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ABSTRACT 
 
In this paper, we study the interval segmentation and direct 
rendering of time-varying volumetric data to provide a more 
effective and interactive volume rendering of time-varying 
structured and unstructured grids. Our segmentation is based upon 
intervals within the scalar field between time steps, producing a 
set of geometrically defined time-varying interval volumes. To 
construct the time-varying interval volumes, we cast the problem 
one dimension higher, using a five-dimensional iso-contour 
construction for interactive computation or segmentation. The key 
point of this paper is how to render the time-varying interval 
volumes directly. We directly render the 4D interval volumes by 
projecting the 4D simplices onto 3D, decomposing the projected 
4-simplices to 3-simplices and then rendering them using a 
modified hardware-implemented projected tetrahedron method. In 
this way, we can see how interval volumes change with the time 
in one view. The algorithm is independent of the topology of the 
polyhedral cells comprising the grid, and thus offers an excellent 
enhancement to the volume rendering of time-varying 
unstructured grids. Another advantage of this algorithm is that 
various volumetric and surface boundaries can be embedded into 
the time-varying interval volumes. 
 
CR Categories: I.3.3 [Picture/Image Generation]: Display 
algorithms  
 
Keywords: Volume Rendering, Unstructured Grids, Interval 
Volumes, Time-Varying data, Projected Tetrahedra  

1 INTRODUCTION 

With the widespread use of high performance computing systems, 
some application simulations are capable of producing large 
datasets. These simulations tend to be time varying, adding 
another dimension to the problem. This paper mainly deals with 
the interval segmentation and rendering for time-varying 
structured and unstructured datasets. 
    A traditional method to render time-varying data is to take a 
snapshot of the data for each particular time step and generate an 
animation from the time series data. This method is useful, but it 
replies on human memory and cognitive abilities to tie together 
spatio-temporal relationships. An alternative method is to display 
the movement of the time series data in a single image using 
direct rendering of high dimensional data. Some people have 
worked on the hypervolume visualization [2] and high 
dimensional direct rendering of time-varying volumetric data [27], 
but their algorithms do not apply for unstructured grids.  
    Interval volumes have been used to segment and render 
structured and unstructured volumetric data [7]. It is a region-of-

interest extraction algorithm, and fast volume visualization 
techniques are employed to render the interval volumes. Under the 
framework of the high-dimensional iso-contouring algorithm, 
interval volumes can easily be computed using two schemes for 
time varying data sets. The first scheme computes the interval 
volumes separately for each time step of the dataset using the 
algorithm discussed in [7]. The user can then cycle through all the 
time steps to visualize the data. It is obvious that this scheme does 
not show the relationship of the interval volumes between 
different time steps well.  
    An alternative approach is to use the high-dimensional 
isosurfacing algorithm to compute a 4-dimensional volume 
representing a time-varying interval volume. This can be 
accomplished by applying the isosurfacing algorithm directly on a 
5-dimensional grid to generate a surface comprised of 4-
simplices. Then, we can render the 4-tetrahedra by slicing the 
interval volumes between the time steps. An alternative method, 
and the focus of this paper, is to render the 4-simplex from the 
interval volumes by integrating in the time directly, rather than 
projecting and slicing them. 
    In the following sections we look at some of the previous work 
done in this domain. We then give an overview of our time-
varying interval volume computation algorithm, followed with 
rendering methods and visualization techniques for the time-
varying interval volumes. We end with some results of our work 
and present future directions for research in this domain.  

2 PREVIOUS WORK 

Previous work that relates to our research primarily focuses on 
high-dimensional scientific visualization, unstructured volume 
rendering and interval volumes. 
 
