
Direct Volume Visualization of Three-Dimensional Vector Fields

Roger Crawfis
Nelson Max

Lawrence Livermore National Laboratory
PO. Box 808 / L–301

Livermore, CA 94551
(crawfis@llnl.gov)
(max2@llnl.gov)

Abstract

Current techniques for direct volume visualization offer only the
ability to examine scalar fields. However most scientific
explorations require the examination of vector and possibly tensor
fields as well as numerous scalar fields. This paper describes an
algorithm to directly render three-dimensional scalar and vector
fields. The algorithm uses a combination of sampling and
splatting techniques, that are extended to integrate the display of
vector field data within the image.

Additional Keywords: vector field, flow field, volume rendering,
vector filter, compositing, scalar field, climate modeling.

Introduction

The rendering of three-dimensional scalar fields has received
much attention over the past several years. These 3D scalar fields
can be represented using either isocontour surface reconstruction
algorithms, or as semi-transparent density clouds. With isocontour
surfaces, intermediate geometry is produced and processed using
the normal geometric pipelines developed during the last few
decades. Thus, additional geometric objects such as axes, vectors
or additional isocontours (from possibly different scalar fields)
can be easily added to the display of the isocontour.

Unfortunately, this is not the case for volume density clouds.
Shirley and Neeman [Shirley89] and Levoy [Levoy89] discuss the
integration of separate geometric objects using raytracing. The
sorting required at each sample point makes this algorithm
infeasible for a large number of geometric objects, such as that
produced by the display of many tiny vectors.

Max, Hanrahan and Crawfis [Max90] demonstrate how to
incorporate geometric surfaces into their back-to-front
compositing of volume polyhedra. This was limited to isocontour
surfaces, and also required splitting the polyhedron up into several
pieces and shipping each individual piece to the volume renderer.
Lately, projective techniques have been developed that use a
geometric description of the cloud density within each voxel

[Westover90], [Wilhelms91], [Laur91]. While these techniques
are geometrically based, they require passing the polygons to the
geometry pipeline in a back-to-front order.

Research into the display of three-dimensional flow has also been
explored over the past few years. Various algorithms to represent
the flow via ribbons have been developed. Helman and Hesselink
[Helman91] and Globus et. al. [Globus91] have developed
algorithms to display critical points within the flow field. These
algorithms and the standard vector or hedgehog plots have no
direct way of being combined with the direct volume visualization
methods recently developed.

Particle systems [Reeves85] can be used to represent both scalar
([Max90], [Sabella88]) and vector fields ([van Wijk91], [van
Wijk90]). Vector fields require an advection of the particles for
each time step, and usually involve creating and deleting particles
as time progresses. Unfortunately, these algorithms are quite
computationally intensive, and the number of particles required
for this purpose would be prohibitive. Kajiya [Kajiya89] also
made allusions to representing vector fields using algorithms
developed for the display of hairy surfaces. This technique is
limited to the display of the vector flow upon a surface and is very
computationally expensive, requiring several hours of CPU time
per image. Spot noise [van Wijk91] offers an interesting technique
for visualizing flow fields, but is again limited to the flow over a
surface. and is also computationally expensive.

Our goal was to render the relationship between turbulent flow
fields and scalar density fields throughout a three-dimensional
volume. This was driven by a requirement to visualize the cause
and effect relationship of clouds and winds within global climate
models [Potter91]. Global climate modeling produces a time
history of data, each time step of which needs to be rendered. We
have investigated the use of high frequency textures to represent
vector fields in two-dimensions [Crawfis91]. Here, an anisotropic
texture is derived from the vector field. Time dynamics are then
created by simply regenerating an anisotropic texture at each time
point. Since we recognize frequency, but not phase, in patterns
and textures, a smooth flow is created that provides the illusion of
motion in an animation, without requiring any advection. A
method that does use advection on the same climate data is
described in [Max92]. We have extended our research of two-
dimensional vector filters into three-dimensions, and incorporated
the integration of a scalar field with the compositing of the vector
field to accomplish our goals.

Our technique for representing vector fields is to create a very
fine-grained texture representation of the flow. Individual vectors,
insignificant individually, combine to form a useful picture of the

Roger A. Crawfis
Reprinted from "Proceedings 1992 Workshop on Volume Visualization", Boston (October 1992), ACM Press, pp. 55-60. Some color images are different.

