
Light Propagation for Mixed Polygonal  
and Volumetric Data  

 
 

Caixia Zhang*, Daqing Xue*, Roger Crawfis*  
The Ohio State University  

 
 
ABSTRACT 

Some applications require scenes mixing polygonal and 
volumetric objects and shadows make the scenes more realistic. 
This paper describes a shadow algorithm for mixed polygonal and 
volumetric data, including the generation of soft shadows for area 
light sources. Our volume shader leverages advanced graphics 
GPU for an accelerated and feasible solution. The shadow and 
soft shadow algorithm applies to all combinations of volumes and 
polygons, without any restriction on the geometric positioning and 
overlap of the volumes and polygons.  
    For realistic rendering where we have a high albedo 
participating media, multiple scattering is significant. We extend 
our algorithm to handle both multiple forward scattering and back 
scattering with light attenuation. This constitutes a complete 
system for shadow generation and light propagation. 
 
CR Categories and Subject Descriptors: I.3.3 [Computer 
Graphics]: Picture/Image Generation - Display Algorithms; I.3.7 
[Computer Graphics]: Three-Dimensional Graphics and Realism  
- Color, shading, shadowing and texture.  
 
Keywords:  visualization, shadows, soft shadows, multiple 
scattering, illumination 
 
1  INTRODUCTION 
A shadow is a region of relative darkness within an illuminated 
region caused by an object totally or partially occluding a light 
source. Shadows are essential to realistic images. In volume 
rendering, as the light traverses the volume, the light intensity is 
continuously attenuated by the volumetric densities. The 
generation of soft shadows for extended light sources is a difficult 
topic in computer graphics. It requires integrating the 
contributions of extended light sources for each point of 
illumination on an object.  
    Some applications require both volumetric and geometrical 
objects together in a single image. For example, geometrically 
defined objects may be surrounded by clouds, smoke, fog, or 
other gaseous phenomena. In this paper, we will generate shadows 
and soft shadows for a scene including both volumetric datasets 
and polygonal geometries using a texture-based volume rendering 
method.  
    For a high-albedo participating media, such as clouds, multiple 
scattering cannot be ignored. Here, we implement multiple 
forward scattering and back scattering, and incorporate the 
multiple scattering into our shadow algorithm. 
    In the following section, previous work is reviewed and 
motivation for this work is given. Section 3 discusses multiple 
scattering for high-albedo participating media. Section 4 describes 

our shadow algorithm for mixed polygonal and volumetric data, 
while Section 5 describes the soft shadow algorithm for a scene 
including both volumes and polygons. Conclusions and future 
work are given in Section 6. 

2 PREVIOUS WORK 

Our work is related to both light transport and the rendering of 
mixed polygonal and volumetric data. In this section, we will 
briefly summarize prior research in shadow algorithms, multiple 
scattering and rendering techniques for mixed volumes and 
polygons. 

2.1 Shadow Algorithms 

Earlier implementations of shadows focused primarily on hard 
shadows, in which a value of 0 or 1 is multiplied with the 
incoming light intensity. The shadow volume algorithm by Crow 
[3] introduces the concept of shadow volumes. A 2-pass hidden 
surface algorithm is proposed by Nishita and Nakamae [21,22] 
and Atherton et al. [1]. Williams [30] uses a z-buffer depth-map 
algorithm to generate shadows.  
    These shadow algorithms can only determine if a point on an 
object is in shadow or not, resulting in only binary values for the 
light intensity. These algorithms are not suitable for volume 
rendering. In volume rendering, as the light traverses through the 
volume, the light intensity is continuously scattered and 
attenuated by the volumetric material. Ray tracing offers the 
flexibility to deal with the attenuation of the light intensity and 
has been used to generate shadows for both surface 
representations [29] and volumetric datasets [4,9]. Lokovic and 
Veach [16] proposed the concept of deep shadow map to keep 
track of the light attenuation in the volume. For splatting, Nulkar 
and Mueller[24] have implemented an algorithm to add shadows 
to volumetric scenes using a 3D buffer. A new algorithm has been 
proposed to implement shadows and soft shadows using splatting 
that requires only a 2D buffer for each light source [32,33]. Kniss 
et al. [11,13] also utilize an off screen buffer to accumulate the 
light attenuation in their volume rendering using 3D texture 
slicing.  

