

Real-time Slicing of Data Space

Roger A. Crawfis1

Lawrence Livermore National Laboratory
P.O. Box 808, L-301

Livermore, CA 94551
crawfis@llnl.gov

Abstract This can be a costly operation. When the data is arranged
according to its three-dimensional coordinates, calculating the
contour surfaces requires examining each data cell. Avoiding
this inherently slow traversal of the entire data set is one of the
primary goals of this paper.

Real-time rendering of iso-contour surfaces is problematic
for large complex data sets. In this paper, an algorithm is
presented that allows very rapid representation of an interval
set surrounding a iso-contour surface. The algorithm draws
upon three main ideas. A fast indexing scheme is used to select
only those data points near the contour surface. Hardware
assisted splatting is then employed on these data points to
produce a volume rendering of the interval set. Finally, by
shifting a small window through the indexing scheme or data
space, animated volumes are produced showing the changing
contour values. In addition to allowing fast selection and
rendering of the data, the indexing scheme allows a much
compressed representation of the data by eliminating "noise"
data points.

The geometric representation of an isosurface can produce
a very large display list of triangles, normals, and associated
information. Volume rendering [10] avoids the costly
calculation and more importantly the storage of an isosurface.
Several different techniques have been developed over the past
several years for volume rendering. Baining Guo [8], Fujishiro,
et. al. [7] and Max et. al. [18] describe techniques for
segmenting a volume into discrete intervals that can then be
volume rendered. Guo focuses mainly on extracting thin layers
(interval sets) near an iso-contour surface using alpha shapes
which can then be rendered using tetrahedral projection volume
rendering techniques.

Keywords A rough approximation to a contour surface can also be
achieved using volume rendering with a transfer function for
the opacity that is non-zero only near the contour value. This
paper presents a technique to rapidly shift such a transfer
function across the possible data values, resulting in time-
dynamic slicing of the data space. This paper merges ideas from
iso-surface generation and volume rendering. The next two
sections discuss the related work in each of these areas. A
detailed description is then given for the fast volume rendering
of data space slices. The mechanism used to animate these data
slices is then presented, followed by some application results
and conclusions.

Isocontour, iso-surface, contour surface, volume
rendering, splatting, animation, data partitioning, interactive,
real-time, scientific visualization, compression.

Introduction
Computer simulations of fluid flow, the atmosphere, and

other phenomena generate large amounts of data containing
three-dimensional scalar fields. Typical techniques for
examining these scalar fields are isocontour surfaces and
volume rendering. Contour surfaces can be approximated by a
set of triangles [15, 19] that are passed down for rendering.
These triangles can then be stored and re-rendered for different
view points. With accelerated graphics hardware, this rendering
can be fairly interactive. Changing the contour value (the value
of the scalar field defining the surface), however, requires
traversing the data set and generating a new set of triangles.

Rapid Iso-surface Extraction
Several researchers have examined different aspects of

generating efficient iso-contour surfaces. Here, I will
summarize work developed to aid or avoid the traversal (search)
of the data set for contour surface fragments. Wilhelms and Van
Gelder[29] use octrees to aid in the search for iso-contour
surfaces in regular or curvilinear grids. Each octree node stores
the minimum and maximum data values of the subvolume below
it. When calculating an iso-contour surface, the octree is
traversed and branches whose minimum and maximum lie to
one side of the contour value can be safely skipped. For data
sets with large regions of empty space or uninteresting data

1Current address:

The Ohio State University,
395 Dreese Laboratory,
Columbus, OH 43210-1277
crawfis@cis.ohio-state.edu

Production Editor's Note
Additional information concerning this paper can be found in PAPERS/crawfis/readme.mac or PAPERS/crawfis/readme.txt.

Roger A. Crawfis
Presented at the IEEE Visualization '96 conference in San Francisco, October 27 thru November 1, 1996.

values, this can provide a substantial speed-up over the
straight-forward approach of examining each data cell. For data
varying widely or containing high frequencies, this approach
is less-advantageous.

image using the technique of Westover [28]. Since this
splatting technique deals with each data point independently,
no information about cell connectivity is required for data
defined on a regular grid.