V

i

j
P

u

np

Figure 2. Determining Pixel values

overall flow of the field. We have developed a filter which can be
used to sweep through a volume image in back-to-front order. The
kernel of this filter can be used to represent both scalar and vector
quantities for two- and three-dimensional data sets. The basic
algorithm to render a two-dimensional vector field passes a vector
kernel filter across the resultant image. The kernel deposits an
anti-aliased line over the width of its domain. Each individual line
is composited in using the OR operator, and its orientation is
based on a sampling of the vector field. By carefully controlling
the movement of the filter, highly dynamic flow fields can be
represented (Figure 5).

Filter Movement

A key criterion for good texture generation of the vector field is to
avoid patterns caused by the regular movement of the filter, or the
regular spacing of the data. Three options to overcome these
patterns are available. Within the filter kernel, the center point (P
in Figure 2) through which the vector passes is randomly chosen
(Figure 3a). The major reduction in patterns comes from
controlling the movement of the entire filter. The filter is moved
with random jitters in its increment to prevent the regular spacing
apparent from the clipped edges of the vectors (Figure 3b) Finally,
the filter is moved in increments smaller than its width (Figure
3c). This allows vectors to overlap, and blurs the extent of each
individual vector. While the differences between these three
images may not be substantial, when we animate the images, very
different results appear. What we are after is the illusion that the
particles or the texture as a whole is moving, not individual flags
waving in the wind. Whether all of these jitterings are necessary
has yet to be determined, however none of them require
additional resources of any significance. These jitterings were
developed for two-dimensional filters and side or top views of
three-dimensional data sets. Oblique views in three-dimensions
will naturally break up regular patterns to some extent.

Vector Kernels

Vectors are represented on the image as line segments with
varying color and opacity. As the filter moves along the output
image, a vector kernel performs three tasks: determine the
projection of the vector, calculate the color and opacities of the
vector line segment and the scalar function, and composite this
information into the image. The vector is projected onto the
viewing plane by taking the dot product of the vector with two
basis vectors defining the viewing plane:

ux =
r
V ⋅

r
i

uy =
r
V ⋅

r
j

where the projected vector,
r
u = (ux uy)T

This projected vector,
r
u , is then normalized for use in future

operations.

Once we have the projection of the vector onto the screen, we then
need to determine for each pixel what fraction of the vector lies

within the pixel and what the various attributes of the vector are at
that pixel. Assuming circular pixels, the area of overlap with a
thick line segment can be estimated by taking the absolute value
of the dot product of the vector,

r
np , perpendicular to

r
u with the

vector from the center point to the current pixel (Figure 2). This
gives us the perpendicular distance from the axis of the vector to
the pixel. The function:

f (r) =
1.0 r ≤ r1

ar + b r1 ≤ r ≤ r2

0.0 r ≥ r2

can then be used to produce smooth anti-aliased lines. The values
of r1 and r2 control the thickness of line segments, and are
specified by the user. These anti-aliased lines work better and are
computationally easier than using cylinders.

The area is used as an opacity and color scaling factor in
compositing the vector into the image. Several controls over the
representation of the vectors are available. Depending on the
kernel, an arbitrary color mapping scheme is offered. Current
kernels will map the either the world z-coordinates or the screen
z-coordinates (z-height) to a color in a user specified color table.
The z-height can include both the relative position in the data set
and the height increase of the vector across the filter. By heavily
weighting this latter term, color can be mapped to show the
vertical velocity component. Other color mapping schemes such
as those proposed by Van Gelder and Wilhelms [VanGelder92],
could easily be incorporated. This color is used as the base color
or hue. By desaturating one end of the vector, we can add an
indication of the signed direction of the vector (i.e., a vector
head). Here, if we simply take the dot product of the projected
vector and the vector to the pixel center, we will get a measure of
where we are along the axis of the vector. Since we are only
concerned with the pixels along the vector axis at this point, we
can use this measure directly.

Finally, we adjust the vector's intensity by its magnitude. A depth
cue can also be applied by adjusting the intensity based on the
linear distance from the view point.

Figure 3. Vector Kernel Movement Effects: a) Jittering of the center point, b) Jittering of the stride length, c) Overlapping strides.

