
Time-Varying Interval Volumes

Caixia Zhang*, Daqing Xue*, Roger Crawfis*, Rephael Wenger*
The Ohio State University

ABSTRACT

In this paper, we study the interval segmentation and direct
rendering of time-varying volumetric data to provide a more
effective and interactive volume rendering of time-varying
structured and unstructured grids. Our segmentation is based upon
intervals within the scalar field between time steps, producing a
set of geometrically defined time-varying interval volumes. To
construct the time-varying interval volumes, we cast the problem
one dimension higher, using a five-dimensional iso-contour
construction for interactive computation or segmentation. The key
point of this paper is how to render the time-varying interval
volumes directly. We directly render the 4D interval volumes by
projecting the 4D simplices onto 3D, decomposing the projected
4-simplices to 3-simplices and then rendering them using a
modified hardware-implemented projected tetrahedron method. In
this way, we can see how interval volumes change with the time
in one view. The algorithm is independent of the topology of the
polyhedral cells comprising the grid, and thus offers an excellent
enhancement to the volume rendering of time-varying
unstructured grids. Another advantage of this algorithm is that
various volumetric and surface boundaries can be embedded into
the time-varying interval volumes.

CR Categories: I.3.3 [Picture/Image Generation]: Display
algorithms

Keywords: Volume Rendering, Unstructured Grids, Interval
Volumes, Time-Varying data, Projected Tetrahedra

1 INTRODUCTION

With the widespread use of high performance computing systems,
some application simulations are capable of producing large
datasets. These simulations tend to be time varying, adding
another dimension to the problem. This paper mainly deals with
the interval segmentation and rendering for time-varying
structured and unstructured datasets.
 A traditional method to render time-varying data is to take a
snapshot of the data for each particular time step and generate an
animation from the time series data. This method is useful, but it
replies on human memory and cognitive abilities to tie together
spatio-temporal relationships. An alternative method is to display
the movement of the time series data in a single image using
direct rendering of high dimensional data. Some people have
worked on the hypervolume visualization [2] and high
dimensional direct rendering of time-varying volumetric data [27],
but their algorithms do not apply for unstructured grids.
 Interval volumes have been used to segment and render
structured and unstructured volumetric data [7]. It is a region-of-

interest extraction algorithm, and fast volume visualization
techniques are employed to render the interval volumes. Under the
framework of the high-dimensional iso-contouring algorithm,
interval volumes can easily be computed using two schemes for
time varying data sets. The first scheme computes the interval
volumes separately for each time step of the dataset using the
algorithm discussed in [7]. The user can then cycle through all the
time steps to visualize the data. It is obvious that this scheme does
not show the relationship of the interval volumes between
different time steps well.
 An alternative approach is to use the high-dimensional
isosurfacing algorithm to compute a 4-dimensional volume
representing a time-varying interval volume. This can be
accomplished by applying the isosurfacing algorithm directly on a
5-dimensional grid to generate a surface comprised of 4-
simplices. Then, we can render the 4-tetrahedra by slicing the
interval volumes between the time steps. An alternative method,
and the focus of this paper, is to render the 4-simplex from the
interval volumes by integrating in the time directly, rather than
projecting and slicing them.
 In the following sections we look at some of the previous work
done in this domain. We then give an overview of our time-
varying interval volume computation algorithm, followed with
rendering methods and visualization techniques for the time-
varying interval volumes. We end with some results of our work
and present future directions for research in this domain.

2 PREVIOUS WORK

Previous work that relates to our research primarily focuses on
high-dimensional scientific visualization, unstructured volume
rendering and interval volumes.

High-Dimensional Visualization – Hanson et al. [11, 12, 13]
introduced a general technique, as well as an interactive system,
for visualizing surfaces and volumes embedded in four
dimensions. In their method, 3D scalar fields were treated as
elevation maps in four dimensions in the same way 2D scalar
fields could be viewed as 3D terrains. Bajaj et al. [2] developed an
interface that provides “global views” of scalar fields independent
of the dimension of their embedded space and generalized the
object space projection technique into a hyper-volume projection
method. Texture mapping hardware was utilized to directly render
n-dimensional views of the global scalar field. Woodring et al.
[26, 27] treated the time-varying data as four-dimensional data,
and applied high dimensional slicing and projection techniques to
generate an image hyperplane. The results of their technique
generated a volume that is the projection of hyperplanes along a
4D projection vector, which can be rendered using traditional
volume rendering techniques.
 *{zhangc, xue, crawfis, wenger}@cse.ohio-state.edu
Unstructured Volume Rendering – Shirley and Tuchman [19]
presented an algorithm for hardware accelerated rendering of
unstructured tetrahedral grids by approximating the projection to
screen space using a set of triangles. Grids consisting of different
cells are first decomposed into a tetrahedral representation using

mailto:praveenb@sgi.com

simplicial decomposition techniques [1][17]. Williams extended
Shirley-Tuchman’s approach to implement direct projection of
other polyhedral cells in their HIAC rendering system [25] and
used high accuracy light integration functions to model the light
transport through the medium [24]. Recently, with the advent of
programmable graphics hardware, a tremendous amount of work
has been done in implementing the Shirley-Tuchman algorithm on
graphics hardware using the programmable vertex and fragment
shader pipelines on the GPUs [21][28][15]. In all of the above
cases, the rendering performance of the projected tetrahedra
algorithm is typically proportional to the number of cells to be
rendered. The rendering process involves visibility sorting
(usually O(nlogn)) and projection (O(n)) of the polyhedral cells.
As an alternative to projection, polyhedral cells can also be
rendered using ray casting [22].

