
Area and Volume Coherence for Efficient
Visualization of 3D Scalar Functions

Nelson Max*†

Pat Hanrahan§

Roger Crawfis*

*Lawrence Livermore National Laboratory
Livermore, CA

†University of California
Davis, CA

§Princeton University
Princeton, NJ

Abstract filtered, sampled at the image raster, and composited in order
into the final image [10]. Contour surface effects may be
generated by density classification and gradient shading
methods applied directly to the lattice data [8–10], without first
generating contour polygons.

We present an algorithm for compositing a combination of
density clouds and contour surfaces used to represent a scalar
function on a 3-D volume subdivided into convex polyhedra.
The scalar function is interpolated between values defined at the
vertices, and the polyhedra are sorted in depth before
compositing. For n tetrahedra comprising a Delaunay
triangulation, this sorting can always be done in O(n) time.
Since a Delaunay triangulation can be efficiently computed for
scattered data points, this provides a method for visualizing
such data sets. The integrals for opacity and visible intensity
along a ray through a convex polyhedron are computed
analytically, and this computation is coherent across the
polyhedron’s projected area.

There are also many problems where data is not available
directly on a cubic lattice. In finite element analysis, more
general rectangular, prismatic, or tetrahedral elements may
arise. The geometry of a rectilinear lattice or finite element
mesh may become distorted during a simulation of elastic or
plastic deformation. A rectilinear lattice may be mapped by a
non-linear transformation to a curvilinear lattice in order to
represent a curved object. Finally, data values may be obtained
at scattered 3-D points which have not yet been connected by a
mesh of edges. Our algorithm is more general than the
algorithms based on lattices, and can deal with these types of
irregular data sets. Ray tracing can also be used to render
densities in irregular volumes, but can be expensive, and does
not take advantage of coherence within the volumes.

CR Categories: I 1.4, I 3.3, I 3.4, I 3.5, I 3.7

Additional Keywords: scalar function, scalar field,
volume density, opacity, compositing, volume rendering,
visibility sorting, density emitter.

Our goal was a method of rendering contour surfaces and
density clouds in the same image, which works on arbitrary
arrangements of data vertices, and which exploits coherency
when coarse data are interpolated. We achieved this by sorting
the polyhedra in depth, and then compositing them in depth
order, either back to front, or front to back. We have written a
subroutine to scan convert and composite the density cloud
inside a convex polyhedron, using analytic integration for the
color and opacity along the ray projecting to each pixel. We
have also written a surface shading, highlight, transparency,
and compositing algorithm for polygons. Finally, we have
written a procedure to slice a convex polyhedron into other
convex polyhedra by the planes defining a contour surface.
These are then in turn passed in the correct depth sorted order to
the volume compositer. If surface effects are desired at the
contour levels, the surface compositer can be called between
succesive calls to the volume compositor. By explicitly
computing precise contour polygons, we are following a very
different philosophy from that in [8–10] where surface effects
are computed directly from nearby values of the given function.

1 . Introduction

Three dimensional scalar functions can be visualized either
as contour surfaces or as semi-transparent volume density
clouds. The function values are traditionally available at
vertices on a 3-D cubic or rectangular lattice of voxels.

Contour surfaces can be polygonalized, by cutting a cube
with the contour surface [1–4]. The surface normals can be
interpolated from estimates of the gradient of the function, and
the polygons can then be shaded in a standard graphics
pipeline. If several transparent contours are desired, these
polygons must be sorted [5], or ray tracing must be used [6].

Ray tracing can also be used to render semi-transparent
density clouds, by sampling the scalar function at equally
spaced points along the ray (usually by trilinear interpolation
of the vertex data), and compositing the color and opacity [6–
9]. Alternatively, planes of the lattice can be transformed,

Goodsel, et al [6] and Levoy [11] have combined
polygonal data and lattice volume data together in one ray
traced image. Since our method involves subdividing the

volumes by polygonal surfaces, it can also produce such
images.

modelling glowing particles, as in the density emitter model of
Sabella [7]. Sabella assumes that the volume density ρ(x,y,z)
glows with an energy Cρ per unit length, and absorbs with an

optical density of τρ per unit length, where C and τ are
constants for any fixed material. If D is the total optical
density along a ray through an absorbing medium, then the
amount of light transmitted is exp(- D) (see Blinn [16]).