Scalar Rendering

For overlapping filters, a splatting-like algorithm works well. The
ideal reconstruction filter described by Max [Max91] is used as
the basis for the splat. This filter:

g(r) =

1 −
r2

st
0 ≤ r ≤ s

(t − r)2

t(t − s)
s ≤ r ≤ t

0.0 r ≥ t

with s = 0.48 and t = 1.37 for a filter stride of one, has a finite
span, allowing the size of the kernel to be arbitrarily large. This
allows long vectors, while limiting the effect of the splat to the
stride taken in the filter. This does present the problem that the
vector drawn with the splat is only affected by that splat and not
neighboring splats that may overlap the vector. Overcoming this
would require complicated neighborhood tests, and the handling
of multiple vector segments within the kernel. Since these
discrepancies in the renderer are not noticeable for the test cases
we have run, we choose to ignore them. This implies that a
perfectly acceptable solution would be to simply splat in a vector,
and then splat in the volume over it for each kernel instantiation.
A more accurate solution is described in the next section.

The addition of scalar splatting increases the computational time
of the vector kernel substantially. The reason for this is twofold:

1) The pixels outside the projected vector must now be
calculated and composited in.

2) Kernel calculations were skipped if the vector length
was less than some user specified tolerance. These
must now be drawn if the scalar field contributes to
the image (i.e., the scalar field is greater than a certain
threshold).

Compositing

Once we have the contribution due to the vector field and the
contribution due to the scalar field at each sampled voxel, we can
calculate the total contribution to each pixel. Consider a ray, of
unit length, from the eye passing through a polyhedron within
which we wish to render a vector (Figure 4). The segment of this
ray passing through the polyhedron is broken up into three parts:
that segment in front of the vector, the segment passing through
the vector, and the segment behind the vector. Let dz represent the
length of the front segment. If the vector has a thickness, dv, then
the segments have lengths dz, dv, and (1-dz-dv). If we then
assume a homogenous opacity and color, the intensity can be
calculated using the equation:

I = Ω(t)e
− Ω(u)du

0

t

∫
dt

0

1

∫

= ρ(t)e
− ρ(u)du

0

t

∫
dt

0

dz

∫

+e
− ρ(u)du

0

dz

∫
 ν(t)e

− ν(u)du
dz

t

∫
dt

dz

dz+dv

∫

+e
− ρ(u)du

0

dz

∫
e

− ν(u)du
dz

dz+dv

∫
ρ(t)e

− ρ(u)du
dz+dv

t

∫
dt

dz+dv

1

∫
where ρ(x) and υ(x) represent the scalar density and vector

density distributions along the ray, and Ω(x)the total density
distribution.

If we assume an infinitesimal thickness in the vector, and give it a
fixed opacity, αν , and color, Iν , then the equation simplifies
to:

dz

n

dv

Figure 4. Integrating along the viewing direction.

I = ρ(t)e
− ρ(u)du

0

t

∫
dt

0

dz

∫

+ Iνe
− ρ(u)du

0

dz

∫

+(1− αν)e
− ρ(u)du

0

dz

∫
ρ(t)e

− ρ(u)du
dz

t

∫
dt

dz

1

∫
The value dz can be calculated for each pixel ray from the plane
consisting of the transformed vector and one of the basis vectors
defining the viewing plane. By using the analytical integration
proposed by Max, Hanrahan and Crawfis [Max90], this
calculation requires only two exponential evaluations, or one
additional exponential over the straight volume rendering.

The color times depth approximation, C * D , proposed by
Wilhelms and Van Gelder [Wilhelms91], can be used to further
simplify this equation. Here, three colors and opacities are
computed for the vector, in front of the vector, and in back of the
vector and composited together. If Is and αs are the color and
opacity per unit length for the scalar field, the equivalent equation
for the simplified C*D calculation is:

I = Isdz + (1 − dzαs)Iv + (1 − dzαs)(1 − αv)Is (1 − dz)

While this follows logically, it does not produce the desired result.
Consider the case where a ray just grazes the edge of an
antialiased vector, such that αv is almost zero. The cumulative
intensity is then:

I = Isdz + (1 − dzαs)Is (1 − dz)

but, the intensity of a neighboring pixel which does not intersect
the vector is simply Is . Thus for the C*D integration calculation,
the formulas:

I = Isdz + (1 − dzαs)Iv + (1 − αv)Is (1 − dz)

α = αsdz + (1 − dzαs)αv + (1 − αv)αs (1 − dz)

should be used. These are then composited into the image.