Interval Volumes – An interval volume is the set of points in a
scalar field enclosed between two isosurfaces defined by two
different isovalues. Fujishiro [8] introduced interval volumes as a
solid fitting algorithm. A few applications of interval volumes
were presented in [10][9]. Fujishiro computed a tetrahedralization
of the interval volume by computing the intersection of two
convex polyhedra enclosed by the isosurfaces given by the
Marching cubes algorithm [16], within each cell. Nielson [18]
computed the tetrahedralization by first decomposing each cube in
the grid to five tetrahedra. Nielson then used an efficient lookup
table to compute the interval volume within each simplex and
decompose it into tetrahedra. The tetrahedralization was
constructed manually by analyzing all the possible intersections of
a tetrahedron with an interval enclosed by two isosurfaces. Banks
[3,4] counted the cases for a family of visualization techniques,
including iso-contours and interval volumes.
 The above work is on the interval volumes of a single scalar
field. For interval volumes with respect to a time-varying dataset,
Ji et al. [14] tracked the interval volumes using higher
dimensional isosurfacing, and rendered an iso-contour surface of
the interval volumes. They did not directly render the 4D interval
volumes.

 In this paper, we work on the computation and direct rendering
of the time-varying interval volumes. We use interval volumes to
create disjoint volume segments, or intervals. Interval volumes
provide a segmentation of the data into easily discernable regions.
The direct rendering of the time-varying interval volumes makes
it possible to get the distribution and relationship of the interval
volumes across time steps, and help us to understand the time-
varying structured and unstructured volumetric fields.

3 TIME-VARYING INTERVAL VOLUME COMPUTATION

In [5], we presented a new algorithm for computing isosurfaces in
arbitrary dimensional data sets. The algorithm proceeds by
generating isosurface patches within each d-dimensional
polyhedral cell comprising the d-dimensional grid. The output of
the algorithm is a set of (d-1)-dimensional simplices forming a
piecewise linear approximation to the isosurface. The algorithm
constructs the isosurface piecewise within each cell in the grid
using the convex hull of an appropriate set of points. In [6] we
present a proof of correctness for the d-dimensional isosurface
construction and show that it correctly produces a triangulation of
a (d-1)-manifold with boundary. Here, we give a short review of
the algorithm. See [7] for more details.
 For a function f(x,y,z) sampled on a three dimensional grid, the
interval volume [8] is defined by If(α,β) = {(x,y,z): α ≤ f(x,y,z) ≤
β}. More generally, for a function f : Rd→R in any dimension, the
interval volume is defined by If(α,β) = {(x1,…,xd): α ≤ f(x1,…,xd)
≤ β }. Intuitively, the interval volume is the set of points enclosed

between the two isosurfaces corresponding to the isovalues, α and
β. For a d-dimensional grid, the interval volume is a d-
dimensional subset of the grid and can be represented by a
collection of d-simplices.
 The interval volume algorithm proceeds as follows:
1. Let f(x1,…,xd) define a d-dimensional function.
2. Let scalar values, α, β (α < β), be the desired isovalues

bounding the interval.
3. Let F(x1,…,xd, w) be the (d+1)-dimensional function, given

by, F(x1,…,xd,w) = f(x1,…,xd) − (α (1−w) + β w), such that

()
⎩
⎨
⎧

=−
=−

=
1,),,(
0,,,

),,,(
1

1
1 wforxxf

wforxxf
wxxF

d

d
d β

α
L

L
L

4. Compute the zero-valued isosurface, S, given by F(x1,…,xd,
w) = 0 for 0 ≤ w ≤ 1.

5. Let π be the projection function mapping Rd+1 to Rd given by
π(x1,…,xd,xd+1) = (x1,…,xd). The desired interval volume,
If(α,β), is then given by π(S).

