effects
in volume.

2.3 Rendering both Volumes and Polygons

To render scenes mixing volumetric and polygonal models, the
most common solution is to convert the polygonal and volumetric
data into a common representation: either construct surface
polygons from volume data [17] or change polygon data to
volume data using 3D scan-conversion [10]. This conversion
introduces artifacts and is generally expensive and inefficient. An
alternative approach is to directly render both data types. Levoy
has developed a hybrid ray tracer for rendering polygon and
volume data [15]. Rays are simultaneously cast through a set of
polygons and a volume data array, samples of each are drawn at
equally spaced intervals along the rays, and the resulting colors
and opacities are composed together in a depth-sorted order. In
Levoy’s method, both volume and polygon objects are rendered
using ray tracing. Ebert and Parent use another method which
combines volume rendering and scanline a-buffer technique [6].
The scanline a-buffer technique is used to render objects
described by surface geometries, while volume modeled objects
are volume rendered. The algorithm first creates the a-buffer for a
scanline, which contains a list of all the fragments of polygons for
each pixel that partially or fully cover that pixel. Based on the
scanline-rendered a-buffer fragments, the volume-modeled objects
are broken into sections and combined with the surface-defined a-
buffer fragments. In their paper, the volumes are defined by
procedural functions to model gaseous phenomena.

 Our motivation is to implement multiple forward and backward
scattering efficiently, and generate shadows and soft shadows for
scenes of mixed polygonal and volumetric data. Our focus is on
efficient volume rendering schemes such as 3D texture mapped
approach.

3 MULTIPLE SCATTERING

In order to simulate light transport for participating media with
high albedo, multiple scattering cannot be ignored. In this section,
we will explain how we implement multiple scattering using a
texture-based rendering method and incorporate it with the
shadow algorithm by displaying clouds, a high albedo
participating medium. The clouds are modeled as a collection of
ellipsoids, and Perlin’s fractal function [25] is used to disturb the
density distribution. Figure 2 shows the clouds with the light
emanating behind it. The clouds look unnaturally dark, because

only light attenuation is modeled. In this section, we will explain
our implementation of multiple scattering and its effects on the
cloud appearance.
 For multiple scattering, the light intensity at a point P is the sum
of the direct energy from the light source that is not absorbed by
intervening particles and the energy scattered to P from all other
particles. Figure 1 is a schematic showing forward scattering and
back scattering among particles. The calculation of multiple
scattering requires accounting for the scattering from all
directions. We let),(ωPI be the intensity at each point P and
each light flow direction ω , which can be expressed as:

dsesgeIPI

sD

dttPDdttP ∫
⋅+

∫
⋅=

−−−−

∫ 00

)(

0

)(

0),()(),(
ωτωτ

ωωω (1)

where)(0 ωI is the original light intensity in direction ω , τ is
the extinction coefficient of the participating media, D is the depth
of P in the media along the light direction, and

')',()',,(),(
4

ωωωωωωω
π

dsPIsPrsg −⋅−= ∫ (2)

represents the light from all directions 'ω scattered into direction
ω at the point P. If we denote ωsP − as x, then)',,(ωωxr
is the bi-directional scattering distribution function (BSDF) which
determines the percentage of light incident on x from direction

'ω that is scattered in direction ω . We can treat)',,(ωωxr =
)',()()(ωωτ pxxa ⋅⋅ [7, 18], where)(xa is the albedo of the

media at x,)(xτ is the extinction coefficient of the media at x,
and)',(ωωp is the phase function.
 A full multiple scattering algorithm must compute this quantity
for all light flow directions. This would be very expensive. Nishita
et al. [23] take advantage of the strong forward scattering
characteristics of many volumetric materials and limit the sampled
light flow directions to sub-spaces of high contribution. Harris et
al. [7] further approximate multiple forward scattering only in the
light direction, resulting in good cloud images. However, they did
not model back scattering. As pointed out by Max [18], without
back scattering, the edges of very dense clouds are not illuminated
properly. In this paper, we model both multiple forward scattering
as well as back scattering and we approximate the multiple
scattering along the light direction based on the strong forward

P1

P2

P3

light

particles

P1

P2

P3

light

particles

 (a) (b)

Figure 1: A schematic of light transport (a: forward scattering;
b: forward scattering and back scattering)

scattering characteristics of clouds for the purpose of efficient
calculation.