2.2 Multiple Scattering 
For low albedo media, the scattering is insignificant compared to 
the light attenuation. However, for realistic rendering of high 
albedo participating media, for example, clouds or water vapor, 
multiple scattering is very important. Multiple scattering must 
account for scattering in all directions. It is more physically 
accurate, but much more complicated and expensive to evaluate.  
Max [18] gives an excellent survey of optical models, including 
multiple scattering. 
    The calculation of multiple scattering can be divided into four 
methods [18]: the zonal method, the Monte Carlo method, the P-N 
method and the discrete ordinates method. In the zonal method 
[26], the volume is divided into a number of finite elements which 
are assumed to have constant radiosity. This method is valid only 
for isotropic scattering. In the Monte Carlo method [27], a random 
collection of photons or flux packets are traced through the 

_______________________________________________________________ 
*{zhangc, xue, crawfis}@cse.ohio-state.edu 



volume, undergoing random scattering and absorption. The 
resulting images tend to appear noisy and/or take a long time to 
compute. The P-N method [2,9] uses spherical harmonics to 
expand the light intensity at each point as a function of direction. 
The discrete ordinates method uses a collection of M discrete 
directions, chosen to give optimal Gaussian quadrature in the 
integrals over a solid angle. Lathrop [14] points out that this 
process produces ray effects and presents modifications to avoid 
these ray effects. Max [19] describes an approximation to the 
discrete ordinates method, which reduces the ray effects by 
shooting radiosity into the whole solid angle bin, instead of in a 
discrete representative direction. 
    Recently, some research on approximate methods to multiple 
scattering has been examined to achieve real-time rendering. 
Harris and Lastra [7] provide a cloud shading algorithm that 
approximates multiple forward scattering along the light direction. 
Kniss et al. [12,13] use an empirical volume shading model and 
add a blurred indirect light contribution at each sample. They 
approximate the diffusion by convolving several random sampling 
points and use graphics hardware to do the volume rendering. All 
their work used slice-based methods. Some other work [4,5,20] 
also used slice-based techniques to calculate the scattering effects 
in volume. 

2.3 Rendering both Volumes and Polygons 

To render scenes mixing volumetric and polygonal models, the 
most common solution is to convert the polygonal and volumetric 
data into a common representation: either construct surface 
polygons from volume data [17] or change polygon data to 
volume data using 3D scan-conversion [10]. This conversion 
introduces artifacts and is generally expensive and inefficient. An 
alternative approach is to directly render both data types. Levoy 
has developed a hybrid ray tracer for rendering polygon and 
volume data [15]. Rays are simultaneously cast through a set of 
polygons and a volume data array, samples of each are drawn at 
equally spaced intervals along the rays, and the resulting colors 
and opacities are composed together in a depth-sorted order. In 
Levoy’s method, both volume and polygon objects are rendered 
using ray tracing. Ebert and Parent use another method which 
combines volume rendering and scanline a-buffer technique [6]. 
The scanline a-buffer technique is used to render objects 
described by surface geometries, while volume modeled objects 
are volume rendered. The algorithm first creates the a-buffer for a 
scanline, which contains a list of all the fragments of polygons for 
each pixel that partially or fully cover that pixel. Based on the 
scanline-rendered a-buffer fragments, the volume-modeled objects 
are broken into sections and combined with the surface-defined a-
buffer fragments. In their paper, the volumes are defined by 
procedural functions to model gaseous phenomena.  
 
    Our motivation is to implement multiple forward and backward 
scattering efficiently, and generate shadows and soft shadows for 
scenes of mixed polygonal and volumetric data. Our focus is on 
efficient volume rendering schemes such as 3D texture mapped 
approach. 