 For a time-varying scalar grid with hexahedral cells, the
construction of the time-varying interval volumes is a five-
dimensional isosurfacing problem. Given a four dimensional
scalar field f(x,y,z,t), the interval volume consists of all the points
which satisfy α ≤ f(x,y,z,t) ≤ β. Following the above interval
volume algorithm, in order to compute the time-varying interval
volume, we first create a five dimensional scalar field F(x,y,z,t,w),
such that F(x,y,z,t,0) = f(x,y,z,t) - α and F(x,y,z,t,1) = f(x,y,z,t) - β.
Then, the interval volume α ≤ f(x,y,z,t) ≤ β can be extracted by
first computing the zero isosurface of the five dimensional
function F(x,y,z,t,w), and then projecting the resulting isosurface
along the w axis to four dimensional space.
 Here, we should note that the entries of the isosurface lookup
table for 5D hypercube are too large to be stored in the main
memory. Since a 5D hypercube contains 32 vertices, the size of
the table will contain 232 = 4G entries. As pointed out in [14], not
all the four billion cases are possible. Only 316 ≈ 43M entries are
possible for interval volumes. However, this size may be still too
large to be processed in core. One solution is to compute the
entries of the lookup table at runtime and cache them into a hash
table which is small enough to fit into the main memory. In this
paper, we use this caching method to store the 5D isosurface
lookup table. See [20] for the lookup table generation code.
 Since the isosurface triangulation is consistent, the interval
volume triangulation will also be consistent. Our algorithm
guarantees the consistency in the table generation stage by using a
lexicographical ordering of the isosurface vertices and then
building the convex hull incrementally, adding one vertex at a
time in the specified order. This is similar to the scheme used by
[18] and [17], which ensures canonical triangulations across cell
boundaries and generates consistent meshes. However, we still
have to worry about the decomposition from 4-simplices to 3-
simplices for the purpose of rendering. And we will address this
problem in the next section.

4 TIME-VARYING INTERVAL VOLUME RENDERING

After we extract the 4-simplices comprising the 4D interval
volume, one rendering possibility is to slice the 4-simplices
parallel to the time axis to generate 3-simplices (i.e. 3D
tetrahedra) for a corresponding time step. The resulting 3D
tetrahedra can then be rendered. This scheme is analogous to
rendering time-varying isosurfaces [5], but allows slicing at non-
integral time steps to compute interpolated interval volumes
between consecutive time steps. Figure 1 shows one example of
the time slicing. The left image and the right image are the

P1

P2

P3

P5

P4

P1

P2

P3

P4

P5

Figure 1. Results of time slicing

interval volumes with respect to the two time steps t1 and t2. The
middle image is the corresponding interval volume with the time
value t = (t1 + t2)/2.

P1

P2 P3

P4

P5

P1

P2

P3

P4

P5

P1 P4 P3

P2

P5

P1

Class 1 Class 2
 In this paper, we are more interested in the direct rendering of
the 4-simplices extracted from the 5D isosurface lookup table, in
order to understand the distribution and relationship of the time-
varying interval volumes across time steps. Now the challenge is
how to render the 4-simplices to the 2D image space. The
following subsections will explain the projection of 4-simplices to
3-simplices and the projection of 3-simplices to image space.

4.1 Projection and decomposition of 4-simplices to 3-
simplices

4.1.1 Projection of 4-simplices to 3D

Each 4-simplex extracted from the 5D isosurface lookup table has
five vertices with coordinates (x, y, z, t). Every two vertices out of
the five are connected by an edge. The 4-simplex is projected to
3D along a given projection direction in 4D: π(x1, x2, x3, x4) = (u1,
u2, u3), where π is the projection function. Here, we use a
projection along the t axis as an example. So, π(x1, x2, x3, x4) = (x1,
x2, x3).
 The five projected vertices compose some volume in three
dimensions, except in some degenerate cases where the five
projected vertices form a triangle, or a line, or a point. There are
six common cases for the spatial relationship of the projected 4-
simplex, as shown in Figure 2. They are either labeled as general
cases, or the degenerate cases which still compose a volume in 3D
(for example, four vertices coplanar, three vertices colinear, and
two vertices coincident). The more severe degenerate cases, where
the projected vertices are all co-planar, are not considered in this
paper, because they do not produce volumetric entities.
 The projected 4-simplices are classified as different types based
on the spatial relationship of the five vertices of the projected 4-
simplex along the t axis in three-dimensional space. Figure 2
illustrates the six common cases of the 4-simplex projection. Class
1 and class 2 are general cases. In class 1, no vertex is inside a
tetrahedron composed of the other four vertices. In class 2, one
vertex is inside the tetrahedron of the other four vertices (in
Figure 2, P5 is inside the tetrahedron P1P2P3P4). Class 3, class 4
and class 5 are degenerate cases. In class 3(a), four vertices (P1,
P2, P3, P4) are coplanar. P5 is inside the triangle of P1P2P3 in
class 3(b). In class 4, three vertices (P1, P4, P3) are colinear, and
in class 5, two vertices (P4, P5) are coincident.
 A projected 4-simplex with 5 vertices is classified step by step
using the flow chart in Figure 3.
 In this paper, we classify the projected 4-simplices into two
general cases and four degenerate cases. The degenerate cases
generate fewer decomposed tetrehedra in section 4.1.2 and
improve the rendering performance. We could just consider only
general cases and combine the degenerate cases into the general
cases. For example, class 3(b) and class 5 can be combined into
class 2, with the vertex P5 moving from the face P1P2P3 or from
the vertex P4 to inside the tetrahedron P1P2P3P4. Similarly, class
3(a) and class 4 can be combined into class 1, with the vertex P4
moved from the position coplanar with P1P2P3 or colinear with
P1P3 to the position on the opposite side of P5 with respect to the

face P1P2P3. This generalization of the cases will generate more
tetrahedra (many of them with nearly zero volume) and/or will
need some checking to distinguish them in the tetrahedralization
stage.
 This classification will guide us in decomposing the projected
4-simplices into tetrahedra for the purpose of rendering.