The scan conversion of a polygon or polyhedron takes
advantage of area coherence across its projection. In addition,
the analytic integration uses the coherence along the ray
segment, so we capitalize on volume coherence throughout
each polyhedron. This is much more efficient than tracing each
ray separately from one polyhedron to the next, and the
analytic integration is more accurate as well as faster than
interpolating and compositing multiple samples along a ray.
Upson and Keeler [9] discuss a compositing method using
coherence across homogeneous segments along the 1-D
projection of the 2-D polygon in which a scan plane intersects
a lattice cube. However, they still sample along a ray rather
than doing analytic integration, so they take advantage of only
one of the three dimensions of coherence. Our volume
coherence is particularly efficient where the polyhedra
involved project to a significant screen area. This occurs,
when the viewpoint is close to the object or when the volume
subdivision is coarse. However, for regular lattice data in
which each voxel projects to only a few pixels, the resampling
and compositing method of [10] is faster.

Suppose P(t) is a ray from the eye, parameterized by length
t, which enters a cloud volume V at P(a), and leaves it at P(b).
Then the total optical density of the cloud along the ray from

P(a) to P(t) is ∫ta τρ(P(u))du, so light starting from P(t) is

attenuated by a factor exp (- ∫ta τρ (P(u))du). The length dt of

the ray glows with energy Cρ(P(t))dt, so the total glow energy
from V reaching the eye is

I = ∫baCρ(P(t)) exp (- ∫taτρ(P(u))du)dt (1)

Also, the light entering the volume at P(b) is attenuated by the
factor

Our technique requires that the input polyhedra be sorted in
depth, so that whenever polyhedron A obscures B, B comes
later in the sort. Such a sort is trivial for a rectilinear lattice.
However, it is possible to fill a volume with a collection of
convex polyhedra including three, A, B, and C, such that A
obscures B, B obscures C, and C obscures A. If such cycles
occur, one of the polyhedra must be subdivided. In the current
system, we have not yet written a subdivision scheme, and
hope that cycles will not occur in practical data. We will
describe a simple algorithm which can detect such cycles if
they occur, and sort the polyhedra in time O (n) if they do not.
We note that the sort is always possible on the Delaunay
triangulation of a set of vertices. Therefore, on scattered data
with no other preferred triangulation, we can choose the
Delaunay triangulation and be sure that cycles will not occur.

Τ = exp(- D) = exp (- ∫baτρ(P(u))du).

The opacity α, as in [19], is 1-T.

Our algorithm composites the energy I for the polyhedra V
back to front by the formula

Color = I + (1-α)Color

and front to back by the pair of formulas

Color = Color+ (1-Alpha)I

Alpha = Alpha + (1-Alpha)α
In the next section we describe our model for light

propagation through the density clouds, and in the following
section, our method of computing analytically or with tables
the integrals resulting from the model. In section 4 we describe
the algorithm for scan converting a density cloud polyhedron,
in section 5, the subdivision at contour surfaces, and in section
6, the rendering of semi-transparent phong-shaded contour
polygons. Section 7 describes the depth sorting, and section 8
discusses the resulting images. Two papers by Shirley , et al
[12, 13] present similar ideas.

where Color and Alpha are accumulated values of color and
opacity. The front to back method requires additional raster
memory for the accumulated Alpha. As pointed out by Sabella
[7], the integrations give results equivalent to the limit of the
compositing schemes of [6], [8–10], when the voxel size or
sample spacing approaches zero.

The values of C and τ, and therefore I and α, may be

wavelength dependent. In practice, we take C and τ to be
vectors with three components, red, green, and blue. In a
common model of opaque scattering or emitting particles, τ is
independent of wavelength. We treat this case separately,
since we can then save on the computation of exponentials.

2 . Cloud Illumination Models

There have been several computer graphics papers on the
scattering, transmission, and shadowing of light propagating
through clouds of particles. Kajiya and Von Herzen [14],
Rushmeier and Torrence [15], Blinn [16], and Max [17,18] all
suggest methods of correctly accounting for the shadowing, but
the computation required is prohibitive. Instead, we chose to
ignore the shadowing entirely, and only occlude the light on
the way to the viewer, after a single scattering. This leads to
the following very simple illumination calculation. We model
light as ambient illumination shining equally from all
directions, and not shadowed along its path to any scattering
particle. Under these assumptions, the result is the same as

The modelled density ρ may be set equal to the scalar
function f. For greater flexibility in visualization however, we
allow ρ to be any non-negative integrable function σ of the

scalar function f. For example, if σ is a step function we can
render contoured bands of cloud density. Sabella [7] estimated
the integral (1) by sampling along a ray, but in fact, its
calculation can be reduced to that of the integral of σ, as
described in the next section.