Efficiency Considerations

At least three possible tests can be used to reduce computations
and thereby improve the efficiency. The first is on the length of
the vector. If the magnitude of the vector falls below a certain
threshold, then the calculations needed to render it can be skipped.
With this comes the second test, on the maximum contribution of
the splat. If the opacity of the scalar field falls below some
threshold, then the calculations to render it can be skipped.
Finally, the biggest win comes when both the above conditions are
true. In this case, the entire kernel can be skipped.

The size of the resulting image, the span of the filter, and the
stride of the filter all have an effect on the performance of the
filter. Smaller images and filter size and larger strides can improve
the performance of the filter. The resolution of the image's z-space
also has a significant impact on the performance of the filter. All
of these variables are specified under user control.

The simplicity of a filter makes it a natural choice for
vectorization and parallel processing. Each pixel within the filter
requires the same arithmetic, allowing it to be computed in
parallel on even a SIMD machine. For the 2D filter or a top down
view with the 3D filter, several instantiations of the filter kernel
can also operate in parallel.

Finally, since the filter samples both the vector and the scalar
field, large amounts of memory may be necessary to maintain this
data. However, the filter does process this data in a fairly
sequential order.

Results

Figures 5 and 6 are taken from an HDTV animation presented at
the SIGGRAPH '92 Film and Video show. Figure 5 illustrates the
direct volume rendering of just the wind velocities, while Figure 6
illustrates the wind velocities and the percent cloudiness. All of
this data was calculated from a global climate model with grid
dimensions of 320 by 160 by 19. Figure 5 required 30 seconds to
generate on a SGI Personal IRIS at NTSC resolution. Figure 6
required one minute. The simulated data consists of clouds and
winds at every hour for ten days. Each day of the simulation
generates 380Mb of data for the wind and percent cloudiness
fields. Figure 7 shows an oblique view of a test function,
simulating a tornado. Figure 8 illustrates the electric field around
an within a small portion of a Boeing 737 jet, the avionics' bay.

Future Work

The above techniques provide an effective solution to the
simultaneous display of a single scalar field and a single vector
field. This allows the scientists to study the complex relationships
between the winds and the clouds or the winds and a specific
atmospheric heating term. However, the scientists still need to
understand the complex dynamics between the winds and several
scalar variables (i.e., percent cloudiness, incoming and outgoing
radiation, percent humidity, etc.). This is a general research topic
to be addressed in not only the vector domain, but the scalar
domain as well.

We have simplified the problem here by flattening the terrain in
the climate models and dealing only with a regular grid. In fact

global climate models and many other grand challenge problems
deal with irregular topologies which must be dealt with.

We have also concentrated our attention on the techniques and
representations, rather than on efficient solutions. While the
techniques are fairly efficient, improvements must still be made to
achieve interactive levels. The use of table lookups as described
by Laur and Hanrahan [Laur91], and Westover [Westover90] and
the use of Gouraud shaded or hardware texture mapped polygons
should be evaluated.

Finally, the technique outlined here does not take into account the
overlap of the filters when drawing the vectors. This involves a
trade-off decision between these inaccuracies and the complexity
associated with keeping vectors consistent across splat or voxel
domains.

Acknowledgments

We would like to thank Jerry Potter, Bob Mobley and Dean
Williams of the Program for Climate Model Diagnosis and
Intercomparison (PCMDI) at the Lawrence Livermore National
Laboratory for providing us with the data and direction. The
European Centre for Medium-range Weather Forecasting
(ECMWF) provided the analytical model used to generate the
data. Gene Cronshagen and Chris Anderson helped in generating
and recording the animations. Steve Pennock provided the Boeing
737 data. Becky Springmeyer provided many useful comments on
the draft.

Support for this research came from the Department of Energy's
High Performance Computing and Communications Program
through the effort on Visualization For Global Climate Modeling.
This work was performed under the auspices of the US
Department of Energy by Lawrence Livermore National
Laboratory under contract No. W-7405-Eng-48.

References

[Crawfis91] Crawfis, Roger and Michael Allison. A Scientific
Visualization Synthesizer. In Proceedings
Visualization '91. Gregory Nielson and Larry
Rosenblum eds., IEEE Los Alamitos, CA, pp. 262-
–267.