High-Dimensional Visualization – Hanson et al. [11, 12, 13] 
introduced a general technique, as well as an interactive system, 
for visualizing surfaces and volumes embedded in four 
dimensions. In their method, 3D scalar fields were treated as 
elevation maps in four dimensions in the same way 2D scalar 
fields could be viewed as 3D terrains. Bajaj et al. [2] developed an 
interface that provides “global views” of scalar fields independent 
of the dimension of their embedded space and generalized the 
object space projection technique into a hyper-volume projection 
method. Texture mapping hardware was utilized to directly render 
n-dimensional views of the global scalar field. Woodring et al. 
[26, 27] treated the time-varying data as four-dimensional data, 
and applied high dimensional slicing and projection techniques to 
generate an image hyperplane. The results of their technique 
generated a volume that is the projection of hyperplanes along a 
4D projection vector, which can be rendered using traditional 
volume rendering techniques. 
 *{zhangc, xue, crawfis, wenger}@cse.ohio-state.edu 
Unstructured Volume Rendering – Shirley and Tuchman [19] 
presented an algorithm for hardware accelerated rendering of 
unstructured tetrahedral grids by approximating the projection to 
screen space using a set of triangles. Grids consisting of different 
cells are first decomposed into a tetrahedral representation using 
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simplicial decomposition techniques [1][17]. Williams extended 
Shirley-Tuchman’s approach to implement direct projection of 
other polyhedral cells in their HIAC rendering system [25] and 
used high accuracy light integration functions to model the light 
transport through the medium [24]. Recently, with the advent of 
programmable graphics hardware, a tremendous amount of work 
has been done in implementing the Shirley-Tuchman algorithm on 
graphics hardware using the programmable vertex and fragment 
shader pipelines on the GPUs [21][28][15]. In all of the above 
cases, the rendering performance of the projected tetrahedra 
algorithm is typically proportional to the number of cells to be 
rendered. The rendering process involves visibility sorting 
(usually O(nlogn)) and  projection (O(n)) of the polyhedral cells. 
As an alternative to projection, polyhedral cells can also be 
rendered using ray casting [22]. 
 
Interval Volumes – An interval volume is the set of points in a 
scalar field enclosed between two isosurfaces defined by two 
different isovalues. Fujishiro [8] introduced interval volumes as a 
solid fitting algorithm. A few applications of interval volumes 
were presented in [10][9]. Fujishiro computed a tetrahedralization 
of the interval volume by computing the intersection of two 
convex polyhedra enclosed by the isosurfaces given by the 
Marching cubes algorithm [16], within each cell. Nielson [18] 
computed the tetrahedralization by first decomposing each cube in 
the grid to five tetrahedra. Nielson then used an efficient lookup 
table to compute the interval volume within each simplex and 
decompose it into tetrahedra. The tetrahedralization was 
constructed manually by analyzing all the possible intersections of 
a tetrahedron with an interval enclosed by two isosurfaces. Banks 
[3,4] counted the cases for a family of visualization techniques, 
including iso-contours and interval volumes.  
    The above work is on the interval volumes of a single scalar 
field. For interval volumes with respect to a time-varying dataset, 
Ji et al. [14] tracked the interval volumes using higher 
dimensional isosurfacing, and rendered an iso-contour surface of 
the interval volumes. They did not directly render the 4D interval 
volumes. 
 
    In this paper, we work on the computation and direct rendering 
of the time-varying interval volumes. We use interval volumes to 
create disjoint volume segments, or intervals. Interval volumes 
provide a segmentation of the data into easily discernable regions. 
The direct rendering of the time-varying interval volumes makes 
it possible to get the distribution and relationship of the interval 
volumes across time steps, and help us to understand the time-
varying structured and unstructured volumetric fields. 

3 TIME-VARYING INTERVAL VOLUME COMPUTATION 

In [5], we presented a new algorithm for computing isosurfaces in 
arbitrary dimensional data sets. The algorithm proceeds by 
generating isosurface patches within each d-dimensional 
polyhedral cell comprising the d-dimensional grid. The output of 
the algorithm is a set of (d-1)-dimensional simplices forming a 
piecewise linear approximation to the isosurface.  The algorithm 
constructs the isosurface piecewise within each cell in the grid 
using the convex hull of an appropriate set of points. In [6] we 
present a proof of correctness for the d-dimensional isosurface 
construction and show that it correctly produces a triangulation of 
a (d-1)-manifold with boundary. Here, we give a short review of 
the algorithm. See [7] for more details. 
    For a function f(x,y,z) sampled on a three dimensional  grid, the 
interval volume [8] is defined by If(α,β) = {(x,y,z): α ≤ f(x,y,z) ≤ 
β}. More generally, for a function f : Rd→R in any dimension, the 
interval volume is defined by If(α,β) = {(x1,…,xd): α ≤ f(x1,…,xd) 
≤ β }. Intuitively, the interval volume is the set of points enclosed 