3 MULTIPLE SCATTERING 

In order to simulate light transport for participating media with 
high albedo, multiple scattering cannot be ignored. In this section, 
we will explain how we implement multiple scattering using a 
texture-based rendering method and incorporate it with the 
shadow algorithm by displaying clouds, a high albedo 
participating medium. The clouds are modeled as a collection of 
ellipsoids, and Perlin’s fractal function [25] is used to disturb the 
density distribution. Figure 2 shows the clouds with the light 
emanating behind it. The clouds look unnaturally dark, because 

only light attenuation is modeled.  In this section, we will explain 
our implementation of multiple scattering and its effects on the 
cloud appearance. 
   For multiple scattering, the light intensity at a point P is the sum 
of the direct energy from the light source that is not absorbed by 
intervening particles and the energy scattered to P from all other 
particles. Figure 1 is a schematic showing forward scattering and 
back scattering among particles. The calculation of multiple 
scattering requires accounting for the scattering from all 
directions. We let ),( ωPI be the intensity at each point P and 
each light flow direction ω , which can be expressed as: 

dsesgeIPI

sD

dttPDdttP ∫
⋅+

∫
⋅=

−−−−

∫ 00

)(

0

)(

0 ),()(),(
ωτωτ

ωωω    (1) 

where )(0 ωI is the original light intensity in direction ω , τ is 
the extinction coefficient of the participating media, D is the depth 
of P in the media along the light direction, and 
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represents the light from all directions 'ω  scattered into direction 
ω  at the point P. If we denote ωsP −  as x, then )',,( ωωxr  
is the bi-directional scattering distribution function (BSDF) which 
determines the percentage of light incident on x from direction 

'ω that is scattered in direction ω .  We can treat )',,( ωωxr  = 
)',()()( ωωτ pxxa ⋅⋅  [7, 18], where )(xa  is the albedo of the 

media at x, )(xτ  is the extinction coefficient of the media at x, 
and )',( ωωp is the phase function. 
    A full multiple scattering algorithm must compute this quantity 
for all light flow directions. This would be very expensive. Nishita 
et al. [23] take advantage of the strong forward scattering 
characteristics of many volumetric materials and limit the sampled 
light flow directions to sub-spaces of high contribution. Harris et 
al. [7] further approximate multiple forward scattering only in the 
light direction, resulting in good cloud images. However, they did 
not model back scattering. As pointed out by Max [18], without 
back scattering, the edges of very dense clouds are not illuminated 
properly. In this paper, we model both multiple forward scattering 
as well as back scattering and we approximate the multiple 
scattering along the light direction based on the strong forward 
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Figure 1: A schematic of light transport (a: forward scattering;       
b: forward scattering and back scattering) 



scattering characteristics of clouds for the purpose of efficient 
calculation. 
  
   We approximate the integration of (2) over a solid angle γ  
around the light direction.  Here, 'ω  is within the solid angle γ  
along the light direction l. 

AAA

A

dllxIllpxxag kk
f

k γγγ
γ

τ ),(),()()( ⋅⋅⋅= ∫         (3) 

BBB

B

dllxIllpxxag kk
b
k γγγ

γ

τ ),(),()()( ⋅⋅⋅= ∫                (4) 

    The above f
kg represents the forward scattering and b

kg is for 
the back scattering. Aγ  and Bγ  are solid angles for the forward 
scattering and the back scattering respectively. 

A
lγ

 and 
B

lγ are 
directions within Aγ  and Bγ . The subscript k here indicates that 
the values are from the slice k.  
    Now, assume we have accurately calculated the flux for each 
point in a plane perpendicular to the light direction. Let ),( lxI be 
the light distribution in a slice, the above formulas for f

kg and 
b
kg can be calculated using a convolution over the light intensity 

),( lxI . The convolution calculation is supported and easy to 
implement in texture-based rendering. This shows that multiple 
scattering can be modeled as light diffusion along the light 