Saito [21] describes algorithms for real-time previewing
of 3D scalar fields. He constructs prioritized lists of graphics
primitives to represent a specific iso-contour surface. The data
is resampled hierarchically leading to a prioritized set of
points. The points are distributed uniformly in 3D space rather
than based on data. Accurate rendering of a surface would require
traversing the entire list of primitives, and insuring an adequate
sampling of the 3D space.

This paper presents a method to very quickly ascertain the
data points in an interval set for volume rendering via
splatting. Most volume rendering techniques require a back-to-
front or front-to-back sorting of the data. In the case of ray-
tracing, the sampling is either feed-forward or feed-backward.
For regularly gridded data, a simple traversal of the 3D array in
a back-to-front order is trivial. For this application, we are
only concerned with interval sets with a relatively small
thickness. Hence, only a fraction of the possible data sets may
contribute to the overall image. For fast selection of the
desired data points, the data needs to be ordered according to the
desired data value as in Ihm and Lee.

Shen and Johnson [22] present a technique to accelerate
the traversal of cells within a finite-element or unstructured
mesh. They create two data structures for indexing the cells.
The minimum and maximum data values for each cell (tetrahedra
in their implementation) are first calculated. A minimum list is
created that sorts the cells using the minimum data values. A
sweeping list is also calculated and sorted using the maximum
data values. The minimum list has pointer references to the
corresponding cells in the sweeping list, while the sweeping
list has a flag indicating whether the minimum is below the
contour value. These flags are easily updated (incrementally) by
traversing the minimum list until a cell with a minimum greater
than the contour value is encountered. A binary search is used
on the sweeping list to find the first cell with a maximum value
greater than the contour value. All cells after this cell with their
flag set (indicating the cell has a minimum below the contour
value) are then candidates for contour surface calculations. This
allows Shen and Johnson to quickly determine the cells that
contribute to a contour surface, avoiding a full traversal of the
data set. A high gradient, even in one cell, can still require a
lengthy traversal of the maximum list.

One final observation is needed before proceeding with the
algorithm presented in this paper. Max, et. al. [17] provide an
algorithm for the fast generation and display of smoke through
a vector field. For this application, they proved that given a
homogenous color for the smoke, the order of rendering is
immaterial. In other words, no back-to-front or front-to-back
sorting is required for density clouds employing only a single
color. Since we are interested in representing data "close" to a
contour surface, a constant color is also a reasonable choice
here.

Fast Volume Rendering of Data Slices
Combining the result of Max, et. al., previous work on

hardware assisted splatting [3, 4] and the ideas presented in
Shen and Johnson [22] and Ihm and Lee [9] leads us to a very
simple algorithm for representing and rendering "thin" interval
sets. The algorithm is simply to maintain a sorted list of data
values along with their corresponding coordinate positions.
Given any contour value, data points within a specified
tolerance of this contour value can easily be determined using
binary search on the sorted list. This usually small set of data
points are then splatted to the screen using a constant color and
opacity by the technique described in [3]. It should be noted,
that there is nothing special about the contour specification or
using thin slices. The data organization and splatting will work
for arbitrary ranges of data values. The splatting will
reconstruct and project the data values within that range. Since
they are all a homogeneous color, the sorting order can safely
be ignored. The slices can potentially limit the number of data
points to a very small fraction (one-hundredth or less). This
then allows for animation through even the largest data set.
The rest of this section describes implementation issues and
user parameters.