between the two isosurfaces corresponding to the isovalues, α and 
β. For a d-dimensional grid, the interval volume is a d-
dimensional subset of the grid and can be represented by a 
collection of d-simplices. 
    The interval volume algorithm proceeds as follows: 
1. Let f(x1,…,xd) define a d-dimensional function. 
2. Let scalar values, α, β (α < β), be the desired isovalues 

bounding the interval. 
3. Let F(x1,…,xd, w) be the (d+1)-dimensional function, given 

by, F(x1,…,xd,w) = f(x1,…,xd) − (α (1−w) + β w), such that 
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4. Compute the zero-valued isosurface, S, given by F(x1,…,xd, 
w) = 0 for 0 ≤ w ≤ 1. 

5. Let π be the projection function mapping Rd+1 to Rd given by 
π(x1,…,xd,xd+1) = (x1,…,xd). The desired interval volume, 
If(α,β), is then given by π(S). 

 
    For a time-varying scalar grid with hexahedral cells, the 
construction of the time-varying interval volumes is a five-
dimensional isosurfacing problem. Given a four dimensional 
scalar field f(x,y,z,t), the interval volume consists of all the points 
which satisfy α ≤ f(x,y,z,t) ≤ β. Following the above interval 
volume algorithm, in order to compute the time-varying interval 
volume, we first create a five dimensional scalar field F(x,y,z,t,w), 
such that F(x,y,z,t,0) = f(x,y,z,t) - α and F(x,y,z,t,1) = f(x,y,z,t) - β. 
Then, the interval volume α ≤ f(x,y,z,t) ≤ β can be extracted by 
first computing the zero isosurface of the five dimensional 
function F(x,y,z,t,w), and then projecting the resulting isosurface 
along the w axis to four dimensional space.  
    Here, we should note that the entries of the isosurface lookup 
table for 5D hypercube are too large to be stored in the main 
memory. Since a 5D hypercube contains 32 vertices, the size of 
the table will contain 232 = 4G entries. As pointed out in [14], not 
all the four billion cases are possible. Only 316 ≈ 43M entries are 
possible for interval volumes. However, this size may be still too 
large to be processed in core. One solution is to compute the 
entries of the lookup table at runtime and cache them into a hash 
table which is small enough to fit into the main memory. In this 
paper, we use this caching method to store the 5D isosurface 
lookup table. See [20] for the lookup table generation code. 
    Since the isosurface triangulation is consistent, the interval 
volume triangulation will also be consistent.  Our algorithm 
guarantees the consistency in the table generation stage by using a 
lexicographical ordering of the isosurface vertices and then 
building the convex hull incrementally, adding one vertex at a 
time in the specified order. This is similar to the scheme used by 
[18] and [17], which ensures canonical triangulations across cell 
boundaries and generates consistent meshes. However, we still 
have to worry about the decomposition from 4-simplices to 3-
simplices for the purpose of rendering. And we will address this 
problem in the next section. 

4 TIME-VARYING INTERVAL VOLUME RENDERING 

After we extract the 4-simplices comprising the 4D interval 
volume, one rendering possibility is to slice the 4-simplices 
parallel to the time axis to generate 3-simplices (i.e. 3D 
tetrahedra) for a corresponding time step. The resulting 3D 
tetrahedra can then be rendered. This scheme is analogous to 
rendering time-varying isosurfaces [5], but allows slicing at non-
integral time steps to compute interpolated interval volumes 
between consecutive time steps. Figure 1 shows one example of 
the time slicing. The left image and the right image are the 
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Figure 1. Results of time slicing 

interval volumes with respect to the two time steps t1 and t2. The 
middle image is the corresponding interval volume with the time 
value t = (t1 + t2)/2.  
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    In this paper, we are more interested in the direct rendering of 
the 4-simplices extracted from the 5D isosurface lookup table, in 
order to understand the distribution and relationship of the time-
varying interval volumes across time steps. Now the challenge is 
how to render the 4-simplices to the 2D image space. The 
following subsections will explain the projection of 4-simplices to 
3-simplices and the projection of 3-simplices to image space. 