 We approximate the integration of (2) over a solid angle γ
around the light direction. Here, 'ω is within the solid angle γ
along the light direction l.

AAA

A

dllxIllpxxag kk
f

k γγγ
γ

τ),(),()()(⋅⋅⋅= ∫ (3)

BBB

B

dllxIllpxxag kk
b
k γγγ

γ

τ),(),()()(⋅⋅⋅= ∫ (4)

 The above f
kg represents the forward scattering and b

kg is for
the back scattering. Aγ and Bγ are solid angles for the forward
scattering and the back scattering respectively.

A
lγ

 and
B

lγ are
directions within Aγ and Bγ . The subscript k here indicates that
the values are from the slice k.
 Now, assume we have accurately calculated the flux for each
point in a plane perpendicular to the light direction. Let),(lxI be
the light distribution in a slice, the above formulas for f

kg and
b
kg can be calculated using a convolution over the light intensity

),(lxI . The convolution calculation is supported and easy to
implement in texture-based rendering. This shows that multiple
scattering can be modeled as light diffusion along the light

direction. Kniss et al. [12,13] also use a convolution technique to
model the light diffusion, but they only model multiple forward
scattering.
 If only multiple forward scattering is considered, we have the
recurrence relation:

⎩
⎨
⎧

=
≤≤⋅+

= −−−

1,

2,

0

111

kI

NkITg
I kkk

k (5)

where, 1
1

−−
− = keTk

τ is the transparency of slice k-1. The
recurrence relation says the light incident on slice k is equal to the
intensity scattered to slice k from the slice k-1 plus the direct light
transmitted to the slice k. Here, 1−kg is calculated using a
convolution operation based on (3).
 For multiple forward scattering, we just need to keep the
intensity of the previous slice, then calculate the multiple forward
scattering 1−kg using convolution over 1−kI and add it to kI .
Figure 3 shows the clouds with multiple forward scattering only.
The clouds look brighter than the clouds in Figure 2 without
multiple scattering.
 From the physical viewpoint, when the light is scattered
forward, some light will scatter backwards. In Figure 1(a), P1
receives energy from P2 by forward scattering, while in Figure
1(b), P1 also gets energy from P3 by back scattering. In order to
implement back scattering, we keep the light intensity of the
slices which contribute to the current slice k. The light intensity
stored is the sum of the direct light plus the multiple forward
scattering. And the back scattering is calculated using a
convolution operation based on (4). Once a slice obtains new
energy from back scattering, it will add this to the stored light
intensity, and then bounce back energy to its upper slice. This
process continues until the slice k to be illuminated is reached.
After the illumination, the total energy at the slice k is scattered
forward to slice k+1. For the practical implementation, we
maintain a limited number of slices, for example, three slices, and
calculate their back scattering contribution on the current slice.
 If we add back scattering to the clouds in Figure 3, we get the
clouds in Figure 4. As pointed out by Max [18], as energy
bounces around, the edges are brighter, as is the interior region of
the clouds.

4 SHADOW ALGORITHM COMBINING VOLUMES AND
POLYGONS

Based on the shadow algorithm for volumetric data [32], we can
also generate shadows for scenes of mixed polygonal and
volumetric data. We assume the polygons are opaque in this
section to aid in our description of the algorithm.

4.1 Shadow Algorithm

Our shadow algorithm for mixed polygonal and volumetric data
has two stages. First, the polygons are partially rendered with
respect to both the viewer and the light source. For the second
stage, texture-based rendering is used to render the volumes, and
any relevant polygon information is composited into the scene
slice by slice with proper shadow attenuations. The depth
information from the rendering of opaque polygons is combined
with the shadow buffer which stores the accumulated light
attenuation to determine the shadow value. Illumination of both
polygons and volumes is thus calculated during this second stage.
Next we will explain our algorithm in detail.
 The first stage is to render the polygons. Since our purpose is to
generate shadows, the polygons are rendered with respect to both
the viewer and the light source. At this stage, the light attenuation
is not determined for the polygons, so no illumination is
calculated and the intermediate rendering results are stored for