4.1.2 Tetrahedralization of projected 4-simplices

Our first attempt at this problem was to project 4-simplices to 3D
along the time axis by simply ignoring the time value (t) and
keeping only the position information (x, y, z) for each vertex.
Then, the projected 4-simplices are decomposed into tetrahedra in
3D space based on the above classification in Figure 2. Table 1
was constructed by hand and shows the possible decomposition of
each class.
 After rendering the resulting 3D tetrahedra using the Projected
Tetrahedron method, we found that the result was not correct. An
image of a constant plate is shown in Figure 4. There are some
obvious patterns on the plate. As we know, many 4-simplices are
extracted from the lookup table for each hypercube cell, and then
are projected to 3D and decomposed to tetrahedra. By keeping
track of the tetrahedral components inside each cell, we find that
each tetrahedron is in right place and the tetrahedra as a whole fill
the cell. However, we also find that the projections of a set of 4-
simplices overlap. For example, for a cube cell from our constant
plate example as shown in Figure 4, some space is shared five
times by the projection of 4-simplices, while other space is shared
only four times. This uneven overlapping distribution of the

P2

P3

P4/P5

Class 3(a) Class 3(b)

Class 4 Class 5
Figure 2. Classification of projected 4-simplex

ut

P1

P2

P3

P5

P4

-

P1

P2

P3

P4

P6 P5

P1

Class 1

P2 P3

P4

P5

P6

P1

P2

P3

P4

Class 2

P5

P2

P5

P2

P4/P5

Class 3(a) Class 3(b)
projected 4-simplices causes a non-constant opacity througho

p r o j e c t e d 4 - s i m p l e x w i t h 5 v e r t i c e s

A n y 2 v e r t i c e s
c o i n c i d e n t ? C l a s s 5

Y e s

N o

A n y 3 v e r t i c e s
c o l l i n e a r ?

Y e s
C l a s s 4

N o

A n y 4 v e r t i c e s
c o p l a n a r ?

Y e s

O n e v e r t e x i n s i d e
t h e o t h e r t h r e e ?

C l a s s 3 (b)

Y e s

C l a s s 3 (a)

N o

O n e v e r t e x i n s i d e
t h e o t h e r f o u r ? C l a s s 2

N o

Y e s

N o

C l a s s 1
Figure 3. Flow chart of the classification of the projected 4
simplex
the cell.

Table 1. Original decomposition of the projected 4-simplices

Class Possible Tetrahedra
Class 1 P1P2P3P4 and P1P2P3P5

or: P1P2P4P6, P1P3P4P6, P2P3P4P6, P1P2P5P6,
P1P3P5P6 and P2P3P5P6

Class 2 P1P2P3P4, or:
P1P2P3P5, P1P2P4P5, P1P3P4P5 and P2P3P4P5

Class 3(a) P1P2P3P5 and P1P3P4P5
or P1P2P4P5 and P2P3P4P5
or: P1P2P5P6, P2P3P5P6, P3P4P5P6, P1P4P5P6

Class 3(b) P1P2P3P4, or:
P1P2P4P5, P1P3P4P5 and P2P3P4P5

Class 4 P1P2P3P5, or:
P1P2P4P5 and P2P3P4P5

Class 5 P1P2P3P4

 The key observation in the incorrect opacity is that the length of
the projection through time cannot be ignored during the
projection of the 4-simplices along the time axis. During the
projection, each vertex obtains a value. The valuet∆ t∆ is
calculated in a similar way as the calculation of z∆ in the
projected tetrahedron algorithm, but along the time dimension.
The basic idea is that a ray is cast along the time projection
and t∆ is calculated as the length of the ray that passes through
the 4-simplices. Here the projection is from 4D to 3D. So, a vertex
in 3D has a non-zero t∆ value if it has two different t values
along the ray in the t dimension and the is calculated as the
difference of the two t values. That means, one vertex has a non-
zero

t∆

t∆ if it is overlapped with another vertex in 3D (here, the
vertex can be an original projected vertex or a point which is
interpolated by other projected vertices after the projection to 3D).
Vertices with a non-zero t∆ value are illustrated by the black
points in Figure 5 for each case of the projected 4-simplices.
 In class 5, P4 and P5 are coincident after the projection and P4
has a non-zero t∆ . In class 4, P4 has a non-zero t∆ value which
is the difference of P4.t and the interpolated t value between P1
and P3. In class 3(a), the new vertex P6 which is the intersection
point of the lines P1P3 and P2P4 has a non-zero t∆ value which
is the difference of two interpolated t values between P1P3 and
P2P4. While for class 3(b), the at P5 is non-zero which is equal
to the difference of P5.t and the t value interpolated inside the
triangle P1P2P3. Similarly, for class 2, the value at P5 is the
difference of P5.t and the interpolated t value inside the
tetrahedron P1P2P3P4. In class 1, the new vertex P6 is the
intersection point of the triangle P1P2P3 and the line P4P5. The

t∆

t∆

t∆ value at P6 is the difference of the interpolated t value inside
P1P2P3 and the interpolated t value along the line P4P5.