4.1 Projection and decomposition of 4-simplices to 3-
simplices 

4.1.1  Projection of 4-simplices to 3D 

Each 4-simplex extracted from the 5D isosurface lookup table has 
five vertices with coordinates (x, y, z, t). Every two vertices out of 
the five are connected by an edge. The 4-simplex is projected to 
3D along a given projection direction in 4D: π(x1, x2, x3, x4) = (u1, 
u2, u3), where π is the projection function. Here, we use a 
projection along the t axis as an example. So, π(x1, x2, x3, x4) = (x1, 
x2, x3). 
    The five projected vertices compose some volume in three 
dimensions, except in some degenerate cases where the five 
projected vertices form a triangle, or a line, or a point. There are 
six common cases for the spatial relationship of the projected 4-
simplex, as shown in Figure 2. They are either labeled as general 
cases, or the degenerate cases which still compose a volume in 3D 
(for example, four vertices coplanar, three vertices colinear, and 
two vertices coincident). The more severe degenerate cases, where 
the projected vertices are all co-planar, are not considered in this 
paper, because they do not produce volumetric entities. 
    The projected 4-simplices are classified as different types based 
on the spatial relationship of the five vertices of the projected 4-
simplex along the t axis in three-dimensional space. Figure 2 
illustrates the six common cases of the 4-simplex projection. Class 
1 and class 2 are general cases. In class 1, no vertex is inside a 
tetrahedron composed of the other four vertices. In class 2, one 
vertex is inside the tetrahedron of the other four vertices (in 
Figure 2, P5 is inside the tetrahedron P1P2P3P4). Class 3, class 4 
and class 5 are degenerate cases. In class 3(a), four vertices (P1, 
P2, P3, P4) are coplanar. P5 is inside the triangle of P1P2P3 in 
class 3(b). In class 4, three vertices (P1, P4, P3) are colinear, and 
in class 5, two vertices (P4, P5) are coincident.  
    A projected 4-simplex with 5 vertices is classified step by step 
using the flow chart in Figure 3.  
    In this paper, we classify the projected 4-simplices into two 
general cases and four degenerate cases. The degenerate cases 
generate fewer decomposed tetrehedra in section 4.1.2 and 
improve the rendering performance. We could just consider only 
general cases and combine the degenerate cases into the general 
cases. For example, class 3(b) and class 5 can be combined into 
class 2, with the vertex P5 moving from the face P1P2P3 or from 
the vertex P4 to inside the tetrahedron P1P2P3P4. Similarly, class 
3(a) and class 4 can be combined into class 1, with the vertex P4 
moved from the position coplanar with P1P2P3 or colinear with 
P1P3 to the position on the opposite side of P5 with respect to the 

face P1P2P3. This generalization of the cases will generate more 
tetrahedra (many of them with nearly zero volume) and/or will 
need some checking to distinguish them in the tetrahedralization 
stage. 
    This classification will guide us in decomposing the projected 
4-simplices into tetrahedra for the purpose of rendering. 

4.1.2  Tetrahedralization of projected 4-simplices 

Our first attempt at this problem was to project 4-simplices to 3D 
along the time axis by simply ignoring the time value (t) and 
keeping only the position information (x, y, z) for each vertex. 
Then, the projected 4-simplices are decomposed into tetrahedra in 
3D space based on the above classification in Figure 2. Table 1 
was constructed by hand and shows the possible decomposition of 
each class. 
    After rendering the resulting 3D tetrahedra using the Projected 
Tetrahedron method, we found that the result was not correct. An 
image of a constant plate is shown in Figure 4. There are some 
obvious patterns on the plate. As we know, many 4-simplices are 
extracted from the lookup table for each hypercube cell, and then 
are projected to 3D and decomposed to tetrahedra. By keeping 
track of the tetrahedral components inside each cell, we find that 
each tetrahedron is in right place and the tetrahedra as a whole fill 
the cell. However, we also find that the projections of a set of 4-
simplices overlap. For example, for a cube cell from our constant 
plate example as shown in Figure 4, some space is shared five 
times by the projection of 4-simplices, while other space is shared 
only four times. This uneven overlapping distribution of the 
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Figure 2. Classification of projected 4-simplex 
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Figure 3. Flow chart of the classification of the projected 4
simplex 
the cell. 
 