Figure 2: Clouds without multiple scattering

Figure 3: Clouds with multiple forward scattering only

Figure 4: Clouds with both multiple forward scattering

and multiple back scattering

final rendering. For the image generation, we store the z value
with respect to the viewer into the z-buffer, and store the object
color and normal into two textures. For the shadow generation, we
save the z value with respect to the light into another texture.
 The second stage is to render the volumes and composite the
polygon information slice by slice. Similar to the shadow
algorithm for volumes only [32], the volume is sliced along the
half-way vector between the eye vector and the light vector, in
order to keep track of accurate light attenuation information. The
image buffer is aligned with the eye, and the shadow buffer is
aligned with the light source (as shown in Figure 5).
 Polygons in a volumetric scene can be surrounded by
transparent air, or inside a semi-transparent volumetric
participating media. If there are several volumetric datasets in a
scene, we treat them as a single large volume. The positioning
relationship between the polygons and the non-empty volume is
shown in Figure 6, with respect to the slicing direction. Region 1
can cast shadows through the volume, as well as on objects within
region1. In region 2, volumetric shadows are needed as well as
volumetric shadowing of interior polygons. For region 3, shadows
are cast from the prior regions.
 The polygons at different regions are processed in different
ways. All the polygons in region 1 are rendered in one step.
Whether a point is in shadow or not is determined by the depth
value with respect to the light stored in the texture. After
rendering the polygons in this region, the shadow of the polygons
is used for the first volumetric slice.
 The region 2 is rendered slice by slice. The contribution of the
volume data at the current slice is composited into the frame
buffer with the z-test enabled so that only the volume in front of
the polygons is rendered. The polygons in region 2 are rendered

slice by slice, because the light attenuation by the volumetric data
changes slice by slice. Whether there are polygons in the current
slice is determined by the depth information of the polygons. If
there are polygons at the current slice, the part of the polygons in
this slice is rendered. The contribution of the polygons in the
current slice is composited into the frame buffer with the opacity
set to 1.0 at the corresponding pixels. Similarly, the contributions
of the volumes and the polygons in this slice on the light
attenuation are composited to the accumulated shadow buffer
aligned to the light source for the illumination of the next slice. In
region 2, the shadow value of a pixel is determined by a
corresponding pixel on the accumulated shadow buffer (as shown
in Figure 5).
 The polygons in region 3 are rendered in one step in a similar
way to the polygons in region 1, but they are different in how they
are shadowed. We cannot just use the shadow z-buffer to
determine the shadow values for the polygons in region 3, since
we need to consider the shadows cast by the volume in region 2.
So, we use both the accumulated shadow buffer and the z-buffer
to determine the shadow values for the polygons in this region.
The opacity from the z-buffer is set to 1 or 0 depending on
whether there is a polygon occluder. We then take the maximum
opacity value as the shadow value for the pixels corresponding to
the polygons in region 3.

eye

light

shadow buffer plane

half-way vector
slices

the pixel to
the eye, (i,j)

the corresponding pixel
to the light, (i’,j’)

slicing
direction

image plane

Figure 5: A schematic of the slicing direction and the buffers

polygons polygons polygons

volume

Slicing direction

front back

Region 1 Region 2 Region 3

Figure 6: Position relationship between polygons and volume
with respect to the slicing direction

Render the polygons w.r.t. the eye

Store color and normal to two textures,
the depth w.r.t. the eye to the z-buffer

Render the polygons w.r.t. the light

Store the depth w.r.t. the light to a texture

Render and illuminate the polygons in region 1,
and composite to the frame buffer

Add the contribution of the polygons in region 1
to the accumulated shadow buffer

Slice by slice

Render and illuminate the volume and polygons in
region 2, and composite to the frame buffer

Add the contribution of the volume and polygons
in region 2 to the accumulated shadow buffer

Render and illuminate the polygons in region 3,
and composite to the frame buffer

Stage 1

Stage 2

Figure 7. Flow chart of the shadow algorithm combining volumes
and polygons

 The above shadow algorithm for mixed volumes and polygons
applies to all the possible configurations of volumes and
polygons, without any restriction on the geometric positioning and
overlap of the volumes and polygons. For special cases, pure
volumes are rendered in region 2, and pure polygons are rendered
in region 1.
 The region division aids in the efficiency of the algorithm. The
polygons within only air can use a slice skipping technique and
are rendered faster. We summarize the shadow calculation of the
three regions in table 1.
 The shadow algorithm combining volumes and polygons using
texture-based rendering is demonstrated with the flow chart in
Figure 7.