[Globus91] Globus, A. and C. Levit and T. Lasinski. A Tool for
Visualizing the Topology of Three-Dimensional
Vector Fields. In Proceedings Visualization '91.
Gregory Nielson and Larry Rosenblum eds., IEEE
Los Alamitos, CA, pp.33–40.

[Helman91] Helman, J. and L. Hesselink. Visualizing Vector
Field Topology of Three-Dimensional Vector
Fields. IEEE Computer Graphics and Applications
Vol. 11 No. 3, pp 36–46.

[Kajiya89] Kajiya, James T. and Timothy L. Kay. Rendering
Fur With Three Dimensional Textures. Computer
Graphics Vol. 23 No. 3 (July 1989, SIGGRAPH
'89) pp. 271–280.

[Laur91] Laur, David and Pat Hanrahan, Hierarchical
Splatting: A Progressive Refinement Algorithm for
Volume Rendering. Computer Graphics Vol. 25
No. 4 (July 1991, SIGGRAPH '91) pp. 285–288.

[Levoy89] Levoy, Marc. Design for a Real-Time High-Quality
Volume Rendering Workstation. In Proceedings of
the Chapel Hill Workshop on Volume
Visualization, pp. 17–20.

[Max90] Max, Nelson, Pat Hanrahan, and Roger Crawfis,
Area and Volume Coherence for Efficient
Visualization of 3D Scalar Functions. Computer
Graphics Vol. 24 No. 5 (November 1990, Special
issue on San Diego Workshop on Volume
Visualization) pp. 27–33.

[Max91] Max, Nelson, "An Optimal Filter for Image
Reconstruction," Graphics Gems II (James Arvo,
ed.). Academic Press, Boston.

[Max92] Max, Nelson, Roger Crawfis, and Dean Williams,
Visualizing Wind Velocities by Advecting Cloud
Textures. Proceedings of Visualization '92, IEEE.

[Potter91] Potter, Gerald. private communication.

[Reeves85] Reeves, William T. and Ricki Blau. Approximation
and Probabilistic Algorithms for Shading and
Rendering Structured Particle Systems Computer
Graphics Vol. 19 No. 3 (July 1985, SIGGRAPH
'85) pp. 313–322.

[Sabella88] Sabella, Paolo. A Rendering Algorithm for
Visualizing 3D Scalar Fields. Computer Graphics
Vol. 22 No. 4 (July 1988, SIGGRAPH '88) pp. 51–
58.

[Shirley89] Shirley, Peter, and Henry Neeman V o l u m e
Visualization at the Center for Supercomputing
Research and Development. In Proceedings of the
Chapel Hill Workshop on Volume Visualization,
pp. 17–20.

[Shirley90] Shirley, Peter, and Allan Tuchman, A Polygonal
Approximation to Direct Scalar Volume
Rendering. Computer Graphics Vol. 24 No. 5
(November 1990, Special issue on San Diego
Workshop on Volume Visualization) pp. 63–70.

[VanGelder92] Van Gelder, Allen and Jane Wilhelms. Interactive
Visualization of Flow Fields. 1992 Volume
Visualization Workshop (this issue), Kaufman and
Lorensen (eds), ACM SIGGRAPH, NY.

[Westover90] Westover, Lee. Footprint Evaluation for Volume
Rendering. Computer Graphics Vol. 24 No. 4
(July 1990, SIGGRAPH '90) pp. 367–376.

[Wijk90] Wijk, J.J. van, A Raster Graphics Approach to
Flow Visualization. in Vandoni, C.E., and D.A.
Duce (eds.), Proceedings Eurographics'90, North -
Holland, Amsterdam, 1990, pp. 251-259.

[Wijk91] Wijk, J.J. van, Spot Noise.: Texture Synthesis for
Data Visualization Computer Graphics Vol. 25
No. 4 (July 1991, SIGGRAPH '91) pp. 309–318.

[Wilhelms91] Wilhelms, Jane and Allen Van Gelder, A Coherent
Projection Approach for Direct Volume Rendering
Visualization. Computer Graphics Vol. 25 No. 4
(July 1991, SIGGRAPH '91) pp. 275–284.

Figure 5: Global CLimate Model winds color coded by altitude

Figure 6: Global CLimate Model winds with percent cloudiness

Figure 7 Vorticity of Fluid Flow
 - not Test Tornado

Figure 8: Avionics bay of a Boeing 737.
Electric field excited by an incident plane wave

Roger A. Crawfis
Figures 7 and 8 are different than the originals