Table 1. Original decomposition of the projected 4-simplices 
 

Class Possible Tetrahedra 
Class 1 P1P2P3P4 and P1P2P3P5 

or: P1P2P4P6, P1P3P4P6, P2P3P4P6, P1P2P5P6, 
P1P3P5P6 and P2P3P5P6 

Class 2 P1P2P3P4, or: 
P1P2P3P5, P1P2P4P5, P1P3P4P5 and P2P3P4P5 

Class 3(a) P1P2P3P5 and P1P3P4P5 
or P1P2P4P5 and P2P3P4P5 
or: P1P2P5P6, P2P3P5P6, P3P4P5P6, P1P4P5P6 

Class 3(b) P1P2P3P4, or: 
P1P2P4P5, P1P3P4P5 and P2P3P4P5 

Class 4 P1P2P3P5, or: 
P1P2P4P5 and P2P3P4P5 

Class 5 P1P2P3P4 
 

                 

 

    The key observation in the incorrect opacity is that the length of 
the projection through time cannot be ignored during the 
projection of the 4-simplices along the time axis. During the 
projection, each vertex obtains a value. The valuet∆ t∆ is 
calculated in a similar way as the calculation of z∆  in the 
projected tetrahedron algorithm, but along the time dimension. 
The basic idea is that a ray is cast along the time projection 
and t∆ is calculated as the length of the ray that passes through 
the 4-simplices. Here the projection is from 4D to 3D. So, a vertex 
in 3D has a non-zero t∆ value if it has two different t values 
along the ray in the t dimension and the is calculated as the 
difference of the two t values. That means, one vertex has a non-
zero 

t∆

t∆ if it is overlapped with another vertex in 3D (here, the 
vertex can be an original projected vertex or a point which is 
interpolated by other projected vertices after the projection to 3D). 
Vertices with a non-zero t∆ value are illustrated by the black 
points in Figure 5 for each case of the projected 4-simplices. 
    In class 5, P4 and P5 are coincident after the projection and P4 
has a non-zero t∆ . In class 4, P4 has a non-zero t∆ value which 
is the difference of P4.t and the interpolated t value between P1 
and P3. In class 3(a), the new vertex P6 which is the intersection 
point of the lines P1P3 and P2P4 has a non-zero t∆ value which 
is the difference of two interpolated t values between P1P3 and 
P2P4. While for class 3(b), the at P5 is non-zero which is equal 
to the difference of P5.t and the t value interpolated inside the 
triangle P1P2P3. Similarly, for class 2, the value at P5 is the 
difference of P5.t and the interpolated t value inside the 
tetrahedron P1P2P3P4. In class 1, the new vertex P6 is the 
intersection point of the triangle P1P2P3 and the line P4P5. The 

t∆

t∆

t∆ value at P6 is the difference of the interpolated t value inside 
P1P2P3 and the interpolated t value along the line P4P5.  

Figure 4. Incorrect rendering result of a constant plate 
 in four dimensions 

      
P1 P4 P3

          P1 P3  
 
            Figure 5. Tetrahedralization of projected 4-simplex 

Class 4 Class 5



    After determining the vertex with a non-zero for each class, 
the decomposition of the projected 4-simplices into tetrahedra 
should make sure that the vertex with a non-zero is one vertex 
of the decomposed tetrahedra. Now the decomposition becomes a 
unique process. The unique decomposition is listed in Table 2 for 
each class of 4-simplex. For each decomposed tetrahedron, one 
vertex has a non-zero  value and each point inside the 
tetrahedron has an interpolated value. The  distribution 
inside the tetrahedron also contributes to the final opacity of the 
rendered tetrahedron.  

t∆

t∆

t∆
t∆ t∆

 
    Table 2. Final decomposition of the projected 4-simplices 
 

Class Decomposed Tetrahedra 
Class 1 P1P2P4P6, P1P3P4P6, P2P3P4P6, P1P2P5P6, 

P1P3P5P6 and P2P3P5P6 
Class 2 P1P2P3P5, P1P2P4P5, P1P3P4P5 and P2P3P4P5 
Class 3(a) P1P2P5P6, P2P3P5P6, P3P4P5P6 and P1P4P5P6 
Class 3(b) P1P2P4P5, P1P3P4P5 and P2P3P4P5 
Class 4 P1P2P4P5 and P2P3P4P5 
Class 5 P1P2P3P4 