direction. Kniss et al. [12,13] also use a convolution technique to 
model the light diffusion, but they only model multiple forward 
scattering. 
    If only multiple forward scattering is considered, we have the 
recurrence relation: 
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τ  is the transparency of slice k-1. The 
recurrence relation says the light incident on slice k is equal to the 
intensity scattered to slice k from the slice k-1 plus the direct light 
transmitted to the slice k. Here, 1−kg  is calculated using a 
convolution operation based on (3). 
    For multiple forward scattering, we just need to keep the 
intensity of the previous slice, then calculate the multiple forward 
scattering 1−kg using convolution over 1−kI and add it to kI . 
Figure 3 shows the clouds with multiple forward scattering only. 
The clouds look brighter than the clouds in Figure 2 without 
multiple scattering. 
    From the physical viewpoint, when the light is scattered 
forward, some light will scatter backwards. In Figure 1(a), P1 
receives energy from P2 by forward scattering, while in Figure 
1(b), P1 also gets energy from P3 by back scattering. In order to 
implement back scattering, we keep the light intensity of the 
slices which contribute to the current slice k. The light intensity 
stored is the sum of the direct light plus the multiple forward 
scattering. And the back scattering is calculated using a 
convolution operation based on (4). Once a slice obtains new 
energy from back scattering, it will add this to the stored light 
intensity, and then bounce back energy to its upper slice. This 
process continues until the slice k to be illuminated is reached. 
After the illumination, the total energy at the slice k is scattered 
forward to slice k+1. For the practical implementation, we 
maintain a limited number of slices, for example, three slices, and 
calculate their back scattering contribution on the current slice.  
    If we add back scattering to the clouds in Figure 3, we get the 
clouds in Figure 4. As pointed out by Max [18], as energy 
bounces around, the edges are brighter, as is the interior region of 
the clouds. 

4 SHADOW ALGORITHM COMBINING VOLUMES AND 
POLYGONS 

Based on the shadow algorithm for volumetric data [32], we can 
also generate shadows for scenes of mixed polygonal and 
volumetric data. We assume the polygons are opaque in this 
section to aid in our description of the algorithm.  

4.1 Shadow Algorithm 

Our shadow algorithm for mixed polygonal and volumetric data 
has two stages. First, the polygons are partially rendered with 
respect to both the viewer and the light source. For the second 
stage, texture-based rendering is used to render the volumes, and 
any relevant polygon information is composited into the scene 
slice by slice with proper shadow attenuations. The depth 
information from the rendering of opaque polygons is combined 
with the shadow buffer which stores the accumulated light 
attenuation to determine the shadow value. Illumination of both 
polygons and volumes is thus calculated during this second stage. 
Next we will explain our algorithm in detail. 
    The first stage is to render the polygons. Since our purpose is to 
generate shadows, the polygons are rendered with respect to both 
the viewer and the light source. At this stage, the light attenuation 
is not determined for the polygons, so no illumination is 
calculated and the intermediate rendering results are stored for 

 
Figure 2:  Clouds without multiple scattering 

 

 
Figure 3: Clouds with multiple forward scattering only 

 

 
Figure 4: Clouds with both multiple forward scattering 

and multiple back scattering 



final rendering. For the image generation, we store the z value 
with respect to the viewer into the z-buffer, and store the object 
color and normal into two textures. For the shadow generation, we 
save the z value with respect to the light into another texture. 
    The second stage is to render the volumes and composite the 
polygon information slice by slice. Similar to the shadow 
algorithm for volumes only [32], the volume is sliced along the 
half-way vector between the eye vector and the light vector, in 
order to keep track of accurate light attenuation information. The 
image buffer is aligned with the eye, and the shadow buffer is 
aligned with the light source (as shown in Figure 5). 
    Polygons in a volumetric scene can be surrounded by 
transparent air, or inside a semi-transparent volumetric 
participating media. If there are several volumetric datasets in a 
scene, we treat them as a single large volume. The positioning 
relationship between the polygons and the non-empty volume is 
shown in Figure 6, with respect to the slicing direction. Region 1 
can cast shadows through the volume, as well as on objects within 
region1. In region 2, volumetric shadows are needed as well as 
volumetric shadowing of interior polygons. For region 3, shadows 
are cast from the prior regions. 
    The polygons at different regions are processed in different 
ways. All the polygons in region 1 are rendered in one step. 
Whether a point is in shadow or not is determined by the depth 
value with respect to the light stored in the texture. After 
rendering the polygons in this region, the shadow of the polygons 
is used for the first volumetric slice.  
    The region 2 is rendered slice by slice. The contribution of the 
volume data at the current slice is composited into the frame 
buffer with the z-test enabled so that only the volume in front of 
the polygons is rendered. The polygons in region 2 are rendered 