Figure 4. Incorrect rendering result of a constant plate
 in four dimensions

P1 P4 P3

 P1 P3

 Figure 5. Tetrahedralization of projected 4-simplex

Class 4 Class 5

 After determining the vertex with a non-zero for each class,
the decomposition of the projected 4-simplices into tetrahedra
should make sure that the vertex with a non-zero is one vertex
of the decomposed tetrahedra. Now the decomposition becomes a
unique process. The unique decomposition is listed in Table 2 for
each class of 4-simplex. For each decomposed tetrahedron, one
vertex has a non-zero value and each point inside the
tetrahedron has an interpolated value. The distribution
inside the tetrahedron also contributes to the final opacity of the
rendered tetrahedron.

t∆

t∆

t∆
t∆ t∆

 Table 2. Final decomposition of the projected 4-simplices

Class Decomposed Tetrahedra
Class 1 P1P2P4P6, P1P3P4P6, P2P3P4P6, P1P2P5P6,

P1P3P5P6 and P2P3P5P6
Class 2 P1P2P3P5, P1P2P4P5, P1P3P4P5 and P2P3P4P5
Class 3(a) P1P2P5P6, P2P3P5P6, P3P4P5P6 and P1P4P5P6
Class 3(b) P1P2P4P5, P1P3P4P5 and P2P3P4P5
Class 4 P1P2P4P5 and P2P3P4P5
Class 5 P1P2P3P4

4.2 Projection of 3-simplices to image space

We use an implementation of the Projected Tetrahedron algorithm
from Shirley and Tuchman [19] to render the projected tetrahedra
from the 4-simplices. The algorithm approximates a tetrahedron
using one to four triangles depending on the screen projection of
the tetrahedron’s vertices. We implement the PT algorithm using a
vertex program in programmable graphics hardware [28].
 Compared to the projection of the normal tetrahedra, there is
one difference in the rendering of the time-varying interval
volumes: the tetrahedra here have a non-constant t∆ distribution
from the projection along the time axis. Therefore, when we
calculate the opacity of the projected triangles, we should consider
both the contribution of the t∆ for the projection along the time
axis and the contribution of the for the projection along the z-
axis.

z∆

 The transparency along a ray passing through a tetrahedron is
represented as following for the rendering of the 4-simplices:

 (1)
zt

zz t

ezt

dztdtdzT

∆⋅∆⋅−=∆⋅∆⋅−=

∆⋅−=−= ∫∫ ∫
ττ

ττ

)exp(

))(exp()exp(

 Here, τ is the extinction coefficient. The opacity along a ray is
represented as

 (2) zte ∆⋅∆⋅−−= τα 1
 Figure 6(a) shows a constant tetrahedron P1P2P3P4, which is
composed of four projected class-5 4-simplices, each with a non-
zero t∆ value at one vertex (represented as black points). By
adding the interpolated t∆ values from four tetrahedra, every point
P inside the tetrahedron has a constant (as shown in equation
3). Figure 6(b) shows the distribution of the

t∆
t∆ inside the

tetrahedron. This is what we expect for a constant tetrahedron
which is composed of four projected 4-simplices extracted from a
5D isosurface lookup table.

)(4321

3
4321

321
3

4321

421

2
4321

431
1

4321

432

4321

tttttift

t
vol
volt

vol
vol

t
vol
volt

vol
vol

ttttt

PPPP

P
PPPP

PPPP
P

PPPP

PPPP

P
PPPP

PPPP
P

PPPP

PPPP

p

∆=∆=∆=∆=∆∆=

∆×+∆×

+∆×+∆×=

∆+∆+∆+∆=∆

 (3)

 The transparency along a ray passing through any point P inside
the constant tetrahedron is:

ztztttt

ztztztzt

ee

eeee

TTTTT

∆⋅∆⋅−∆⋅∆+∆+∆+∆⋅−

∆⋅∆⋅−∆⋅∆⋅−∆⋅∆⋅−∆⋅∆⋅−

==

⋅⋅⋅=

⋅⋅⋅=

ττ

ττττ

)(

4321

4321

4321 (4)

 The opacity along the ray is . It shows the
opacity along a ray passing through any point P inside the
constant tetrahedron depends on the constant

zte ∆⋅∆⋅−−= τα 1

t∆ inside the
tetrahedron and the z∆ from the projection along the z-axis.
 Since the zero-thickness vertices in PT algorithm do not
necessarily have zero t∆ thickness, and the vertex with non-zero
thickness in PT algorithm may have zero thickness of t∆ , so we
cannot directly multiply the t∆ and the at each vertex and
then interpolate it inside the projected triangles. Actually, the bi-
variant function should be evaluated at each pixel. That means, we
should multiply the interpolated and the interpolated

z∆

t∆ z∆ for
each pixel inside the projected triangles. We develop a modified

P1

P3 P2

P4

P

P1

P3 P2

P4

P

P1

P3 P2

P4

P

P1

P3 P2

P

P4

 (a)

+

+ +

 (b)