3 . Calculation of cloud intensity In order for the integrals to take this simple form, C and τ
must be constants, and cannot be interpolated across the
polyhedra. If we wish different C and τ values at different
ranges of f values, we must subdivide the polyhedra at the
contours of f dividing these ranges. This is in contrast to [10],
where a voxel may contain a mixture of materials, and thus
have a weighted average of material properties like C and τ. To
allow such mixtures, we have an option which interpolates C
and τ, and approximates the correct integral by using the

average values of C and τ along a ray in formulas (2) and (3).

Suppose we can tabulate or compute analytically the

indefinite integral S(t) = ∫t0σ(u)du. Suppose also that f varies

linearly along the ray from A=P(a) to B=P(b) in the volume V.
This is the case in our implementation since we interpolate f
trilinearly across regions of the polyhedron V, in a 3-D
analogue of the bilinear interpolation used for Gouraud
shading. Under these assumptions we may write

f(P(u)) = f(A) + (f(B) - f(A)) (u-a)/(b-a)

 = gu+h
In our first implementation, we defined σ to be linear over

succesive intervals of f values, allowing discontinuities
between intervals. We subdivided the polyhedra at the breaks
between the f intervals. This is not really necessary since
formulas (2) and (3) work for general σ, but it simplifies the

calculation of ∫baσ(f(P(u)))du to the trapezoid area formula

.5(b-a)(σ(f(B)) + σ(f(A))). In practice, contour surfaces,

contours of changing color C, contours of changing τ, and

contours between stretches where σ is linear, are all taken to
coincide, so the subdivision of polyhedra does not become
excessive.

where g = (f(B)-f(A))/(b-a) and h = f(A) -ga. Then the integral
for optical density is

 D = ∫ba τρ(P(u))du = τ∫ba σ(f(P(u))du = τ∫ba σ(gu+h)du

 =
τ
g ∫

gb+h

ga+h
 σ(v) dv =

τ
g (S(gb+h) - S(ga+h))

 =
τ
g (S(f(B)) - S(f(A)))

Also, by the chain rule,

d
dt exp(- ∫taτρ(P(u))du) 4 . Scan converting and shading polyhedra

=
d
dt(- ∫

t
aτρ(P(u))du) exp (- ∫taτρ(P(u))du) Consider a convex polyhedron V in screen coordinates,

projected orthogonally onto a convex region R in the (x,y)
plane. The region R is covered twice by faces of V: once by
those facing the viewer, and once by those facing away. If we
scan convert R twice, linearly interpolating z and the scalar
function f for the front and back surfaces of V, we have the data
necessary to compute I and α as in the previous section. This
is accomplished by a standard scan line algorithm, using y
buckets for the edges, and two independent x sorts of the scan
line intersections of the edges, from the front and back
polygonal networks. The algorithm is further optimized to
take advantage of the simplicity in the projection of a convex
polyhedron.

= - τρ(P(t)) exp (- ∫taτρ(P(u))du)

so the integral of equation (1) simplifies as

 I = ∫baCρ(P(t)) exp(- ∫taτρ(P(u))du)dt

= -
C

τ
 ∫ba(- τρ(P(t)) exp (- ∫taτρ(P(u)))du)dt

= -
C

τ
 ∫ba

d
dt exp (- ∫taτρ(P(u))du)dt

For each polygon, all the edges are entered into y buckets
at the first scan line they intersect, and these are used to update
both x-sorted lists of edges from one scan line to the next.
Profile edges must be entered into both lists. Since each
network covers R exactly once, the edges of a given network
never cross each other. Therefore if the edges are entered
correctly from the y buckets into the x-sorted lists, the sort
need never be checked thereafter.

=
C

τ
 (1 - exp (- ∫baτρ(P(u))du))

=
C

τ
 (1 - exp (-

τ
g(S(f(B)) - S(f(A))))).

Thus,

α = 1 - T = 1 - exp(- D)
The x, z, and f values are maintained incrementally for

each edge from one scan line to the next. Then, separately for
the front and back networks, z and f are interpolated across the
intervals between edge intersections, and saved in separate
pairs of scan line buffers. The integrals (2) and (3) for I and α
are then computed from these buffers, giving coherence over
the whole projection of the region. The relation between the
front and back surfaces only comes into play in this last
integration step. There is never any need to subdivide into
smaller homogeneous spans corresponding to the same front-
and back-facing polygons. Once I and α are determined, the

 = 1 - exp (-
τ
g(S(f(B)) - S(f(A)))) (2)

and

I =
Cα
τ

. (3)

Note that the exponential function needs to be evaluated only
once to obtain I and α, when the color C is wavelength

dependant but the opacity τ is not.

scan line of the polyhedron is composited onto the previous
image.