Table 1. Shadow determination of three regions

Region 1 Region 2 Region 3

Shadow z-buffer
Shadow z-buffer

+
Volume slices

Projective shadows
+

Shadow z-buffer

 In cases of semi-transparent polygonal objects, we cannot
render the polygons in one step, because the light attenuation is
accumulated slice by slice. Also, we cannot set the opacity to 1.0
and use the depth stored in z-buffer to do z-test for the rendering
of the volumetric data. So, the first stage, which renders the
polygons first and stores the depth information with respect to the
light into a texture and the depth with respect to the eye into the z-

 (a) (b) (c)

Figure 8: Bonsai tree and mushrooms (a) without shadows, (b) with shadows, (c) with soft shadows

 Figure 9: Bonsai tree and mushrooms Figure 10: Shadows of mushrooms Figure 11: Shadows of rings and a dart

Figure 12: A scene of a teapot inside a
translucent cube

Figure 13: A scene of a desk inside a
smoky room

Figure 14: An airplane flying above
the clouds

buffer, is unnecessary. Both the polygonal and volumetric objects
are rendered slice by slice, with respect to both the eye and the
light source, respectively. This is actually the case of pure region
2.

4.2 Shadow Results

Using the above shadow algorithm, we have implemented
shadows for scenes including both volumes and polygons. For
Figures 8 – 14, please also see the color plate.
 Figure 8 and Figure 9 show some polygonal mushrooms under
the volumetric Bonsai tree. Figure 8(a) is the image without
shadows and Figure 8(b) is with the shadows. The tree casts
shadows on the bottom plate and the container as well as on the
mushrooms. Compared with the image without shadows in Figure
8(a), the shadows in Figure 8(b) provide the spatial relationship
and make the scene more informative and realistic. In Figure 9,
some mushrooms cast shadows on the bottom plate and the other
three mushrooms are in the shadows of the Bonsai tree.

Figure 15: A schematic of the light source, occluder, and the
receiver

Figure 16: A schematic of the shadow region with respect to the
light source

half way vector

eye

shadow buffer plane

image plane
sheets

extended
light
source

virtual
light
source

slicing
direction

Figure 17: A schematic of the slicing direction and the buffers for
the soft shadow algorithm

polygons polygons polygons

volume

Slicing direction

front back

Whole region
Is sliced

Figure 18: The whole region rendered slice by slice

Figure 19: Soft shadows of mushrooms

Figure 20: Soft shadows of Bonsai tree and mushrooms

 Figure 10 shows the shadows cast from three mushrooms. The
mushrooms are represented as polygons, while the bottom plate is
represented as volumetric data. We can see the polygonal
mushrooms cast shadows on themselves and on the plate. Figure
11 shows a scene in which a dart is pointing at the rings. Here, the
dart is a polygon model, and the rings and the plate are volumetric
data.
 Figure 12 and Figure 13 are two scenes in which polygons are
inside semi-transparent volumetric data. Figure 12 shows a
polygon teapot inside volumetric translucent media. We can see
the shadows cast by the teapot on itself and through the
translucent media. In Figure 13, light comes into the room from
the back and a polygon-defined desk resides in the smoky room.
Here, the smoke is modeled using Perlin’s turbulence function
[25].
 Our shadow algorithm for combining volumes and polygons
also works for high-albedo media. In Figure 14, a polygonal
airplane flies above clouds. The clouds are modeled with light
attenuation and multiple scattering.

5 SOFT SHADOW ALGORITHM COMBINING VOLUMES AND
POLYGONS

The generation of soft shadows requires integrating the
contributions of extended light sources on the illumination of
objects. Soler and Sillion [28] proposed a soft shadow algorithm
using a convolution technique. A soft shadow algorithm for
volumetric data using sheet-based splatting was implemented in
[33]. The soft shadow algorithm is an analytic algorithm using
convolution techniques. If the light source is parallel to the slices,
the width of the penumbra region (as shown in Figure 15) is
calculated using the formula:

Z

ZL
x

∆×=∆ (6)