Related Volume Rendering Background
Volume rendering can produce either density clouds or the

appearance of shaded surfaces. For shaded surfaces, the voxels
in a volume are colored according to a shading formula based on
the gradient of the field. (See Levoy [13]). Once a shaded
volume is generated there are many techniques for volume
rendering it [6, 18, 20, 23, 24, 27]. Traditional volume
rendering is computationally expensive, precluding real-time
interaction with the data set. Several techniques have been
explored to accelerate volume rendering. Work similar to that
on octrees for isosurfaces has been investigated by several
authors [5, 11, 12, 14]. Yagel and Shi [30] describe a technique
for leaping directly to the first voxel that may contain the
contour surface. All of these techniques preserve the three-
dimensional lattice structure of their data. More efficient
indexing schemes can be found by organizing the data
according to the values. In constructing the list, the user specifies the desired range

of values that are of interest. Since in many applications
certain values are of little significance, these values can be
discarded. The algorithm traverses the data set once, creating a
sorted list of only those values that fall within the user's
desired range.

Ihm and Lee [9] present an algorithm for efficient volume
rendering of regular grids, that organizes the data according to
its values, rather than their coordinates. Their algorithm is
only for regular grids and targeted towards medical data where a
few key data values or material classifications are used. The
entire data set is represented three times: once for each major
axis. Each axis is then subdivided into slice planes. Within
each slice plane, the data values and their corresponding
locations within the slice are ordered into discrete buckets
according to the data values. For each view, the appropriate set
of slices are traversed in a front-to-back or a back-to-front order
and all data values within a specified range are splatted into the

This linear list is encapsulated into a C++ class, extending
the Open Inventor [26] graphics classes. The sorted list is
stored as an array of four component vectors. The first three
components specify the 3D coordinates, while the last
coordinate specifies the data value. The coordinate boundaries
are also specified in the members, bboxMin and bboxMax, as

Material

SoListSplat

SoSelectOne

SoCalculator

SoTimeCounter

SoCalculator

Color

contourValueLookup Index

Loop Counter

Color Table

contourValue

Figure 3 . Scene Graph for animating interval sets.

two three-dimensional vertics. The desired contour value is also
specified as is the thickness of the interval set.

Figure 2. shows the user interface of the Explorer module.

Only changes to the parameters Range Min and Range
Max requires traversing the data and rebuilding the list. The
other parameters simply change the selection or redraw
attributes and, as is evident in the video, take affect instantly.
In the control widget of Figure 2, data values in the range 35.0
to 60.0 are of interest to the user. The contour value is set to
37.0, and the delta is set to a value of 4.0, selecting data points
with values between 35.0 and 41.0. An arbitrary color and
opacity can be specified in the textual box.

On each redraw, four operations are performed. The
viewing transformation is inquired and a new rotation matrix is
determined to orient the volume with projection space. The
rendering pipeline is then initialized for any global settings -
blending functions, specification of the texture splats, etc. The
list is then traversed. A binary search is performed to find the
entries one delta before and one delta after the desired contour
value. All of the entries within the resulting range are then
individually rendered using a single texture mapped square
containing the reconstruction function of Crawfis and Max [3]
in the alpha channel. Each splat is drawn in the desired color,
with the desired transparency and scaled by a user parameter,
Splat Size below. All of these options can be set by the user of
the C++ class, or by the user of the IRIS Explorer [1] module.

This leads to a fairly powerful and fast technique. For large
data sets, the rendering of a moderate number of texture splats
can require times greater than a half a second, disrupting the
smooth rotation and analysis. Since for these very large data
sets, the texture splats typically project to a small number of
pixels, a quick and dirty solution is to use semi-transparent
point primitives. A second Splat Type is provided for this
function. In addition to having faster hardware rendering times,
the points do not require any transformations to orient them
parallel to the screen and can be cached for future redraws, hence
they offer a substantial speed-up over the textured splats.
Interactive exploration is thus possible with the point splats,
while a more accurate representation can then be generated
using the texture splats. The video clips show the use of point
splats in slicing through a one million data point problem at
interactive rates.