We can use this technique directly on triangulations. For
more general polyhedral subdivisions, we divide the cells
containing contours into tetrahedra. For each polyhedron, a
quick test is done to determine whether any of the contour
surfaces pass through it. If not, the polyhedron is simply
passed on to the renderer. If a polyhedron contains a contour
surface, the polyhedron is split into tetrahedra and the
tetrahedra are passed to the contouring algorithm for tetrahedra
in back to front order.

A less accurate but much faster alternative is to interpolate
I and α directly across the homogeneous regions onto which
the same front- and back-facing polygons project. Since I and
α are zero along the profile, they need only be computed at the
intersections of edge projections in the interior of R. This
scheme is particularly advantageous on systems like the IRIS
220 GTX, which have hardware assist for linearly interpolating
and compositing “r g b α” images across polygons. However,

it less accurate, because I and α are non-linear functions of the
cloud volume thickness along a ray. Perhaps quadratic or cubic
interpolation across Bezier triangles [20] would provide
superior results.

For rectilinear and curvilinear meshes, we use an odd/even
scheme for splitting a cube into tetrahedra. In this scheme,
cubes are divided into five tetrahedra. There is a central regular
tetrahedron spanning the four cube vertices where the sum of
the lattice indices is even, and four other tetrahedra joining a
face of the central one to the other four vertices with odd index
sums. Each cube face is subdivided by a diagonal joining its
two even vertices. This produces two differently oriented
subdivisions on the odd and even cubes and assures consistency
between adjacent cubes. Thus contour surfaces defined on two
adjacent subdivided cubes will meet continuously without
holes.

For perspective projections, the vertices are first
transformed into screen coordinates from which they can be
projected orthogonally. This transformation maps planes into
planes [21], so the z values can be linearly interpolated. To get
the world coordinate length inside a volume region, the screen
values are transformed back into world coordinates.

Other methods of splitting the polyhedra are possible.
One such method would be to use a marching cubes algorithm
[1] to determine a triangulated contour surface that passes
through a cube. This triangulated surface may split the
polyhedron into non-convex pieces, but our sorting and
compositing scheme requires that the polyhedra be convex.
Therefore, the volumes must be split successively at the plane
of each contour triangle into smaller convex pieces. This
algorithm has the advantage of generating a small number of
polyhedra for the most common cases. For multiple contour
surfaces, it is possible for the slice planes defined for one
contour to intersect those defined for another. This may
produce many small volumes and contour surface pieces which
must be processed further to determine the appropriate optical
properties.

The trilinear interpolation of f described above is ad-hoc,
and depends on the orientation of V and its projection onto the
picture plane. For a general convex polyhedron, there is no
obvious way to interpolate values of f given at the vertices.
However, if V is a tetrahedron, there is a unique linear function,
g, independent of orientation, which matches the values of f at
the vertices. To see this, write g(x,y,z) = ax+by+cz+d. The
specified data values at the four vertices give four linear
equations of the four unknowns; a, b, c and d. Since the four
vertices of a non-degenerate tetrahedra do not lie on the same
plane, these four equations have a unique solution.

If W is any subvolume of V, obtained by slicing with
contour planes and defining new vertex values by interpolation
across sliced edges, then the trilinear interpolation on W
described above for orthogonal projection will agree with g
restricted to W. But the transformations for perspective are
non-linear, and destroy this property. Therefore, we allow the
user to specify a more accurate perspective option, which
interpolates f in world coordinates, instead of in screen
coordinates.

6 . Shading contour polygons

The contour polygons to be shaded are scan converted with
the standard sort of scan-line algorithm as described above,
with the unit normals at the vertices also bilinearly
interpolated across the polygon and renormalized for shading.
For rectangular lattices, the normal for a contour vertex can be
interpolated from the gradients of f at lattice vertices. These
gradients can in turn be estimated from finite differences of the
values of f at adjacent vertices. For subdivisions into
tetrahedra, we can estimate the gradient at a vertex by
averaging the gradients for the tetrahedra meeting at the vertex.
In section 4, we showed how to define a unique linear function
g=ax+by+cz+d, with gradient (a,b,c), matching the values of f
at a tetrahedron's vertices.