Figure 6. Projected tetrahedral components and ∆ distribution
inside a constant tetrahedron

t

implementation of the Shirley and Tuchman algorithm using the
vertex and fragment programs to consider both the contributions
of the and the ∆ . In the vertex program, we calculate the

and for each vertex of the projected triangles, then their
contributions to the opacity are multiplied in the fragment
program for each pixel.

t∆ z
t∆ z∆

 Considering the contribution of the on the opacity, the data
in Figure 4 is rendered correctly as in Figure 7.

t∆

4.3 Visualization techniques of time-varying interval volumes

In this section, we build upon our work of the computation and
projection of the time-varying interval volumes to come up with
some visualization techniques for effective visualization of the
time-varying volumetric data sets. As discussed in previous
sections, the tetrahedra for time-varying interval volumes have

distribution from the projection along the time axis and they
overlap themselves in 3D space. This causes some occlusion and
compositing problems. In this section, we will figure out the
suitable visualization techniques for the time-varying interval
volumes. For Figures 8 to 16, please also see the color plate.

t∆

4.3.1 Direct rendering of the time-varying interval volumes

We can render the time-varying interval volumes directly from the
extracted 4-simplices, using the projection methods as discussed
in sections 4.1 and 4.2. Since the time-varying interval volumes
actually project to the same three-dimensional space (i.e., it is a
self-intersecting volume), no accurate sorting is possible. In this
section, an additive compositing operator is used to blend the 4-
simplices into the image. The color of the vertex is encoded using
the time value. For the overlapped vertices (as shown with the
black points in Figure 5), the time value is calculated as the
average t value of the two overlapped vertices.
 Figure 8 is an example of the direct volume rendering result of
a simple test function comprised of a linear ramp in time. Here,
the color at t=t1 is green, and the color at t=t2 is red. The color
between t1 and t2 is encoded between green and red. From this
figure, we can see the transition from the green, to the yellow, and
to the red as the field moves over time.

4.3.2 Highlighted surface boundaries

Similar to the interval volumes with embedded boundary surfaces
in [7], we can embed the boundary isosurfaces into time-varying
interval volumes to highlight interior features. The boundary
surfaces are extracted during the construction of the time-varying
interval volumes without extra computation cost, simply by
checking if the vertices are on a boundary or not.
 For time-varying interval volumes, there are two types of
boundaries: volumetric boundaries and surface boundaries. In this

subsection, we first consider the surface boundaries. Given a time-
varying interval volume defined by two isovalues α and β, and
two time steps t1 and t2, there are four boundary isosurfaces at:
(a) t=t1 and f(x,y,z,t)=α, (b) t=t1 and f(x,y,z,t)=β, (c) t=t2 and
f(x,y,z,t)=α, (d) t=t2 and f(x,y,z,t)=β. Since these surfaces are the
boundary of the tetrehedra which compose the time-varying
interval volume, these boundary surfaces are rendered together
with the 4D interval volume. The four isosurface boundaries are
illustrated in Figure 9 in the above order (a) to (d) from left to
right. From the figure, we can see how the isosurfaces change
with time and with value.

4.3.3 Volumetric boundaries

There are also four kinds of volumetric boundaries for a time-
varying interval volume defined by two isovalues α and β, and
two time steps t1 and t2: (a) time-varying isosurfaces at
f(x,y,z,t)=α and t1≤ t ≤ t2, (b) time-varying isosurfaces at
f(x,y,z,t)=β and t1 ≤ t ≤ t2, (c) interval volumes at α≤ f(x,y,z,t) ≤ β
and t=t1, and (d) interval volumes at α≤ f(x,y,z,t) ≤ β and t=t2.
The four volumetric boundaries are shown in Figures 10(left),
10(right), 11(left) and 11(right), respectively.
 The volumetric boundaries are rendered using the normal
projected tetrahedron algorithm, without the contribution of t∆
on the opacity. Here, the boundary interval volumes are sorted,
not according to the viewing rays, but according to their priorities
(the time here) to bring an important interval volume at a specific
time step to the forefront. This priority-based sorting technique

Figure 7. Rendering result of a constant plate

Figure 8. Direct rendering result
of a time-varying interval volume

Figure 9. Time-varying interval
volume with four isosurfaces

Figure 10. Time-varying isosurfaces at f(x,y,z,t)=α and t1≤ t ≤ t2
(left), and f(x,y,z,t)=β and t1 ≤ t ≤ t2 (right).

Figure 11. Interval volumes at α≤ f(x,y,z,t) ≤ β and t=t1 (left), and
α≤ f(x,y,z,t) ≤ β and t=t2 (right).

Figure 12. Time-varying interval volumes
for vortex dataset (two time steps)

Figure 13. Time-varying interval volumes
for vortex dataset (three time steps)

Figure 15. Two interval volumes at t1 and t2
for the vortex dataset are rendered using MIP

Figure 14. Time-varying interval volumes for the NASA Tapered
Cylinder dataset

Figure 16. Two interval volumes at t1 and t2 for the Tapered
Cylinder dataset are rendered using MIP

comes from the idea of the Maximum Intensity Projection (MIP)
in medical community. Also, a constant color is assigned to each
volumetric boundary. Figures 15 and 16 are rendered using this
technique.