Figure 2 . IRIS Explorer Control Panel

Finally, applying this technique to curvilinear and
unstructured meshes allows a somewhat crude but useful
exploration of the data space within those meshes. The
reconstruction properties of splatting on a regular grid break
down for these mesh topologies, and the user has to take care in
examining these results. The ability to quickly index and
represent the data allows for a rough examination of the data.
Higher quality tools such as isocontour generators can then be

applied to focus on certain regions of contour values. Figure 10
shows the SoListSplat class applied to a finite-element
calculation of fluid flow past a cylinder.

(corresponding to a typical 256 entry color table). The
Frequency dial specifies how many times per second the timer
should loop through its steps. A value of 1.0 will force the
timer to increment 256 times per second. A value of 0.1 only
fires 25.6 times per second and takes ten seconds to complete a
cycle (swing) through the data values. The Step widget allows
the timer to count by increments larger than one. Hence, a Step
of 8 and a frequency of 0.5 will try to update and redraw the list
16 times per second. The accompanied video shows several
segments of real-time animation of the interval sets.

Animating the Interval Sets
As previously stated, one of the goals of this work is to

allow rapid enough calculation and display of the interval sets
for interactive exploration or real-time animation. Changes in
a contour surface's shape from one value to another
incrementally larger or smaller value is useful for understanding
the 3D characteristics of the field. To allow for fast changes in
the specified contour value, we employed Open Inventor
engines [25]. It would be slightly more efficient to embed the
animation controls into a new C++ subclass, but the flexibility
of the Open Inventor engines proved more valuable. Sliding
the contour "window" through the specified data range allows
us to animate the data slicing. A SoTimeCounter engine
connected to a SoCalculator engine will produce new contour
values at specified time intervals. Connecting the output of the
SoCalculator to the SoListSplat's contourValue member allows
for smooth animation of the interval sets. Keeping the color
constant throughout this animation makes it difficult for the
user to distinguish the relative values at each time step. By
providing a color table and an SoSelectOne engine, we can
modify the color (and transparency) as the contour value
changes. Figure 3. shows a resulting scene graph that will loop
through contour values. The SoTimeCounter will generate a
redraw command at periodic intervals.

Memory Issues
The simple data structure used in this algorithm can lead to

a significant reduction in the memory used for visualizing the
data. For the percent cloudiness in a global climate simulation,
keeping only the data values above twenty-five percent
cloudiness selects roughly one tenth of the total data points.
The sorted linear list requires the storage of the (x,y,z) or (i,j,k)
components with each data value, hence the savings for regular
grids may be diminished. For data sets having each dimension
smaller than 256, the (i,j,k) coordinates can fit into three
bytes. However, if the user selects the entire range of data
values, the space requirements can be greater than the raw data
for regular grids. In practice, the fraction of points is typically
around one-tenth. Table 1 lists several data sets, number of
nodes in the data set, the maximum and selected data ranges, the
number of nodes within that range and the resulting percentage
of nodes selected. The actual storage costs will depend on the
data types and mesh topology. For regular grids, the i,j,k
positions need additional storage, whereas for unstructured
grids this storage is needed regardless.

The SoTimeCounter could be used as the Lookup Index for
the color, provided the color table has the same number of
entries as the steps in the SoTimeCounter. Simply looping
through the data values leads to distracting jumps from the end
of the range to the beginning. For smoother animations, the
data values are made to "swing" by placing a cosine term in the
Calculator for the contourValue. The color table can follow this
nonlinear path through the data values by hooking the
SoCalculator for the contour value to the SoCalculator for the
Lookup Index. The second SoCalculator then maps the data
values into the color table. This is shown by the thin line in
Figure 3.

The percentage figures in Table 1 support the claim that
usually 90% of the data is uninteresting. For the HIPIP data,
interesting data values lie both in the large negative range as
well as the high positive range, accumulating upto 25% of the
data. For the Climate Data, it should be noted that 90% of the
data range gives a ten fold compression. For very large data set,
where even the interesting data becomes unwieldy, this
selection mechanism can be used to focus on small logically
coherent portions of the data at a time.

