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A view-dependent approach to MIP for very large data
Naeem Shareef and Roger Crawfis

Dept. of CIS, The Ohio State University, Columbus, OH

ABSTRACT
A simple and yet useful approach to visualize a variety of structures from sampled data is the Maximum In

Projection (MIP). Higher valued structures of interest project over occluding structures. This can make MIP image
cult to interpret due to the loss of depth information. Animating about the data is one key way to try to deciphe
ambiguities. The challenge is that MIP is inherently expensive and thus high frame rates are difficult to achieve.
tions to the original MIP algorithm and classification can help to further alleviate ambiguities and provide imp
image quality. Unfortunately, these improved techniques are even more expensive. In addition, they require sub
parameter searching and tweaking. As today’s data sizes are increasingly getting larger, current methods only al
limited interaction. We explore a view-dependent approach using concepts from image-based rendering. A nove
layered image representation storing scalar information is computed at a view sample and then warped to the use
We present algorithms using OpenGL to quickly compute MIP and its variations using commodity off-the-shelf gra
hardware to achieve near interactive rates.

Keywords: MIP, view-dependent, image-based, transfer function, graphics hardware.

1. INTRODUCTION

Due to its simplicity, MIP is a visualization technique that has been effectively used in practice to visualize
structures as vasculature, bone, and soft tissue from MR and CT data. It is a view-dependent operation that filters
to pass higher scalar values. For example, structures highlighted with radioactive tracers are projected over lo
occluding structures and noise. Visibility ordering and depth information is lost which makes the static MIP image
cult to interpret. A good illustration of this is to try to determine the visibility ordering of a large network of highly in
twined vasculature from a single MIP image (see Figure 3, top left). Interactive rendering helps to mentally reco
the lost information by providing 3D cues via motion parallax.

MIP is an inherently expensive operation because all scalar values along a sampling ray need to be ev
Whereas various approaches4, 10, 13, 2, 3, 5, 6, 7have tried to reduce bottlenecks in rendering or utilize acceleration h
ware to reduce latency, they do not scale well with increasing dataset size. Due to new advances in imaging tec
and various research initiatives, volume datasets will have unprecedented quality with higher spatial and scalar
tions. The Visible Human project1 has made available MR and CT volume datasets sampled at.33 mm resolution
entire human body that requires storage on the order of gigabytes. The Ohio State University houses an MRI fa14

with the strongest magnetic field in the world at 8 tesla. This device is capable of producing extremely high res
MRI data. Data management, network transmission, and visualization are all active areas of research for data of t
nitude. Thus any proposed “end-to-end” solution relies upon expensive approaches. Remote visualization, whic
towards the effective use of this data, say from a doctor’s office or remote satellite facility, is very difficult.

Variations4, 11and classification6,13 to the MIP approach allow for less ambiguity and improved image quality. O
approach4 applies a depth weighting function to the scalar values before the MIP operation, to simulate depth sh
Another approach11 projects the closest local maximum over a user-defined threshold. A transfer function can pic
desired structures or contrast-enhance adjacent structures. These approaches require considerable paramete
and tweaking to arrive at a desirable rendering and add computational complexity.

We present a view-dependent approach that allows for MIP rendering at interactive frame rates on commod
forms, such as a PC equipped with off-the-shelf graphics acceleration hardware with texture mapping. It is an
based approach that pulls from recent research in image-based rendering (IBR). An image-based representatio
structed at a pre-chosen viewpoint by subdividing the view frustum along thez-direction into a number of image-aligned
slab regions. This partitioning subdivides all sampling rays into sub-intervals and corresponding min/max valu
computed and stored for each interval. We construct a novel image-based representation that is used to compute
tions at interactive rates using graphics hardware with texture mapping. Images have many advantages as a r
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implement an image-based browser and rendering framework where the large and cumbersome volume data is
with a more manageable purely image-based representation.

In the next section we describe the MIP operation, its two variations, and classification. Section 3 describ
novel image-based representation which is computed and stored for each view sample. In Section 4 we present M
rithms using OpenGL to render image layers fast. We describe an image-based framework for interactive brow
Section 5. Finally, we show renderings using our approach on three volume datasets.