5 RESULTS

We apply the rendering and visualization techniques of the time-
varying interval volumes explained in section 4 to several
datasets. Figure 12 shows time-varying interval volumes of a
vortex dataset, rendering the vorticity magnitude in the range of
(8.0, 12.0). The color is encoded using time t: green at t=t1, red at
t=t2, and yellow for overlapped regions between t=t1 and t=t2.
From this figure, we can see how the interval volumes move over
time. We can also notice that some new components are generated
over time, such as the purely red one in Figure 12. Figure 13 is the
interval volumes of the vortex dataset for three time steps. The
color mapping with time t is in the following way: blue at t=t1,
green at t=t2, red at t=t3, cyan for overlapped regions between
t=t1 and t=t2, yellow between t=t2 and t=t3. So, for the
overlapped region among t=t1, t=t2 and t=t3, the color is white
using the additive compositing operator. In this figure, areas
where contours are appearing over time are predominantly red,
while areas that faded over time are predominantly blue. Areas
which maintain a high isovalue over time appear white. Figure 14
shows time-varying interval volumes for the NASA Tapered
Cylinder dataset, by rendering the density attribute in the range
(0.982124, 0.9852195). This dataset is a curvilinear grid in
PLOT3D format. Similarly, this figure shows the movement of
the interval volumes with the time.
 By rendering two interval volumes at t=t1 and t=t2 extracted
from the volumetric boundary into one image using the MIP
technique discussed in section 4.3.3, we can see how the interval
volumes move with the time steps. In this way, an important
interval volume at a specific time step is brought to the forefront,
preventing being occluded by the interval volumes at other time
steps. Figures 15 and 16 show two interval volumes at t1 and t2

for the vortex dataset and the Tapered Cylinder dataset in one
view using the MIP technique. Here, yellow color represents the
interval volume at t1, and red color is for t2. In the two figures,
the interval volume at t2 is given higher priority. By comparing
the images using MIP and the corresponding time-varying interval
volumes, we can interpret the images of time-varying interval
volumes well.
 All the results presented in this paper have been generated
using a PC with a QuadroFX 3000 graphics card and a Pentium
IV 3.4 GHz processor. The interval volume computation time and
the volume rendering time for the datasets are listed in Table 3.
 In the Table 3, the 4D interval volume construction and
decomposition time includes the time to calculate the entries of
the isosurface lookup table, the time to construct 4-simplices and
the time to decompose 4-simplices to tetrahedra. Due to the
decomposition of 4-simplices to 3-simplices and the overlapping
copies of the 3-simplices in 3D space, there are more tetrahedra
for time-varying interval volumes.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an algorithm for computing time-
varying interval volumes in structured and unstructured grids
using a fast isosurface extraction algorithm. And we have
explained the rendering methods of the 4-simplices by projecting
and decomposing the 4-simplices to 3-simplices, and using a
modified hardware-implemented projected tetrahedron method. In
this way, we can render the time-varying interval volumes which
integrate multiple time steps into a single view and we can see the
movement of the interval volumes over time in one view.
Different visualization techniques have been demonstrated for the
visualization of the time-varying structured and unstructured data
sets.
 The current rendering technique uses the hardware
implemented projected tetrahedron method [28]. We can use the
new PT implementation presented in [15] to improve the quality
of the images and we can consider to speed up the projection from

4D to 3D by taking advantage of the modern graphics hardware.
Also, the current algorithm can be augmented with feature
detection techniques to aid the user in identifying
useful/interesting intervals in the field. We also want to extend the
concept of constructive solid geometry for multi-attribute data sets
to time-varying interval volumes.

Table 3. 4D interval volume computation and rendering
performance

Data set

4D interval
volume

construction
and

decompo-
sition time

Number

of 4-
simplices

Number

of
tetrahedra

(with
volume)

Rendering

time
(linear
color)

Test
function

(2x20x10x
10)

75ms

9,720

27,054

30ms

Vortex
dataset

(2x128x
128x128)

12.2s

319,304

882,044

970ms

Tapered
Cylinder

(curvilinear
2x64x64

x32)

18.5s

349,624

941,098

1,030ms

Vortex
dataset

(3x128x
128x128

22.5s

654,846

1,807,460

1,980ms

ACKNOWLEDGEMENTS

The Tapered Cylinder data set is from NASA’s online data set
repository. Part of this work was supported by NSF award #ACI-
0222903.

REFERENCES
[1] ALBERTELLI, G., AND R. A. CRAWFIS, “Efficient subdivision of

finite-element datasets into consistent tetrahedral”, in Proceedings
of IEEE Visualization '97, p.213-219, October 18-24, 1997, Phoenix,
Arizona.

[2] BAJAJ, C., V. PASCUCCI, G. RABBIOLO, AND D. SCHIKORE,
“Hypervolume Visualization: A Challenge in Simplicity", in IEEE
Volume Visualization 1998 Symposium, pp. 95-102.

[3] BANKS, D., AND S. LINTON, “Counting Cases in Marching
Cubes: Toward a Generic Algorithm for Producing Substitopes”, In
Proceedings of IEEE Visualization 2003, pp. 51-58.