 The soft shadows are generated by convolving the shadows
with respect to the center of the extended light source (in Figure
16), which is generated using the shadow algorithm discussed in
Section 4. In the soft shadow algorithm, the volume is still sliced
along the half-way vector between the eye vector and the light
vector (as shown in Figure 17). A virtual light source parallel to
the slices is constructed and the shadow buffer is parallel to these
slices (in Figure 17). The soft shadow algorithm is evaluated and
possible artifacts are discussed for more general cases in [33].
 When there are polygons in the scene, we will render the
polygons slice by slice in the same way as the volume, no matter
where the polygons are (as shown in Figure 18). This is because
the accumulated shadow buffer is convolved slice by slice, even
for the pure polygons. So, we treat both the volumes and the
polygons as a whole volume.
 Similar to the shadow algorithm in Section 4, there are two
stages for the soft shadow algorithm. The first stage is mainly to
render the polygons with respect to the viewer and store the depth
information of the polygons into the z-buffer.

At the second stage, texture-based rendering is used to render
the volumes and polygons, and generate soft shadows slice by
slice. In order to generate soft shadows for polygons, the polygons
are not rendered in one step as in Section 4. Instead, they are
rendered slice by slice using two clipping planes, regardless as to
whether they are inside the volumetric material or not. Therefore,
the range of the volume to be rendered slice by slice is determined
by both volumes and polygons.

 At each slice, the volumes in the current slice are rendered with
the z-test enabled, and the part of the polygons belonging to the
current slice is then rendered. Their contribution to the light
attenuation is used to update the shadow buffer. Then the updated
accumulated shadow buffer is convolved to prepare for the next
slice. Since the polygonal objects are modeled as the boundary
polygons of the solid objects, we should use the stencil buffer to
add the contribution of the solid polygonal objects to the shadow
buffer for the convolution. In this way, we get realistic soft
shadows.
 For semi-transparent polygonal objects, the first stage is
unnecessary, because the main function of the first stage is to keep
the depth information with respect to the eye into the z-buffer for
the z-test of the rendering of the volumetric data at the second
stage. Now the rendering of the volumetric data cannot use z-test
to do the z-culling.
 We have generated soft shadows for scenes with both volumes
and polygons, using the above soft shadow algorithm. For Figures
19 and 20, please also see the color plate.
 Figure 19 shows the soft shadows of the mushrooms. We can
see the soft shadows have penumbra regions. Figure 8(c) and
Figure 20 show the soft shadows of the Bonsai tree dataset and the
mushrooms. In Figure 20, we can notice a higher degree of blur in
the shadows of the regions farther from the plane, like the
shadows of the top part of the tree, while the shadows of the two
small components in front of the tree look pretty solid, since they
are close to the plane. These soft shadows look more realistic than
the hard shadows in Figure 10, Figure 8(b) and figure 9.

6 DISCUSSION

The rendering time using hardware-based 3D texture mapping
depends on the size of the dataset and the number of the slices. All
performance data is obtained using a PC equipped with a Pentium
4 processor of 3.2 GHz and a Quadro FX 3000 graphics card with
256 MB graphics memory. For the Bonsai tree dataset (2563) and
the polygonal mushrooms in Figure 8, which are sliced with the
interval at voxel spacing (256 slices for orthogonal and 442 slices
for diagonal direction) and rendered to 512x512 images, the
rendering time without shadows is 410ms, and the rendering time
with shadows is 570ms. The calculation of shadows takes 39%
longer rendering time. For the implementation of soft shadows,
the rendering time is much longer (185s), due to the expensive
convolution calculation. Currently, we create soft shadow by
convolving all pixels in the shadow buffer using hardware-based
convolution operation. We create the shadow buffer with the same
size as the image resolution (512x512). Due to the intrinsic time-
consuming of convolution, soft shadow cannot be rendered in real
time in our current implementation, considering the large number
of convolution operations for each slice. On the other hand, the
resolution of shadow buffer can be much smaller than the image
size without the significant loss of shading accuracy. This would
improve the performance of soft shadow generation with 3-4
times speedup if a shadow buffer with half size of image
resolution is used.

Since the volumetric dataset is loaded into graphics hardware
memory as a 3D texture, the size of volume is limited by the
texture memory on graphics hardware. The volume size could be
as large as 512x512x512 (128 MB) to be loaded on our Quadro
FX 3000 graphics card.