Figure 4 shows a modified control panel for the IRIS
Explorer module similar to Figure 2 Here, the Animate button is
selected and the color specification has been replaced with two
new widgets. The color specification is now being taken from
an input port on the module. By default, the timer has 256 steps

Application Results
This algorithm has been applied to several data sets. With

even the largest data set, the Global Climate model, real-time
slicing through the data values is possible on our old 100MHz
R4400 Onyx/VTX. Figure 5 shows a volume rendering an
interval set of the flow magnitude through an idealized HEPA
filter. Figure 6 represents the percent cloudiness in a global
climate simulation. A rather large delta is used to give an
overall feel for the scalar variable. Under interactive
exploration, a sudden "popping" was noticed when we cycled
through interval sets. By redefining the range and setting the
delta to a very small increment, it was easily determined that
there is a sudden increase in grid points with 100 percent
cloudiness. This variable is also interesting in that isosurfaces
generally do not produce very meaningful representations, due
to the high frequency of the data. Figure 7 and 8 illustrate the
technique applied to proton density. Figure 7 uses texture
splats for the interval set whereas Figure 8 uses point splats.
OpenGL [2] allows point sizes greater than a single pixel, and
the points splats typically use sizes greater than 10 pixels
wide. The data slicing brings out the regular grid of the

Figure 4 . IRIS Explorer Control Panel - Animation set

simulation, which can either be beneficial or distracting.
Figure 10 shows high values of vorticity in a finite-element
simulation of fluid flow past a post, on an unstructured grid.

sets. Furthermore, the algorithm makes no assumptions about
the data, representing only the raw data.

Future WorkThe video accompanying this paper highlights the
interactive speed of this technique. For the Global Climate
model, a mesh of 320 by 160 by 19 is used generating close to
a million data points. The algorithm can cycle through rather
thick data slices using textured splats at slightly over a frame a
second on an SGI Onyx/VTX running with R4400 at 100Mhz.
We hope to soon upgrade this hardware to faster CPU's and
graphics engines, allowing real-time exploration of this data
set. This is our slowest application data. All of the other data
sets listed above give real-time performance. Even the SOD
data with slightly more data points than the climate model can
be cycled through data slices in real-time.

The performance and useful results of this algorithm would
be ideally suited for integration into a CAVE or virtual-reality
environment. It is hoped that this goal can be accomplished in
our next project. Time can be thought of as another dimension.
The data structure presented here could be used to index through
time as well. Here, a fixed range of values could be selected for
each time slice, or the data could be arranged in an array of
SoListSplat's with time as the array index. The textured splats
are significantly slower than the point splats. A future goal is
to look into the performance of the texture splats and optimize
them. The Range Min and Range Max specification is used for
the bounds in the animation. In practice, it would be better to
specify the animation range separately. Furthermore, it would
be better to allow different disconnected ranges to be specified
for data sets like the Hipip data set. For curvilinear and
unstructured data sets, the splatting algorithm used here is not
accurate. The work by Mao, et. al.[16] should be incorporated
to sample these topologies accurately enough for a correct
representation. Finally, the quicksort routine, qsort, is used in
creating the sorted lists. The efficiency of this routine looks
promising enough to depth sort the selected points at each
redraw and splat the points in back-to-front order. This would
allow color and shading into the volume renderer.

Conclusions
An algorithm for rapid selection and representation of

scalar field data defined on regular grids has been presented. It
allows for the fast selection of new intervals within the data
field. The algorithm is suitable for fast cycling through the data
space of a simulation. Its simplified data structure allows for
substantial compression of the data, and a rudimentary
representation of non-regular grids or even scattered data sets.

The blazing speed of this technique and the compact nature
of the sorted list are ideally suited for applications with high
demands for interactivity, such as within a virtual reality
setting. It is also useful for off-loading reasonable data sets
from very large simulations on massively parallel
supercomputers. After the user garners a quick overview with
this technique, slower, more quantitative techniques can be used
to render the data in more detail. These techniques can even be
included in the same representation, as is evident from the
images and the video, by performing the volume rendering last
and testing but not setting the z-buffer during the splatting
process. (See Crawfis and Max [3].