[4] BANKS, D., S. LINTON, AND P. STOCKMEYER, “Counting
Cases in Substitope Algorithms”, IEEE Transactions on
Visualization and Computer Graphics, July/August, 2004, Vol. 10,
No. 4, pp. 371-384.

[5] BHANIRAMKA, P., R. WENGER, AND R. CRAWFIS,
“Isosurfacing In Higher Dimensions”, in Proceedings of IEEE
Visualization 2000, Ertl, Hamann, Varshney, Ed., IEEE
Visualization Proceedings, 2000, 15-22.

[6] BHANIRAMKA, P., R. WENGER, AND R. CRAWFIS, “Isosurface
Construction in any dimension using convex hulls”, IEEE
Transactions on Visualization and Computer Graphics, March/April,
2004, Vol. 10, No. 2, pp 130-141.

[7] BHANIRAMKA, P., C. ZHANG, D. XUE, R. CRAWFIS, AND R.
WENGER, “Volume Interval Segmentation and Rendering”, in IEEE
Volume Visualization 2004 Symposium, pp. 55-62.

[8] FUJISHIRO, I., Y. MAEDA, AND H. SATO, “Interval volume: a
solid fitting technique for volumetric data display and analysis”, in
IEEE Visualization ‘95, Atlanta, GA, 1995.

[9] FUJISHIRO, I., Y. MAEDA, H. SATO AND Y. TAKESHIMA,
“Volumetric data exploration using interval volume”, in IEEE
Transactions on Visualization and Computer Graphics, 2 (June
1996).

[10] GUO, B. “Interval Set: A Volume Rendering Technique Generalizing
Isosurface Extraction”, in Proceedings of IEEE Visualization ’95,
Atlanta, GA.

[11] HANSON, A., AND P. HENG, “Four-Dimensional Views of 3D
Scalar Fields”, in Proceedings of IEEE Visualization 1992, pp. 84-
91.

[12] HANSON, A., AND P. HENG, “Illuminating the Fourth
Dimension”, IEEE Computer Graphics and Applications, Vol. 2, No.
4, pp. 54-62.

[13] HANSON, A., AND R. CROSS, “Interactive Visualization Methods
for Four Dimensions”, in Proceedings of IEEE Visualization 1993,
pp. 196-203.

[14] JI, G., H. SHEN, AND R. WENGER, “Volume Tracking using
Higher Dimensional Isosurfacing”, In Proceedings of IEEE
Visualization 2003, pp. 209-216.

[15] KRAUS, M., W. QIAO, AND D. EBERT, “Projecting Tetrahedra
without Rendering Artifacts”, in Proceedings of IEEE Visualization
2004, pp. 27-34.

[16] LORENSEN, W. E., AND H. E. CLINE, “Marching cubes: A high
resolution 3d surface construction algorithm”, in M. C. Stone, ed.,
Computer graphics, 1987, Anaheim, California, July 1987, pp. 163-
169.

[17] MAX, N. “Consistent Subdivision of Convex Polyhedra into
Tetrahedra”, in Journal of Graphics Tools, 6 (3), 29-36, 2002.

[18] NIELSON, G. M., AND J. SUNG, “Interval volume
tetrahedrization”, in R. Y. a. H. Hagen, ed., IEEE Visualization '97,
IEEE, November 1997, pp. 221-228.

[19] SHIRLEY, P. AND A. TUCHMAN, “A polygonal approximation to
direct scalar volume rendering”, in Volume Visualization
Workshop, 1990, pp. 63-70.

[20] The Ohio State University. Isotable generation software.
http://www.cse.ohio-state.edu/graphics/isotable.

[21] WEILER, M., M. KRAUS, AND T. ERTL, “Hardware Based View-
independent Cell Projection”, in Symposium on Volume
Visualization, 2002, Boston, MA.

[22] WEILER, M., M. KRAUS, M. MERZ, AND T. ERTL, “Hardware-
Based Ray Casting for Tetrahedral Meshes”, in Proceedings of
IEEE Visualization 2003, pp. 333-340.

[23] WILLIAMS, P. “Visibility Ordering of Meshed Polyhedra”, in ACM
Transactions on Graphics, 11 (4), 103-126, April 1992.

[24] WILLIAMS, P., “A Volume Density Optical Model”, in IEEE
Volume Visualization Symposium, ’92, 61-68

[25] WILLIAMS, P., N. MAX, C. M. STEIN, “A High Accuracy Volume
Renderer for Unstructured Data”, in IEEE Transactions on
Visualization and Computer Graphics 4(1): 37-54 (1998).

[26] WOODRING, J., AND H. SHEN, “Chronovolumes: A Direct
Rendering Technique for Visualizing Time-Varying Data”, In
Proceedings of 2003 International Workshop on Volume Graphics.

[27] WOODRING, J., C. WANG, AND H. SHEN, “High Dimensional
Direct-Rendering of Time-Varying Volumetric Data”, In
Proceedings of IEEE Visualization 2003, pp. 417-424.

[28] WYLIE, B., K. MORELAND, L. A. FISK, AND P. CROSSNO,
“Tetrahedral Projection using Vertex Shaders”, In Symposium on
Volume Visualization 2002, pp. 7-12, 2002.