5 . Subdivision of Polyhedra About Isocontours

To enhance the visualization, sharp changes in the
properties of the clouds are desired at user specified thresholds.
Thus, we allow the specification of contour values about which
the polyhedra can be divided and given differing optical
properties. For generality and topological consistency (i.e.,
no surface holes between adjacent polyhedra), we have chosen
to subdivide any polyhedron known to contain a surface
corresponding to an isocontour into tetrahedra. We have seen
that a linear function on a tetrahedron is uniquely defined by
function values on its vertices. Thus any contour surface
through a tetrahedron is a planar surface, and does not need to
be subdivided into triangles. Since multiple contour planes
crossing a tetrahedron are all parallel, it is simple to determine
the order in which the various volume and surface slices should
be passed to the rendering routines.

We bilinearly interpolate the normal vectors given at the
vertices and then renormalize to a unit vector, but have two
options for the calculation of the highlights. Let N be the
normal vector at a pixel, and H be the unit vector halfway
between the viewing direction V and the lighting direction L.
Then the first option computes the highlight intensity from
the dot product of H and N. This method is particularly fast
when H is a constant, which is the case when the viewpoint and
light are both at infinity. We always assume the light is at
infinity, but even for a perspective view with a finite

viewpoint, we offer a fast shading option assuming V is
constant. This assumption would result in constant highlights
across flat polygons. For more accurate highlights we have a
second option, which computes the vector V separately for
each pixel. In this case, if there are multiple light source
directions, Li, it is faster to compute a single vector R in the

direction at which a flat mirror normal to N would reflect the ray
along V, and find the highlight for each light source from the
dot products of R and Li.

adjacent cells connecting them, so that each cell is in front of
the next across a common face.

To sort the cells in front to back order we first determine
relative priorities of adjacent polyhedra. This is done by
comparing the viewpoint to the plane of the face dividing a
pair of adjacent polyhedra. Since the polyhedra are convex,
this plane separates the polyhedra — that is, they must lie
entirely on opposite sides of the plane. The frontmost
polyhedron is the polyhedron that is on the same side of the
plane as the viewpoint. Relative priorities can be constructed
in time proportional to the total number of faces. These
relative priorities are stored in a directed graph, with a directed
edge from A to B if A and B share a common face and A is in
front of B. Note that the priority graph changes whenever the
viewpoint changes.

For semi-transparent glass appearance on the contour
surface, we use the same transparency formulation as for the
cloud density. The length that a ray of unit direction V spends
inside a glass surface with normal N and thickness t is t/(V.N).
If the glass has optical density τ per unit length, the

transparency is exp(- τt/(V.N)). This becomes zero when V and
N are perpendicular, at the surface profile. Since we do not
subdivide to get an accurate profile, the transparency could
instead become zero at a line in the interior of a polygon when
some of the vertex normals point towards the eye, and some
point away. Therefore, we do not use the interpolated normals
in this computation, but instead interpolate the transparency
computed at the vertices. This also saves computing an
exponential, dot product, and divide at every pixel.

The second step topologically sorts the priority graph
into a single priority list ordered from front to back. The
topological sort will always succeed as long as the directed
graph does not contain cycles. Such cycles would correspond
to a cycle of polyhedra, each of which is in front of and
adjacent to the next. Furthermore, the sort can be performed in
time proportional to the number of edges k in the graph (which
equals the number of faces in the subdivision). As described in
Knuth [24], topological sorting can be done in linear time by
keeping track of the number of active incoming edges at every
vertex in the graph. All the vertices with no incoming edges
are placed in a queue. Vertices are successively removed from
this queue and placed on the priority sorted list. When they are
removed, all their neighbors along outgoing edges are
examined. For each neighbor the count of active incoming
edges is decremented, and if the count goes to zero, then all the
neighbors which have priority over it have been output, so it is
placed on the queue to be output. If the queue becomes empty
before all polygons are listed, there must be a cycle in the
graph. Otherwise, the algorithm will determine a priority sort
in O(k) time.