Acknowledgments
I am indebted to the many people who provided the data

used in the visualizations presented in this paper. The climate
data is courtesy of Jerry Potter, the Program for Climate Model
Diagnosis and Intercomparison at Livermore, and the European
Centre for Medium-range Weather Forecasts. The finite-element
data is courtesy of Mark Christon. The astrophysics shock
wave data is courtesy of Richard Klein. The Hipip and Sod data
are from the Chapel Hill Volume Rendering Test Data Set I and
are courtesy of the Scripps Clinic. The HEPA filter data is
courtesy of Bob Corey. I would also like to thank Nelson Max,
Rebecca Springmeyer and Torsten Möller for many helpful
comments. This work was performed under the auspices of the
US Department of Energy by Lawrence Livermore National
Laboratory under contract number W-7405-ENG-48.

The use of animation to rapidly cycle through the data
space has been shown to be a valuable technique in
understanding a scalar field. Details that would be hard to
discern from isocontour surfaces or even traditional volume
rendering become clear using motion through the data space
dimension.

While the algorithm represents data within a given range,
it does so in discrete space rather than on a reconstructed
continuous representation of the scalar field. Areas of high
gradient can thus be missed with small intervals. As such, the
algorithm does not truly represent interval sets or contour
surfaces. It should properly be considered as a slice plane
through data space. Its interactive speeds outweighs the
disadvantages of the imprecise contour surfaces or interval

Data Set # o f ver t i ces Data Min/
User Min

Data Max /
User Max

ver t i ces
w/in range

percentage

HIPIPH 262,144 -0.56/ 0.006 0.58/ 0.58 29,111 11%
HEPA 718,911 0 / 40 71.8 / 71.8 67,667 9.4%

Climate 972,800 0.0 / 0.1 1.0 / 1.0 94,798 9.7%
Post 16,096 0.0 / 2.0 16.8 / 16.8 1,498 9.3%
SOD 1,091,444 0.0 / 70.0 255 / 255 12,976 1.2%

Shockwave 1,728,000 0.0 / 10.0 71.05 / 71.05 8,356 0.5%

Table 1 . Various compression ratios for different data sets.

References
18. Max, N., P. Hanrahan, and R. Crawfis, Area and Volume

Coherence for Efficient Visualization of 3D Scalar
Functions. Computer Graphics, 1990. 2 4 (5): p. 27-33.

1. IRIS Explorer User Guide. 1995: Numerical Algorithms
Group Ltd. 19. Nielson, G.M. and B. Hamann. The Asymptotic Decider:

Resolving the Ambiguity in Marching Cubes. in
Visualization '91. 1991. Boston, Massachusetts: IEEE
Computer Society Press.

2. Board, O.A.R., et al., OpenGL Programming Guide.
Release 1 ed. 1993, Reading, MA: Addison-Wesley. 516.

3. Crawfis, R. and N. Max. Texture Splats for 3D Vector and
Scalar Field Visualization. in Visualization '93. 1993. San
Jose, CA: IEEE Computer Society Press.

20. Sabella, P., A Rendering Algorithm for Visualizing 3D
Scalar Fields. Computer Graphics, August 1988. 2 2 (4): p.
51-58.

4. Crawfis, R., N. Max, and B. Becker, Vector Field
Visualization. Computer Graphics and Applications,
1994. 1 4 (5): p. 50-56.

21. Saito, T. Real-time Previewing for Volume Visualization.
in 1994 Symposium on Volume Visualization. 1994.
Washington, D.C.: ACM Press.

5. Danskin, J. and P. Hanrahan. Fast Algorithms for Volume
Ray Tracing. in Proceedings of the 1992 Workshop on
Volume Visualization. October 1992. New York: ACM
SIGGRAPH.

22. Shen, H.-W. and C.R. Johnson. Sweeping Simplices: A
Fast Iso-surface Extraction Algorithm For Unstructured
Grids. in Visualization '95. 1995. Atlanta, GA: IEEE
Computer Society Press.