slice by slice, because the light attenuation by the volumetric data        
changes slice by slice. Whether there are polygons in the current 
slice is determined by the depth information of the polygons. If 
there are polygons at the current slice, the part of the polygons in 
this slice is rendered. The contribution of the polygons in the 
current slice is composited into the frame buffer with the opacity 
set to 1.0 at the corresponding pixels. Similarly, the contributions 
of the volumes and the polygons in this slice on the light 
attenuation are composited to the accumulated shadow buffer 
aligned to the light source for the illumination of the next slice. In 
region 2, the shadow value of a pixel is determined by a 
corresponding pixel on the accumulated shadow buffer (as shown 
in Figure 5). 
    The polygons in region 3 are rendered in one step in a similar 
way to the polygons in region 1, but they are different in how they 
are shadowed. We cannot just use the shadow z-buffer to 
determine the shadow values for the polygons in region 3, since 
we need to consider the shadows cast by the volume in region 2. 
So, we use both the accumulated shadow buffer and the z-buffer 
to determine the shadow values for the polygons in this region. 
The opacity from the z-buffer is set to 1 or 0 depending on 
whether there is a polygon occluder. We then take the maximum 
opacity value as the shadow value for the pixels corresponding to 
the polygons in region 3. 
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half-way vector 
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the pixel to 
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Figure 5: A schematic of the slicing direction and the buffers 
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Figure 6: Position relationship between polygons and volume 
with respect to the slicing direction 
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Figure 7. Flow chart of the shadow algorithm combining volumes 
and polygons 



    The above shadow algorithm for mixed volumes and polygons 
applies to all the possible configurations of volumes and 
polygons, without any restriction on the geometric positioning and 
overlap of the volumes and polygons. For special cases, pure 
volumes are rendered in region 2, and pure polygons are rendered 
in region 1. 
    The region division aids in the efficiency of the algorithm. The 
polygons within only air can use a slice skipping technique and 
are rendered faster. We summarize the shadow calculation of the 
three regions in table 1. 
    The shadow algorithm combining volumes and polygons using 
texture-based rendering is demonstrated with the flow chart in 
Figure 7. 
 

Table 1. Shadow determination of three regions 
 

Region 1 Region 2 Region 3 
 

Shadow z-buffer 
Shadow z-buffer 

+ 
Volume slices 

Projective shadows 
+ 

Shadow z-buffer 
 
    In cases of semi-transparent polygonal objects, we cannot 
render the polygons in one step, because the light attenuation is 
accumulated slice by slice. Also, we cannot set the opacity to 1.0 
and use the depth stored in z-buffer to do z-test for the rendering 
of the volumetric data. So, the first stage, which renders the 
polygons first and stores the depth information with respect to the 
light into a texture and the depth with respect to the eye into the z-
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Figure 8: Bonsai tree and mushrooms (a) without shadows, (b) with shadows, (c) with soft shadows 
 

                       
    Figure 9: Bonsai tree and mushrooms                 Figure 10: Shadows of mushrooms                 Figure 11: Shadows of rings and a dart 
 

                       
 
   
 

Figure 12: A scene of a teapot inside a 
translucent cube 

Figure 13: A scene of a desk inside a 
smoky room   

Figure 14: An airplane flying above 
the clouds 



buffer, is unnecessary. Both the polygonal and volumetric objects 
are rendered slice by slice, with respect to both the eye and the 
light source, respectively. This is actually the case of pure region 
2. 

4.2 Shadow Results  

Using the above shadow algorithm, we have implemented 
shadows for scenes including both volumes and polygons. For 
Figures 8 – 14, please also see the color plate. 
    Figure 8 and Figure 9 show some polygonal mushrooms under 
the volumetric Bonsai tree. Figure 8(a) is the image without 
shadows and Figure 8(b) is with the shadows. The tree casts 
shadows on the bottom plate and the container as well as on the 
mushrooms. Compared with the image without shadows in Figure 
8(a), the shadows in Figure 8(b) provide the spatial relationship 
and make the scene more informative and realistic. In Figure 9, 
some mushrooms cast shadows on the bottom plate and the other 
three mushrooms are in the shadows of the Bonsai tree.  