7 . Depth-Sorting Polyhedral Subdivisions

List-priority algorithms have been used for hidden surface
removal since the ’60’s (Schumacher [22], Newell et al. [5]).
The basic idea is to draw filled polygons from back to front
into a framebuffer so that the front ones overwrite the ones
behind them. Newell’s algorithm determined the priority order
on a frame by frame basis by comparing the overlap of
polygons from a given point of view. Schumacher’s algorithm
precomputed a priority graph. This graph was then
topologically sorted and every polygon given a number. The
sort was such that once back-facing polygons were removed,
the remaining polygons were always ordered from back to front
based on the preassigned numbers. Schumacher’s algorithm
also used separating planes to partition convex clusters. This
is a forerunner of binary space partition (BSP) trees [23]. All
these methods allow a collection of polygons to be quickly
sorted from back to front given any viewpoint.

A special case of the general space subdivision is a
triangulation. In 3D, a triangulation is a decomposition of
space into a set of tetrahedra. Tetrahedral subdivisions are nice
because the number of face adjacencies is always 4 and, as
mentioned previously, they allow well-defined interpolation
formula.

Most modern graphics hardware performs hidden surface
elimination using a z-buffer so these algorithms are not
commonly used for that task. However, if polygons are to be
drawn with transparency, the list priority algorithms are still
the best known way to draw the scene because transparency
calculations can be reduced to compositing operations, if the
surfaces are drawn in the proper order.

A special triangulation is the Delaunay triangulation.
This is the dual of a decomposition of space into Voronoi
polyhedra. The Voronoi diagram is defined given a set of
points in space. Each point is surrounded by a polyhedron
defined as the locus of points which are nearer that point than
any other point in the set. The union of all these polyhedra are
the Voronoi diagram [25,26]. The vertices of the dual – the
Delaunay triangulation – are the original set of points, and a
tetrahedron joining four points in the set belongs to the
triangulation only if the sphere circumscribed about the four
points contains no other point in the set. Delaunay
triangulations can be computed in O (n log n + k) time [26],
where n is the number of vertices, and k is the number of faces
of the triangulation. The tetrahedra tend to be well-behaved and
not long and skinny. Thus, Delaunay triangulations are
conveniently generated from point sets and these
triangulations are useful grids for finite element calculations,
or when scattered data points are given without any other
preferred grid.

We are interested in sorting a cell subdivision in three
dimensions in back to front order or front to back order for
compositing. For simplicity, we describe below an algorithm
giving a front to back order. Each cell is assumed to be a
convex polyhedron with planar faces. We will assume that the
face adjacencies are given. That is, given a polyhedron and one
of its faces, we can find the polyhedron opposite the face in
constant time. Assume also that the plane equation of the face
is available. For simplicity, we will also assume the
subdivision is space-filling so there are no holes. This means
that if one cell hides another, there is a sequence of pairwise

Delaunay triangulations also have another remarkable
property recently proved by Edelsbrunner [27]: “Given a
viewpoint, the tetrahedra comprising a Delaunay triangulation
can always be sorted in back to front order.” This property
makes these triangulations a useful representation for volume
rendering, since the topological sort described above will
never find cycles.

against a checker board background. Figure 5 shows two
isocontours of equal density for a super-deformed state in the
nucleus of Th238. The data for this image was generated on the
Cray XMP supercomputer using a Hartree-Fack calculation by
Cecill Eggens and Mort Weiss. This image took two minutes
to generate. The data sets were generated on a 17x17x27
regular grid, requiring several hours of Cray X/MP time.

Edelsbrunner and Barry Joe [personal communication]
have recently simplified the proof of this fact, using a function
g(V,A) of a 3-D point V and a tetrahedron A in the Delaunay
triangulation, defined as follows. Let the sphere S(A)
circumscribed about the tetrahedron A have center C(A) and

radius r, let d be the distance from V to C(A), and let g(V,A) = d2

- r2. If V is outside of S(A), g(V,A) is the square of the length
of the tangent from V to S(A).

Figures 7 shows a Hipip (high potential iron protein)
molecule from last years data set tape. The data is defined on a
64x64x64 grid courtesy of Louis Noodleman and David Case at
the Scripps Clinic. Here we have zoomed in on two clusters of
iron chains. Figures 8 and 9 show two views of the electron
density of superoxide dismutase. One uses a color and opacity
mapping to change the colors without doing contouring, while
Figure 9 adds explicit contouring and light surfaces. The data is
courtesy of Duncan McRee of the Scripps Clinic.

We show below that if A and B are two adjacent tetrahedra,
and V is on the same side of the plane of their common face as
A, then g(V,A) < g(V,B). If we take V to be the viewpoint, this
ordering relation can be used to build the directed graph
described above, and also to prove there are no cycles. For if
there were a cycle of adjacent tetrahedra, A, B, … Z, each in
front of and adjacent to the following one, then g(A,V)
< g(B,V) < … < g(Z,V) < g(A,V), which is a contradiction.