6. Drebin, R.A., L. Carpenter, and P. Hanrahan, Volume
Rendering. Computer Graphics, August 1988. 2 2 (4): p.
64-75.

23. Shirley, P. and A. Tuchman, A Polygonal Approximation
to Direct Scalar Volume Rendering. Computer Graphics
(San Diego Workshop on Volume Visualization), Nov.
1990. 2 4 (5): p. 63-70.

7. Fujishiro, I., Y. Maeda, and H. Sato. Interval Volume: A
Solid Fitting Technique for Volumetric Data Display and
Analysis. in Visualization '95. 1995. Atlanta, GA: IEEE
Computer Society Press.

24. Upson, C. and M. Keeler, V-BUFFER: Visible Volume
Rendering. Computer Graphics, August 1988. 2 2 (4): p.
59-64.

8. Guo, B. Interval Set: A Volume Rendering Technique
Generalizing Isosurface Extraction. in Visualization '95.
1995. Atlanta, GA: IEEE Computer Society Press.

25. Wernecke, J., The Inventor Mentor. Release 2 ed. 1994,
Reading, MA: Addison-Wesley. 514.

26. Wernecke, J., The Inventor Toolmaker. Release 2 ed.
1994, Reading, MA: Addison-Wesley. 301.9. Ihm, I. and R.K. Lee. On Enhancing the Speed of Splatting

with Indexing. in Visualization '95. 1995. Atlanta, GA:
IEEE Computer Society Press. 27. Westover, L., Footprint Evaluation for Volume Rendering.

Computer Graphics, August 1990. 2 4 (4): p. 367-376.
10. Kaufman, A., ed. Volume Visualization. . 1991, IEEE

Computer Society Press: Los Alamitos, CA. 479. 28. Westover, L. Interactive Volume Rendering. in
Proceedings of the Chapel Hill Workshop on Volume
Visualization. May 1989. Chapel Hill, NC.11. Laur, D. and P. Hanrahan, Hierarchical Splatting: A

Progressive Refinement Algorithm for Volume Rendering.
Computer Graphics, July 1991. 2 5 (4): p. 285-–288. 29. Wilhelms, J. and A. Van Gelder, Octrees for Faster

Isosurface Generation. ACM Transactions on Graphics,
1992. 1 1 : p. 201-227.12. Levoy, M., Efficient Ray Tracing of Volume Data. ACM

Transactions on Graphics, July 1990. 9 (3): p. 245-261.
30. Yagel, R. and Z. Shi. Accelerating Volume Animation by

Space-Leaping. in Visualization '93. 1993. Boston,
Massachusetts: IEEE Computer Society Press.

13. Levoy, M., Display of Surfaces from Volume Data. IEEE
Computer Graphics and Applications, May 1988. 8 (5): p.
29-37.

14. Levoy, M. and R. Whitaker, Gaze-Directed Volume
Rendering. Computer Graphics, March 1990. 2 4 (2): p.
217-223.

15. Lorensen, W.E. and H.E. Cline, Marching Cubes: A High
Resolution 3D Surface Construction Algorithm. Computer
Graphics, July 1987. 2 1 (4): p. 163-169.

16. Mao, X., L. Hong, and A. Kaufman. Splatting of
Curvilinear Volumes. in Visualization '95. 1995. Atlanta,
GA: IEEE Computer Society Press.

17. Max, N., B. Becker, and R. Crawfis. Flow Volumes for
Interactive Vector Field Visualization. in Visualization
'93. 1993. Los Alamitos, CA: IEEE Computer Society
Press.

Figure 8. Interval set of proton density using
Point Splats

Figure 7. Interval set of proton density using
Texture Splats

Figure 10. Animated slices through a finite-
element mesh.

Figure 9. Interval set of HIPIP using Texture Splats

Figure 6. Interval set of percent cloudiness
Figure 5. Interval set of velocity magnitude through

idealized HEPA filter.