 
 
Figure 15: A schematic of the light source, occluder, and the 
receiver 
 

 
 
Figure 16: A schematic of the shadow region with respect to the 
light source 
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Figure 17: A schematic of the slicing direction and the buffers for 
the soft shadow algorithm 
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Figure 18: The whole region rendered slice by slice 
 

 
Figure 19: Soft shadows of mushrooms 

 

 
Figure 20: Soft shadows of Bonsai tree and mushrooms 



    Figure 10 shows the shadows cast from three mushrooms. The 
mushrooms are represented as polygons, while the bottom plate is 
represented as volumetric data. We can see the polygonal 
mushrooms cast shadows on themselves and on the plate. Figure 
11 shows a scene in which a dart is pointing at the rings. Here, the 
dart is a polygon model, and the rings and the plate are volumetric 
data.  
    Figure 12 and Figure 13 are two scenes in which polygons are 
inside semi-transparent volumetric data. Figure 12 shows a 
polygon teapot inside volumetric translucent media. We can see 
the shadows cast by the teapot on itself and through the 
translucent media. In Figure 13, light comes into the room from 
the back and a polygon-defined desk resides in the smoky room. 
Here, the smoke is modeled using Perlin’s turbulence function 
[25]. 
    Our shadow algorithm for combining volumes and polygons 
also works for high-albedo media. In Figure 14, a polygonal 
airplane flies above clouds. The clouds are modeled with light 
attenuation and multiple scattering. 

5 SOFT SHADOW ALGORITHM COMBINING VOLUMES AND 
POLYGONS 

The generation of soft shadows requires integrating the 
contributions of extended light sources on the illumination of 
objects. Soler and Sillion [28] proposed a soft shadow algorithm 
using a convolution technique. A soft shadow algorithm for 
volumetric data using sheet-based splatting was implemented in 
[33]. The soft shadow algorithm is an analytic algorithm using 
convolution techniques. If the light source is parallel to the slices, 
the width of the penumbra region (as shown in Figure 15) is 
calculated using the formula:  

Z
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    The soft shadows are generated by convolving the shadows 
with respect to the center of the extended light source (in Figure 
16), which is generated using the shadow algorithm discussed in 
Section 4. In the soft shadow algorithm, the volume is still sliced 
along the half-way vector between the eye vector and the light 
vector (as shown in Figure 17). A virtual light source parallel to 
the slices is constructed and the shadow buffer is parallel to these 
slices (in Figure 17). The soft shadow algorithm is evaluated and 
possible artifacts are discussed for more general cases in [33]. 
    When there are polygons in the scene, we will render the 
polygons slice by slice in the same way as the volume, no matter 
where the polygons are (as shown in Figure 18). This is because 
the accumulated shadow buffer is convolved slice by slice, even 
for the pure polygons. So, we treat both the volumes and the 
polygons as a whole volume.  
    Similar to the shadow algorithm in Section 4, there are two 
stages for the soft shadow algorithm.  The first stage is mainly to 
render the polygons with respect to the viewer and store the depth 
information of the polygons into the z-buffer.  

At the second stage, texture-based rendering is used to render 
the volumes and polygons, and generate soft shadows slice by 
slice. In order to generate soft shadows for polygons, the polygons 
are not rendered in one step as in Section 4. Instead, they are 
rendered slice by slice using two clipping planes, regardless as to 
whether they are inside the volumetric material or not. Therefore, 
the range of the volume to be rendered slice by slice is determined 
by both volumes and polygons.  

    At each slice, the volumes in the current slice are rendered with 
the z-test enabled, and the part of the polygons belonging to the 
current slice is then rendered. Their contribution to the light 
attenuation is used to update the shadow buffer.  Then the updated 
accumulated shadow buffer is convolved to prepare for the next 
slice. Since the polygonal objects are modeled as the boundary 
polygons of the solid objects, we should use the stencil buffer to 
add the contribution of the solid polygonal objects to the shadow 
buffer for the convolution. In this way, we get realistic soft 
shadows. 
    For semi-transparent polygonal objects, the first stage is 
unnecessary, because the main function of the first stage is to keep 
the depth information with respect to the eye into the z-buffer for 
the z-test of the rendering of the volumetric data at the second 
stage. Now the rendering of the volumetric data cannot use z-test 
to do the z-culling. 
    We have generated soft shadows for scenes with both volumes 
and polygons, using the above soft shadow algorithm. For Figures 
19 and 20, please also see the color plate.  
    Figure 19 shows the soft shadows of the mushrooms. We can 
see the soft shadows have penumbra regions. Figure 8(c) and 
Figure 20 show the soft shadows of the Bonsai tree dataset and the 
mushrooms. In Figure 20, we can notice a higher degree of blur in 
the shadows of the regions farther from the plane, like the 
shadows of the top part of the tree, while the shadows of the two 
small components in front of the tree look pretty solid, since they 
are close to the plane. These soft shadows look more realistic than 
the hard shadows in Figure 10, Figure 8(b) and figure 9.  