2. MIP, DMIP, LMIP, AND CLASSIFICATION

The original MIP approach simply projects the maximum scalar value along a sampling ray from the eye thro
pixel. Equation 1 defines the operation applied to a scalar functionf(z), defined on a sampling ray through pixelp and
parameterized byz. Typically the resulting scalar value is converted to a grey level intensity. Here, we limit the ray d
to a distanceD extending from the image plane to a distance past where the ray exits the volume. MIP involves a
over all values on a ray and is thus an expensive operation. Also, the selection operation ignores visibility orde
well as depth information, so that higher valued structures farther away may occlude portions of closer structure
pretation of such a MIP computed image can be difficult without such cues. A variation to MIP4 applies depth shading to
the original MIP approach with a weight function parameterized by distance from the eye. We call this approach
and illustrate its operation in equation 2. Heidrich et. al.4 use standard graphics hardware and a linear function ford(z). A
later variation to MIP, called LMIP, finds the closest local maximum greater than a user-defined threshold. Equ
defines the LMIP operation with a thresholdt, whereLMAX is true if the function value is a local maximum. If no scala
on the ray is greater than or equal tot, then the maximum intensity is projected, as in the original MIP approach. Im
mentations using a front-to-back ray traversal can exploit early ray termination for this particular technique.

(1)

(2)

(3)

The application of classification9 using a transfer functiong() can help to pick, remove, or contrast-enhance vario
structures. A transfer function is defined as any function which returns some material property. We consider t
functions that modulate the scalar field. As shown in equation 4, the maximum operation is applied to the trans
scalar value. Examples of some commonly used transfer functions are ramp, step, and window functions, tho
function may be defined arbitrarily. One example use of transfer functions in CT data in medical visualization is t
dow value ranges that represent particular tissue types.

(4)

Research has focused mainly on acceleration techniques to reduce bottlenecks in the rendering pipeline. U
cost is incurred in terms of image quality with simplifications in one or more steps of the pipeline, e.g. resamplin
reconstruction. Also, most approaches pre-classify the volume. Sakas et. al.10 use a fast DDA algorithm to identify vox-
els along the sampling ray using a raycasting approach. To reduce the cost of tri-linear interpolation, they use a
neighbor or an approximation to the maximum of a cell. Splatting2, shear-warp3, and cell projection5, 6, 7have also been
used where the volume is preprocessed to speedup rendering. Mroz et. al.6 allow for “windowed” transfer functions.
Heidrich et. al.4 use hardware acceleration to compute an approximation to DMIP. A limited set of isosurfaces i
computed using Marching Cubes. The isosurfaces are sorted in depth by their isovalues and the z-buffer is used
pute the MIP. The size of the representation for very large datasets can overwhelm today’s graphics hardware eve
few isovalues. Yen et. al.13 reduce computational complexity by clipping away portions of the volume using the near
far clipping planes to render oblique slabs of the volume. The application of transfer functions is supported, even
the volume is preprocessed into “opaque” runs in order to support fast rendering using shear-warp. The volume

I p( ) max
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re-processed when the transfer function changes. All of these techniques will have difficulty providing high fram
for very large datasets.

3. A MULTI-LAYERED VIEW-DEPENDENT FUNCTIONAL REPRESENTATION

We describe, by construction, a novel image-based representation that stores scalar information at a chos
sample. For now, we assume an orthogonal projection. The near clipping plane is placed at the image plane an
clipping plane at a distanceD that extends to include the entire volume. The view frustum is subdivided by image-alig
cutting planes, i.e. perpendicular to the view vector, placed along thez-axis at intervals of , where

andk is the number of divisions. This partitions the volume intok image-aligned slabs, as shown i
Figure 1a. Data within a particular slab is projected towards the view sample to an image plane placed at the fron
the slab. This partitioning scheme divides each sampling ray intok ray intervals of length . The function values within
an interval are projected towards the corresponding image plane pixel as shown in (Figure 1b). The minimum an

z∆

slabs image layers

Fig. 1a: The view frustum is partitioned intok partitions
along z between the near and far clipping planes. The
result is an array of image-aligned slabs. Four slabs are
shown here each with thickness .z∆

Fig. 1c: The resulting representation is an array of image
layers storing a (min, max) function value pair per pixel.
The bold portions on each image layer shown here
depicts pixels receiving projected data information.

f

z
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min0
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max0
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Fig. 1b: Each sampling ray defines a 1D scalar function (a single ray is shown here), which passes through succes
image layers (vertical lines numbered0, 1, 2, and3). Function values along a ray interval are projected towards an image
layer pixel and both minimum and maximum operations are applied to the values to compute a resulting (mini, maxi) value
pair that is stored at the pixel (black dots).
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mum over the sub-interval is stored at each pixelp for each image planeLi (see equation 5). The resulting representati
is a multi-layered array of images ordered from front-to-back, as shown in Figure 1c. We call each such image animage
layer.