4.2  Projection of 3-simplices to image space 

We use an implementation of the Projected Tetrahedron algorithm 
from Shirley and Tuchman [19] to render the projected tetrahedra 
from the 4-simplices. The algorithm approximates a tetrahedron 
using one to four triangles depending on the screen projection of 
the tetrahedron’s vertices. We implement the PT algorithm using a 
vertex program in programmable graphics hardware [28].  
    Compared to the projection of the normal tetrahedra, there is 
one difference in the rendering of the time-varying interval 
volumes: the tetrahedra here have a non-constant t∆  distribution 
from the projection along the time axis. Therefore, when we 
calculate the opacity of the projected triangles, we should consider 
both the contribution of the t∆ for the projection along the time 
axis and the contribution of the for the projection along the z-
axis. 

z∆

    The transparency along a ray passing through a tetrahedron is 
represented as following for the rendering of the 4-simplices: 
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    Here, τ is the extinction coefficient. The opacity along a ray is 
represented as  

                (2) zte ∆⋅∆⋅−−= τα 1
    Figure 6(a) shows a constant tetrahedron P1P2P3P4, which is 
composed of four projected class-5 4-simplices, each with a non-
zero t∆ value at one vertex (represented as black points). By 
adding the interpolated t∆ values from four tetrahedra, every point 
P inside the tetrahedron has a constant (as shown in equation 
3). Figure 6(b) shows the distribution of the

t∆
t∆ inside the 

tetrahedron. This is what we expect for a constant tetrahedron 
which is composed of four projected 4-simplices extracted from a 
5D isosurface lookup table. 
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    The transparency along a ray passing through any point P inside 
the constant tetrahedron is: 
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    The opacity along the ray is . It shows the 
opacity along a ray passing through any point P inside the 
constant tetrahedron depends on the constant 

zte ∆⋅∆⋅−−= τα 1

t∆ inside the 
tetrahedron and the z∆  from the projection along the z-axis. 
    Since the zero-thickness vertices in PT algorithm do not 
necessarily have zero t∆  thickness, and the vertex with non-zero 
thickness in PT algorithm may have zero thickness of t∆ , so we 
cannot directly multiply the t∆ and the  at each vertex and 
then interpolate it inside the projected triangles. Actually, the bi-
variant function should be evaluated at each pixel. That means, we 
should multiply the interpolated and the interpolated 

z∆

t∆ z∆ for 
each pixel inside the projected triangles. We develop a modified 
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Figure 6. Projected tetrahedral components and ∆ distribution 
inside a constant tetrahedron 

t



implementation of the Shirley and Tuchman algorithm using the 
vertex and fragment programs to consider both the contributions 
of the and the ∆ . In the vertex program, we calculate the 

and  for each vertex of the projected triangles, then their 
contributions to the opacity are multiplied in the fragment 
program for each pixel. 

t∆ z
t∆ z∆

      

    Considering the contribution of the on the opacity, the data 
in Figure 4 is rendered correctly as in Figure 7. 

t∆

             

4.3  Visualization techniques of time-varying interval volumes 

In this section, we build upon our work of the computation and 
projection of the time-varying interval volumes to come up with 
some visualization techniques for effective visualization of the 
time-varying volumetric data sets. As discussed in previous 
sections, the tetrahedra for time-varying interval volumes have 

distribution from the projection along the time axis and they 
overlap themselves in 3D space. This causes some occlusion and 
compositing problems. In this section, we will figure out the 
suitable visualization techniques for the time-varying interval 
volumes. For Figures 8 to 16, please also see the color plate. 

t∆

4.3.1 Direct rendering of the time-varying interval volumes  

We can render the time-varying interval volumes directly from the 
extracted 4-simplices, using the projection methods as discussed 
in sections 4.1 and 4.2. Since the time-varying interval volumes 
actually project to the same three-dimensional space (i.e., it is a 
self-intersecting volume), no accurate sorting is possible. In this 
section, an additive compositing operator is used to blend the 4-
simplices into the image. The color of the vertex is encoded using 
the time value. For the overlapped vertices (as shown with the 
black points in Figure 5), the time value is calculated as the 
average t value of the two overlapped vertices.  
    Figure 8 is an example of the direct volume rendering result of 
a simple test function comprised of a linear ramp in time. Here, 
the color at t=t1 is green, and the color at t=t2 is red. The color 
between t1 and t2 is encoded between green and red. From this 
figure, we can see the transition from the green, to the yellow, and 
to the red as the field moves over time.  