6 DISCUSSION 

The rendering time using hardware-based 3D texture mapping 
depends on the size of the dataset and the number of the slices. All 
performance data is obtained using a PC equipped with a Pentium 
4 processor of 3.2 GHz and a Quadro FX 3000 graphics card with 
256 MB graphics memory. For the Bonsai tree dataset (2563) and 
the polygonal mushrooms in Figure 8, which are sliced with the 
interval at voxel spacing (256 slices for orthogonal and 442 slices 
for diagonal direction) and rendered to 512x512 images, the 
rendering time without shadows is 410ms, and the rendering time 
with shadows is 570ms. The calculation of shadows takes 39% 
longer rendering time. For the implementation of soft shadows, 
the rendering time is much longer (185s), due to the expensive 
convolution calculation. Currently, we create soft shadow by 
convolving all pixels in the shadow buffer using hardware-based 
convolution operation. We create the shadow buffer with the same 
size as the image resolution (512x512). Due to the intrinsic time-
consuming of convolution, soft shadow cannot be rendered in real 
time in our current implementation, considering the large number 
of convolution operations for each slice.  On the other hand, the 
resolution of shadow buffer can be much smaller than the image 
size without the significant loss of shading accuracy. This would 
improve the performance of soft shadow generation with 3-4 
times speedup if a shadow buffer with half size of image 
resolution is used.  

Since the volumetric dataset is loaded into graphics hardware 
memory as a 3D texture, the size of volume is limited by the 
texture memory on graphics hardware. The volume size could be 
as large as 512x512x512 (128 MB) to be loaded on our Quadro 
FX 3000 graphics card.  

Given a fixed light in eye space, our slicing scheme is not 
changed, in which all slices are either perpendicular to the 
halfway vector of light and eye vectors if light and eye are at the 
same side of the volume or parallel to the halfway vector if light 
and eye are the different side of the volume as in [13].  This static 
slicing scheme guarantees no visual artifacts like popping [34] 



due to switching slicing direction occur. On the other hand, if the 
light position is time-varying in eye space, the slicing direction 
will be changed accordingly.  The popping artifacts would occur 
if the light position changes abruptly and leads to the significant 
change of slicing direction for the neighboring frames. 

7     CONCLUSIONS 

In this paper, we first describe how to implement multiple 
scattering and incorporate multiple scattering with our light 
attenuation model. We use a convolution technique to 
approximate the multiple forward scattering and back scattering 
for clouds, a high albedo participating medium.  
     Based on the shadow and soft shadow algorithm for volumetric 
data [32,33], this paper extends the algorithm to generate shadows 
and soft shadows for scenes including both volumes and 
polygons. The polygons are first rendered with respect to both the 
eye and the light source, and the depth information is retrieved. 
Texture-based rendering is then used to render the volumes. 
During the volume rendering, polygons are composited into the 
volumes slice by slice in a depth-sorted order. We have 
implemented our shadow algorithm to include soft shadows 
combining volumes and polygons. This shadow algorithm handles 
all combinations of volumes and polygons, without any restriction 
on the geometric positioning and overlap of the volumes and 
polygons.  
    Now our shadow algorithm can generate shadows or soft 
shadows for point lights, parallel lights, projective textured lights 
and extended light sources [32,33]. Also, our algorithm can deal 
with both volumes (including volumetric datasets and 
hypertextured objects) and polygons, and combine multiple 
scattering and light attenuation model. Our shadow algorithm is a 
complete system for shadow generation and provides we believe 
the first such system for hardware-based volume rendering. 
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