(5)

4. MIP RENDERING USING IMAGE LAYERS

The construction just described, subdivides a sampling ray intok pieces and a function value pair (zmin, zmax) is com-
puted for each piece. If the function is continuous, then all values betweenzmin andzmaxare defined on the interval. When
the user’s camera coincides with the view sample, thek values contain complete information to compute an accurate p
jection. When the user’s view is rotated a small angle away from the sample, a reprojection of these values comp
approximate warp. Texture mapping using standard graphics hardware acceleration can be used to quickly com
reprojection. Image layers are texture mapped onto simple “billboard-like” geometry and then projected towards
view. Each “billboard” is placed at the middle of its corresponding slab.

It is useful to separate theminandmaxcomponents of an image layer into two separate images, called themin image
and themax image, respectively. We present algorithms using OpenGL14 to render MIP images from image layers. Firs
OpenGL’sglBlendEquation function is used withGL_MAX to perform a maximum operation on incoming fragment
To implement the original MIP approach each max image is loaded as a luminance texture and then the texture +
try are projected to the current view. When the user’s view coincides with the view sample, an accurate MIP im
computed because all max samples on the same ray map to the same framebuffer pixel. Each incoming pixel fra
a resampled texture value. At nearby viewpoints, image layer projection warps pixels in the same interval togeth

To compute a DMIP we additionally utilize theglFog function to apply the fog factor to the incoming fragment as
function of depth. Only the max images are projected as well. Three functions are available to weight a fragmen
OpenGL:GL_LINEAR , GL_EXP, andGL_EXP2. UsingGL_LINEAR , the slope of the weight function is set with

.
The LMIP approach requires a front-to-back search along a sampling ray and the detection of a local maximu

equation 3). This operation is not supported in graphics hardware. A ray interval may encompass many local max
image layer pixel holds the largest over these maxima. We describe a two-pass algorithm using OpenGL’s alp
depth tests that computes similar visualizations to LMIP. First, a MIP is computed usingglBlendEquation with
GL_MAX , as just described, after clearing the framebuffer. In the second pass, blending is disabled and the al
depth tests are enabled. TheglAlphaFunc is set withGL_GEQUAL and the user-defined threshold value. TheglDepth-
Func is set toGL_LEQUAL .

We only need the max image for any of these rendering techniques. To apply re-classification, the transfer f
can be evaluated on each max image on a per-pixel basis whenever the transfer function changes. A classifi
called aclassification image, can be computed in this manner and used in the reprojection. Unfortunately, this con
tion is only a coarse sampling along the sampling rays. As defined in equation 4, the MIP operation should be ap
the transfer functiong, which requires all values off on a sampling ray. Rather than resamplingf along the ray again, we
can examine . Iff is C0-continuous, then all values in the range [fmin ... fmax] exist on a ray interval.
A classification imageC can be computed from the min and max images by evaluating the transfer function for all v
in the range of min/max values per-pixel, i.e.

(6)

This precludes the use of applying a transfer function on texture loads. A transfer function lookup table of sizen, the
number of samples in the scalar function domain, is commonly used to classify resampled values. When used he
active performance becomes difficult because multiple table lookups are required per-pixel, i.e. a lookup for each
the min/max interval. Since the transfer function needs to be evaluated for a contiguous interval of domain values,
reduce the table lookup cost to a single lookup per-pixel with a table that stores the right-hand side value of equati
all possible intervals. We construct a table of size indexed by , for alli, j in the domain off. The

I Li
p( ) min

zi z zi 1+<≤
f z( )( ) max

zi z zi 1+<≤
f z( )( )( , ) 0 i k<≤,=

m 1 end start–( )⁄–=

g x( ) x f min f max( , )∈,

C p( ) max
f min f k f max≤ ≤

g f k( )( )=

n2 2⁄ f i f j f i–( , ) f i f j≤,
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size of the table is manageable for commonly used scalar field sizes, such as [0 ... 255]. The classification image
used in conjunction with the previous MIP algorithms in the reprojection.

5. AN IMAGE-BASED BROWSER

Using our view-dependent approach, a view sample with associated image layers allows the user to roam ne
sample at interactive rates using commodity graphics hardware. By computing a collection of view samples place
the data, the user is able to browse the data without an appreciable degradation in the quality of the view recons
if view samples are placed close enough. We have implemented an image-based browser that supports object
viewing, parallel projection, and zooming, using the image-based MIP algorithms described here. View samples
formly distributed on a bounding sphere. The user’s viewpoint is restricted to the sphere and view reconstruction
puted with the image layers from the nearest view sample. Image layers are pre-computed off-line before browsin
a high quality renderer. The images are collected into a database indexed by view sample.

We envision a networked visualization framework in which a graphics client, e.g. a PC with an inexpensive gr
card, runs the browser and requests image layers from a dedicated server. Either the entire database of image l
be loaded beforehand or, if too large, relevant image layers needed to reconstruct the current view can be reque
cached as needed by the browser. By trading off the cumbersome large volume data with images, the user is
browse the data both spatially and parametrically using the MIP algorithms. Our implementation pre-fetches im
that may be needed as the user moves. This paradigm may be viewed as a progressive refinement approach
approximate view is computed between view samples and an accurate view is computed at a view sample. Thus
sample is akin to a key frame. This scheme also supports remote visualization and application on the web.