Acknowledgements

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National
Laboratory under contract No. W-7405-Eng-48. Support for
this research came from the Institution Research and
Development funds at Livermore, and from NFS grant No.
DMS–861562–01 at the University of Minnesota, Geometry
Supercomputer Project .

To prove this ordering property, consider the difference
h(V,A,B) = g(V,A) - g(V,B). Since g(V,A) and g(V,B) have the
same quadratic terms, this is a linear function in the coordinates
of V. Also, if V lies on the plane P of the common face,
h(V,A,B) = 0, since a tangent from V in this plane to the circle
circumscribed about the common face is also tangent to both
spheres S(A) and S(B).

The authors would like to thank Michael Laszlo, John
Sullivan, and Allan Wilks for their software to construct
Delaunay triangulations in 3D and for Anna Farr for her work in
getting that software to work in our environment. Thanks to
David Dobkin and Bernard Chazelle for pointing out
Edelsbrunner’s paper on sorting triangulations; and to Herbert
Edelsbrunner for discussions about his result. We would also
like to thank Jeff Kallman, Jane Wilhelms, and Alan Van
Gelder for useful conversations, Charles Grant and Anna Farr
for proofreading, Gerri Braswell for typing, and Robert
Shectman and LCC for last minute help in getting final images
developed.

To show that h(V,A,B) is positive when V is on the “B
side” of plane P, consider the vertex D of B which is not on
plane P. Since D is on sphere S(B), g(V,B) = 0. By the
defining property of the Delaunay tetrahedron A, however, D
must be outside the sphere S(A). Therefore g(D,A) > 0, so
h(D,A,B) > 0.

8 . Results

 Figure 1 shows the effect of the scan converting on a test
problem defined as a decreasing function radiating from a circle
in the center of the data set. A torus-like cloud can be seen,
when this function is mapped to density. Figure 2 shows the
same test data with a sharp contour introduced. Values above
the contour value are less opaque than the values below the
contour value, and different colors are given to the clouds
above and below the contour surface. With Figure 3, we add a
specular-reflective surface to the image. The surface is partially
opaque and the decreasing scalar field can be seen behind it. All
of these images were generated from a small data set of 4096
cubes using one CPU of a Stellar 2000 at a resolution of 500 by
500 pixels. The computation and compositing of the color and
opacity were vectorized over scan lines. The approximate
times to generate the images are respectively, 24, 42, and 48
CPU seconds. As can be seen, the cost of contouring is
substantial due to the number of additional polyhedra generated
and the loss of coherency.

Figure 4 shows an image of the test data with two contour
surfaces, one partially opaque and one completely opaque,

References [14] Kajiya, James T. and Von Herzen, Brian P., Ray Tracing
Volume Densities. Computer Graphics Vol. 18 No. 3
(July 1984, Siggraph ’84 Proceedings) pp. 165-174[1] Lorenson, William E., and Cline, Harvey E., Marching

Cubes: A High Resolution 3D Surface Construction
Algorithm. Computer Graphics Vol. 21 No. 4 (July
1987, Siggraph ’87 Proceedings) pp. 163-169

[15] Rushmeier, Holly E. and Torrance, Kenneth E., The
Zonal Method for Calculating Light Intensities in the
Presence of a Participating Medium. Computer
Graphics Vol. 21 No. 4 (July 1987, Siggraph ’87
Proceedings) pp. 293-302

[2] Wyvill, Geoff, McPheeters, C. and Wyvill, Brian, Data
Structures for Soft Objects. The Visual Computer Vol.
2 No. 4 (1986) pp. 227-234

[16] Blinn, James, Light Reflection Functions for
Simulation of Clouds and Dusty Surfaces. Computer
Graphics Vol. 16 No. 3 (July 1982, Siggraph ’82
Proceedings) pp. 21-29

[3] Bloomenthal, Jules, Polygonization of implicit
surfaces. Computer Aided Geometic Design Vol. 5
(1988) pp. 341-355

[17] Max, Nelson, Atmospheric Illumination and Shadows.
Computer Graphics Vol. 20 No. 4 (August 1986,
Siggraph ’86 Proceedings) pp. 117-124

[4] Bloomenthal, Jules and Wyvill, Brian. Interactive
Techniques for Implicit Modeling. Computer
Graphics Vol. 24 No. 2 (March 1990, Proceedings
1990 Symposium on Interactive 3D Graphics) pp.
109-116 [18] Max, Nelson, Light Diffusion through Clouds and Haze.