4.3.2 Highlighted surface boundaries  

Similar to the interval volumes with embedded boundary surfaces 
in [7], we can embed the boundary isosurfaces into time-varying 
interval volumes to highlight interior features. The boundary 
surfaces are extracted during the construction of the time-varying 
interval volumes without extra computation cost, simply by 
checking if the vertices are on a boundary or not.  
    For time-varying interval volumes, there are two types of 
boundaries: volumetric boundaries and surface boundaries. In this 

subsection, we first consider the surface boundaries. Given a time-
varying interval volume defined by two isovalues α and β, and 
two time steps t1 and t2, there are four boundary isosurfaces at: 
(a) t=t1 and f(x,y,z,t)=α, (b) t=t1 and f(x,y,z,t)=β, (c) t=t2 and 
f(x,y,z,t)=α, (d) t=t2 and f(x,y,z,t)=β. Since these surfaces are the 
boundary of the tetrehedra which compose the time-varying 
interval volume, these boundary surfaces are rendered together 
with the 4D interval volume. The four isosurface boundaries are 
illustrated in Figure 9 in the above order (a) to (d) from left to 
right. From the figure, we can see how the isosurfaces change 
with time and with value. 

4.3.3  Volumetric boundaries 

There are also four kinds of volumetric boundaries for a time-
varying interval volume defined by two isovalues α and β, and 
two time steps t1 and t2: (a) time-varying isosurfaces at 
f(x,y,z,t)=α and t1≤ t ≤ t2, (b) time-varying isosurfaces at 
f(x,y,z,t)=β and t1 ≤ t ≤ t2, (c) interval volumes at α≤ f(x,y,z,t) ≤ β 
and t=t1, and (d) interval volumes at α≤ f(x,y,z,t) ≤ β and t=t2. 
The four volumetric boundaries are shown in Figures 10(left), 
10(right), 11(left) and 11(right), respectively.  
    The volumetric boundaries are rendered using the normal 
projected tetrahedron algorithm, without the contribution of t∆  
on the opacity. Here, the boundary interval volumes are sorted, 
not according to the viewing rays, but according to their priorities 
(the time here) to bring an important interval volume at a specific 
time step to the forefront. This priority-based sorting technique 

Figure 7. Rendering result of a constant plate 

 
Figure 8. Direct rendering result 
of a time-varying interval volume 

Figure 9. Time-varying interval 
volume with four isosurfaces 

            
Figure 10. Time-varying isosurfaces at f(x,y,z,t)=α and t1≤ t ≤ t2 
(left), and f(x,y,z,t)=β and t1 ≤ t ≤ t2 (right). 

           
Figure 11. Interval volumes at α≤ f(x,y,z,t) ≤ β and t=t1 (left), and 
α≤ f(x,y,z,t) ≤ β and t=t2 (right). 



                                   
 

                  

Figure 12. Time-varying interval volumes 
for vortex dataset (two time steps) 

Figure 13. Time-varying interval volumes 
for vortex dataset (three time steps) 

Figure 15. Two interval volumes at t1 and t2 
for the vortex dataset are rendered using MIP 

Figure 14. Time-varying interval volumes for the NASA Tapered 
Cylinder dataset 

Figure 16. Two interval volumes at t1 and t2 for the Tapered 
Cylinder dataset are rendered using MIP 

comes from the idea of the Maximum Intensity Projection (MIP) 
in medical community. Also, a constant color is assigned to each 
volumetric boundary. Figures 15 and 16 are rendered using this 
technique.  