Given a fixed light in eye space, our slicing scheme is not
changed, in which all slices are either perpendicular to the
halfway vector of light and eye vectors if light and eye are at the
same side of the volume or parallel to the halfway vector if light
and eye are the different side of the volume as in [13]. This static
slicing scheme guarantees no visual artifacts like popping [34]

due to switching slicing direction occur. On the other hand, if the
light position is time-varying in eye space, the slicing direction
will be changed accordingly. The popping artifacts would occur
if the light position changes abruptly and leads to the significant
change of slicing direction for the neighboring frames.

7 CONCLUSIONS

In this paper, we first describe how to implement multiple
scattering and incorporate multiple scattering with our light
attenuation model. We use a convolution technique to
approximate the multiple forward scattering and back scattering
for clouds, a high albedo participating medium.
 Based on the shadow and soft shadow algorithm for volumetric
data [32,33], this paper extends the algorithm to generate shadows
and soft shadows for scenes including both volumes and
polygons. The polygons are first rendered with respect to both the
eye and the light source, and the depth information is retrieved.
Texture-based rendering is then used to render the volumes.
During the volume rendering, polygons are composited into the
volumes slice by slice in a depth-sorted order. We have
implemented our shadow algorithm to include soft shadows
combining volumes and polygons. This shadow algorithm handles
all combinations of volumes and polygons, without any restriction
on the geometric positioning and overlap of the volumes and
polygons.
 Now our shadow algorithm can generate shadows or soft
shadows for point lights, parallel lights, projective textured lights
and extended light sources [32,33]. Also, our algorithm can deal
with both volumes (including volumetric datasets and
hypertextured objects) and polygons, and combine multiple
scattering and light attenuation model. Our shadow algorithm is a
complete system for shadow generation and provides we believe
the first such system for hardware-based volume rendering.

ACKNOWLEDGMENTS

We would like to thank the NSF Career Award (#9876022) for
support to this project, and thank S. Roettger, VIS, University of
Stuttgart for providing the Bonsai tree dataset in Figure 8 and the
University of Erlangen-Nuremberg for providing the Bonsai tree
dataset in Figure 9 and Figure 20.

REFERENCES

[1] P. Atherton, K. Weiler, D. Greenberg, “Polygon Shadow
Generation”, Proc. SIGGRAPH’78, pp. 275-281, 1978.

[2] S. Chandrasekhar, Radiative Transfer, Oxford University Press,
1950.

[3] F. Crow, “Shadow Algorithm for Computer Graphics”, Proc.
SIGGRAPH’77, pp. 242-248, 1977.

[4] Y. Dobashi, T. Nishita, T. Yamamoto, “Interactive Rendering of
Atmospheric Scattering Effects Using Graphics Hardware”, Proc.
Graphics Hardware 2002, pp.99-108, 2002.

[5] Y. Dobashi, T. Yamamoto, T. Nishita, “Interactive Rendering
Method for Displaying Shafts of Light,” Proc. Pacific Graphics
2000, pp.31-37, 2000

[6] D. Ebert, R. Parent, “Rendering and Animation of Gaseous
Phenomena by Combining Fast Volume and Scanline A-buffer
Techniques”, Proc. SIGGRAPH’90, pp. 357-366, 1990.

[7] M. Harris, A. Lastra, “Real-Time Cloud Rendering”, Proc.
Eurographics’2001, vol. 20, no. 3, pp. 76-84, 2001.

[8] H.W. Jensen, S.R. Marschner, M. Levoy, P. Hanrahan, “A Practical
Model for Subsurface Light Transport”, Proc. SIGGRAPH’01, pp.
511-518, 2001.

[9] J. Kajiya, B. Von Herzen, “Ray Tracing Volume Densities”, Proc.
SIGGRAPH’84, pp. 165-174, 1984.

[10] A. Kaufman, “An Algorithm for 3D Scan-Conversion of Polygons”,
Proc. Eurographics’87, pp. 197-208, 1987.

[11] J. Kniss, G. Kindlmann, C. Hansen, “Multi-Dimensional Transfer
Function for Interactive Volume Rendering”, IEEE Transactions on
Visualization and Computer Graphics, vol. 8, no. 3, pp. 270-285,
2002.

[12] J. Kniss, S. Premoze, C. Hansen, D. Ebert, “Interactive Translucent
Volume Rendering and Procedural Modeling”, IEEE Visualization
2002.