Computer Vision, Graphics, and Image Processing
Vol. 33 (March 1986) pp. 280-292[5] Newell, M.E., Newell, R.G., and Sancha, T.L., A New

Approach to the Shaded Picture Problem. Proceedings
of the ACM National Conference (1972) pp. 443-450 [19] Porter, Thomas and Duff, Tom, Compositing Digital

Images. Computer Graphics Vol. 18 No. 3 (July
1984, Siggraph ’84 Proceedings) pp. 253-259[6] Goodsell, David S., Mian, I. Saira, and Olson, Arthur J.

Rendering volumetric data in molecular systems.
Journal of Molecular Graphics Vol. 7 No. 1 (March
1989) pp. 41-47

[20] Max, Nelson, Smooth Appearance for Polygonal
Surfaces. The Visual Computer Vol. 5 No. 3 (June
1989) pp. 160-173

[7] Sabella, Paolo, A Rendering Algorithm for Visualizing
3D Scalar Fields. Computer Graphics Vol. 22 No. 4
(August 1988, Siggraph ’88 Proceedings) pp. 51-55

[21] Newmann, William M., and Sproull, Robert F.,
Principles of Interactive Computer Graphics, Second
Edition. McGraw Hill, New York (1979) pp. 361-363

[8] Levoy, Marc, Display of Surfaces from Volume Data.
IEEE Computer Gaphics and Applications Vol. 8 No.
3 (May 1988) pp. 29-37

[22] Schumacher, K. A., Brand, R., Gilliland, A.M., and
Sharp, A.W., Study for Applying Computer
Generated Images for Visual Simulation. U.S. Air
Force Human Resource Laboratory Technical Report
AFHRL - TR - 69-14 (1969)

[9] Upson, Craig and Keeler, Michael, V - BUFFER:
Visible Volume Rendering. Computer Graphics Vol.
22 No. 4 (August 1988, Siggraph ’88 Proceedings)
pp. 59-64 [23] Fuchs, Henry, Kedem, Zvi M., and Naylor, Bruce F., On

Visible Surface Generation by A - priori Tree
Structures. Computer Graphics Vol. 14 No. 3 (July
1980, Siggraph ’80 Proceedings) pp. 124 - 133

[10] Dreben, Robert A., Carpenter, Loren, and Hanrahan,
Pat, Volume Rendering. Computer Graphics Vol. 22
No. 4 (August 1988, Siggraph ’88 Proceedings) pp.
65-74 [24] Knuth, Donald E., The Art of computer Programming

Volume 1: Fundamental Algorithms. 2nd Edition.
Addison-Wesley Reading, MA (1973)[11] Levoy, Marc, A Hybrid Ray Tracer for Rendering

Polygon and Volume Data. IEEE CG&A, Vol 10 No. 2
(March 1990) pp. 33-40 [25] Preparata, Franco P. and Shamos, Michael I,

Computational Geometry: An Introduction. Springer
Verlag, New York (1985)[12] Shirley, Peter and Tuchman, Alan, A Polygonal

Approximation to Direct Scalar Volume Rendering,
(in this issue) [26] Edelsbrunner, Herbert, Algorithms in Computational

Geometry. Springer-Verlag, Heidelburg (1987)

[13] Williams, Peter L. and Shirley, Peter, An A Priori Depth
Ordering Algorithm for Meshed Polyhedra, CSRD
Technical Report #1018, University of Illinios,
Champaign-Urbana (1990)

[27] Edelsbrunner, Herbert, An Acyclicity Theorem in Cell
Complexes in d Dimensions. Proceedings of the
ACM Symposium on Computational Geometry
(1989) pp. 145 - 151

Figure 1. Four views of sample torus test data: no contouring,
contouring, light shading, and culling.

Figure 2. Test data with two contours and three differrent cloud
properties.

Figure 3. Proton density of Th238. Data courtesy of Cecill
Eggens and Mort Weiss, LLNL.

Figure 4. HIPIP electron orbital calculation. Data courtesy of
Louis Noodleman and David Case, Scripps Clinic.

Figure 6. SOD enzyme with light shaded isocontours.Figure 5. X-ray crystallography of SOD enzyme. Data courtesy
of Duncan McRee, Scripps Clinic.