6. RESULTS

In this section we show renderings from our image-based browser implemented with C++ and OpenGL. All i
were rendered on an SGI O2 with an R5000, 200 MHZ processor with 128MB memory. The image layers are co
with a modified high quality software splatting approach called Image-aligned Sheet Based Splatting8 on an SGI Origin
2000 with four R10000, 225 MHZ processors and 1GB memory. In all results shown here, we use a 16 x 16 qua
for each image layer. The vertices of the mesh are each displaced in thez-direction to approximately fit the data to form a
terrain-like mesh. This improves parallax at off view sample views. The image layer textures are subdivided into
that a tile maps to a single quad. Tiles that contain no projected information are removed, with their correspondin
from the representation. We implemented a transfer function editor that allows the user to draw a 1D curve in fre
and then apply the function to the view reconstruction on-the-fly. All of the images are rendered at interactive rat

Figures 2 - 4 showrenderings on two volume datasets obtained from thevolvis15 volume repository. Both have
dimensions 2563 and 1 byte per voxel. A dataset called “Aneurism” images a network of intertwined vessels. The ot
called “Skull” and is a CT volume of a human skull. We compute 15 image layers at a chosen view sample and sh
results of reprojection. Figures 2 (top left) and 4a show our MIP algorithm applied to the datasets when the user’s
coincident with the view sample. The transfer function is an identity function. Texture mapping and per-fragment
ing utilize much of the rendering cost.

We illustrate our DMIP algorithm in Figures 2 and 3. The first row of Figure 3 shows the application of the
algorithm where the image to the right shows a reprojection at a view rotated ~13 degrees away from the view s
Image quality does not degrade much at this deviation. It is easy to see how difficult it is to determine the visibility
ing of the vessels with the original MIP approach. Even animating about the view sample at multiple frames per
does not completely distinguish ordering. The second row shows renderings when theglFog function set with
GL_LINEAR , GL_FOG_START = 0.0, andGL_FOG_END = 2.0 with respect to the corresponding two user’s view
points used for the first row of images. The depth ordering of the vasculature becomes apparent in these images.
tom image showsGL_LINEAR used with its default values. Only the vessels closest to the user have a large en
weight factor. Figure 4 shows renderings whenglFog is set withGL_EXP andGL_EXP2. These functions also distin-
guish ambiguities found in the MIP renderings and provide a smoother transition over the linear function. The ste
of the function may be chosen to further emphasize closer structures. TheglFog parameters are set with the GUI on-the
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A view sample is placed at the front of the skull’s face of the “Skull” dataset and reprojections are shown Fig

The MIP rendering shown in Figure 4a shows two prominent vessels appearing at the top and bottom of the ima
difficult to determine the depth of these structures due to their very high values. Figure 4b is a rendering using our
of the LMIP algorithm. At a threshold value of 55 from the range [0 ... 255] we notice that our algorithm can provid
same advantages as the LMIP algorithm where the material in front of the brighter vessels properly occludes the
vessels, e.g. the left eye-socket and in the neck. Also, the teeth in the front of the mouth occlude the teeth locate
back. Though contour artifacts due to the slab layering are apparent, they are not distracting and the threshold
changed at interactive rates. Figures 4c and 4d show two different transfer functions applied with the original MIP
rithm. The transfer function used for Figure 5c contrast-enhances portions of the skull, while Figure 5d shows
contrast and isolation of the teeth and roots.
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Fig. 2: The DMIP algorithm applied to the “Aneurism” dataset. The first column shows rendered images when user’s vie
coincident with the view sample, while the second column shows a view rotated ~13 degrees away. The first row applies th
algorithm. The second row shows renderings withGL_ FOG_END = 2.0. The bottom image usesGL_LINEAR with default
values.



Fig. 3: The DMIP algorithm applied to the “Aneurism” dataset usingGL_EXP andGL_EXP2. The viewpoints in each column here
are the same as in the corresponding columns in Fig. 3. The first row shows the DMIP algorithm applied withGL_EXP and
GL_DENSITY  = 0.75. The second row showsGL_ EXP2 with GL_DENSITY  = 0.95.



55

ony
Figs. 4a and b: The left image shows the MIP algorithm and the right image shows the LMIP algorithm with threshold =
applied to the “Skull” dataset.

Fig. 5c: Two transfer functions constructed to reduce noise surrounding the skull and contrast-enhance portions of the b
structure.
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