5      RESULTS  

We apply the rendering and visualization techniques of the time-
varying interval volumes explained in section 4 to several 
datasets. Figure 12 shows time-varying interval volumes of a 
vortex dataset, rendering the vorticity magnitude in the range of 
(8.0, 12.0). The color is encoded using time t: green at t=t1, red at 
t=t2, and yellow for overlapped regions between t=t1 and t=t2. 
From this figure, we can see how the interval volumes move over 
time. We can also notice that some new components are generated 
over time, such as the purely red one in Figure 12. Figure 13 is the 
interval volumes of the vortex dataset for three time steps. The 
color mapping with time t is in the following way: blue at t=t1, 
green at t=t2, red at t=t3, cyan for overlapped regions between 
t=t1 and t=t2, yellow between t=t2 and t=t3. So, for the 
overlapped region among t=t1, t=t2 and t=t3, the color is white 
using the additive compositing operator. In this figure, areas 
where contours are appearing over time are predominantly red, 
while areas that faded over time are predominantly blue. Areas 
which maintain a high isovalue over time appear white. Figure 14 
shows time-varying interval volumes for the NASA Tapered 
Cylinder dataset, by rendering the density attribute in the range 
(0.982124, 0.9852195). This dataset is a curvilinear grid in 
PLOT3D format. Similarly, this figure shows the movement of 
the interval volumes with the time.  
    By rendering two interval volumes at t=t1 and t=t2 extracted 
from the volumetric boundary into one image using the MIP 
technique discussed in section 4.3.3, we can see how the interval 
volumes move with the time steps. In this way, an important 
interval volume at a specific time step is brought to the forefront, 
preventing being occluded by the interval volumes at other time 
steps. Figures 15 and 16 show two interval volumes at t1 and t2 

for the vortex dataset and the Tapered Cylinder dataset in one 
view using the MIP technique. Here, yellow color represents the 
interval volume at t1, and red color is for t2. In the two figures, 
the interval volume at t2 is given higher priority. By comparing 
the images using MIP and the corresponding time-varying interval 
volumes, we can interpret the images of time-varying interval 
volumes well. 
    All the results presented in this paper have been generated 
using a PC with a QuadroFX 3000 graphics card and a Pentium 
IV 3.4 GHz processor. The interval volume computation time and 
the volume rendering time for the datasets are listed in Table 3.  
    In the Table 3, the 4D interval volume construction and 
decomposition time includes the time to calculate the entries of 
the isosurface lookup table, the time to construct 4-simplices and 
the time to decompose 4-simplices to tetrahedra. Due to the 
decomposition of 4-simplices to 3-simplices and the overlapping 
copies of the 3-simplices in 3D space, there are more tetrahedra 
for time-varying interval volumes. 

6     CONCLUSIONS AND FUTURE WORK 

In this paper, we have presented an algorithm for computing time-
varying interval volumes in structured and unstructured grids 
using a fast isosurface extraction algorithm. And we have 
explained the rendering methods of the 4-simplices by projecting 
and decomposing the 4-simplices to 3-simplices, and using a 
modified hardware-implemented projected tetrahedron method. In 
this way, we can render the time-varying interval volumes which 
integrate multiple time steps into a single view and we can see the 
movement of the interval volumes over time in one view. 
Different visualization techniques have been demonstrated for the 
visualization of the time-varying structured and unstructured data 
sets.  
    The current rendering technique uses the hardware 
implemented projected tetrahedron method [28]. We can use the 
new PT implementation presented in [15] to improve the quality 
of the images and we can consider to speed up the projection from 



4D to 3D by taking advantage of the modern graphics hardware. 
Also, the current algorithm can be augmented with feature 
detection techniques to aid the user in identifying 
useful/interesting intervals in the field. We also want to extend the 
concept of constructive solid geometry for multi-attribute data sets 
to time-varying interval volumes.  
 
Table 3. 4D interval volume computation and rendering 
performance 

 
 

Data set 

4D interval 
volume 

construction 
and 

decompo-
sition time 

 
Number 

of 4-
simplices 

 
Number 

of 
tetrahedra 

(with 
volume) 

 
Rendering 

time 
(linear 
color) 

Test 
function 

(2x20x10x
10) 

 
75ms 

 
9,720 

 
27,054 

 
30ms 

Vortex 
dataset 

(2x128x 
128x128) 

 
12.2s 

 
319,304 

 
882,044 

 
970ms 

Tapered 
Cylinder 

(curvilinear 
2x64x64 

x32) 

 
 

18.5s 

 
 

349,624 

 
 

941,098 

 
 

1,030ms 

Vortex 
dataset 

(3x128x 
128x128 

 
22.5s 

 
654,846 

 
1,807,460 

 
1,980ms 
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