[13] J. Kniss, S. Premoze, C. Hansen, P. Shirley, A. McPherson, “A
Model for Volume Lighting and Modeling”, IEEE Transactions on
Visualization and Computer Graphics, vol. 9, no. 2, pp. 150-162,
2003.

[14] K.D. Lathrop, “Ray Effects in Discrete Ordinates Equations”,
Nuclear Science and Engineering, vol. 32, pp. 357-369, 1968.

[15] M. Levoy, “A Hybrid Ray Tracer for Rendering Polygon and
Volume Data”, IEEE Computer Graphics and Applications, vol. 10,
no. 2, pp. 33-40, 1990.

[16] T. Lokovic, E. Veach, “Deep Shadow Map”, Proc.
SIGGRAPH’2000, 2000.

[17] W.E. Lorensen, H.E. Cline, “Marching Cubes: A High Resolution
3D Surface Construction Algorithm”, Computer Graphics, vol. 21,
no. 4, pp. 163-169, 1987.

[18] N. Max, “Optical Models for Direct Volume Rendering”, IEEE
Transactions on Visualization and Computer Graphics, vol. 1, no. 2,
pp. 99-108, 1995.

[19] N. Max, “Efficient Light Propagation for Multiple Anisotropic
Volume Scattering”, Photorealistic Rendering Techniques, G. Sakas,
P. Shirley, and S. Mueller, eds. Heidelberg: Springer Verlag, pp.87-
104, 1995.

[20] R. Miyazaki, Y. Dobashi, T. Nishita, “A Fast Rendering Method of
Clouds Using Shadow-View Slices” Proc. CGIM 2004, pp.93-98,
2004

[21] T. Nishita, E. Nakamae, “An Algorithm for Half-Tone
Representation of Three-Dimensional Objects”, Information
Processing in Japan, vol. 14, pp. 93-99, 1974.

[22] T. Nishita, E. Nakamae, “Half-Tone Representation of 3-D Objects
Illuminated by Area Sources or Polyhedron Sources,” IEEE
Computer Society’s 7th International Computer Software &
Applications Conference (COMPSAC), pp.237-242, 1983

[23] T. Nishita, Y. Dobashi, E. Nakamae, “Display of Clouds Taking into
Account Multiple Anisotropic Scattering and Sky Light”, Proc.
SIGGRAPH’96, pp. 313-322, 1996.

[24] M. Nulkar, K. Mueller, “Splatting With Shadows”, Volume Graphics
2001.

[25] K. Perlin, E. M. Hoffert, “Hypertexture”, Proc. SIGGRAPH’89, pp.
253-262, 1989.

[26] H. Rushmeier, K. Torrance, “The Zonal Method for Calculating
Light Intensities in the Presence of a Participating Medium”,
Computer Graphics, vol. 21, no. 4, pp. 293-303, 1987.

[27] H. Rushmeier, “Realistic Image Synthesis for Scenes with
Radiatively Participating Media”, PhD Thesis, Cornell University,
May 1988.

[28] C. Soler, F.X. Sillion, “Fast Calculation of Soft Shadow Textures
Using Convolution”, Proc. SIGGRAPH’98, pp. 321-332, 1998.

[29] T. Whitted, “An Improved Illumination for Shaded Display”,
Communications of the ACM, Vol. 23, No. 6, pp. 343-349, 1980.

[30] L. Williams, “Casting Curved Shadows on Curved Surfaces”, Proc.
SIGGRAPH’78, pp. 270-174, 1978.

[31] A. Woo, P. Poulin, A. Fournier, “A Survey of Shadow Algorithm”,
IEEE Computer Graphics and Applications, vol. 10, no. 6, 1990.

[32] C. Zhang, R. Crawfis, “Volumetric Shadows Using Splatting”, Proc.
Visualization 2002, pp. 85-93, 2002.

[33] C. Zhang, R. Crawfis, “Shadows and Soft Shadows with
Participating Media Using Splatting”, IEEE Transactions on
Visualization and Computer Graphics, vol. 9, no. 2, pp. 139-149,
2003.

[34] Mueller, Klaus, and Roger Crawfis, Eliminating Popping in Sheet
Buffer-Based Splatting, IEEE Visualization '98, 1998.

