Distributed Visualization Framework Architecture

Oleg Mishchenko®, Sundaresan Raman®, and Roger Crawfis®

Department of Computer Science and Engineering, The Ohio State University, 395 Dreese
Labs, 2015 Neil Avenue, 43210, Columbus, USA

ABSTRACT

An architecture for distributed and collaborative visualization is presented. The design goals of the system are
to create a lightweight, easy to use and extensible framework for research in scientific visualization. The system
provides both single user and collaborative distributed environment. System architecture employs a client-server
model. Visualization projects can be synchronously accessed and modified from different client machines. We
present a set of visualization use cases that illustrate the flexibility of our system. The framework provides a rich
set of reusable components for creating new applications. These components make heavy use of leading design
patterns. All components are based on the functionality of a small set of interfaces. This allows new components
to be integrated seamlessly with little to no effort. All user input and higher-level control functionality interface
with proxy objects supporting a concrete implementation of these interfaces. These light-weight objects can
be easily streamed across the web and even integrated with smart clients running on a users cell phone. The
back-end is supported by concrete implementations wherever needed (for instance for rendering). A middle-tier
manages any communication and synchronization with the proxy objects. In addition to the data components,
we have developed several first-class GUI components for visualization. These include a layer compositor editor,
a programmable shader editor, a material editor and various drawable editors. These GUI components interact
strictly with the interfaces. Access to the various entities in the system is provided by an AssetManager. The
asset manager keeps track of all of the registered proxies and responds to queries on the overall system. This
allows all user components to be populated automatically. Hence if a new component is added that supports
the IMaterial interface, any instances of this can be used in the various GUI components that work with this
interface. One of the main features is an interactive shader designer. This allows rapid prototyping of new
visualization renderings that are shader-based and greatly accelerates the development and debug cycle.

Keywords: Scientific Visualization, Visualization Framework

1. INTRODUCTION

We present a distributed visualization framework. The goal in creating the framework was two-fold: first, create
a system that can reduce the time for implementing new visualization algorithms and thus reduce the time for
verifying research ideas, and second, make sure that the system is easily extensible. In brief, we tried to create a
system that can be used as a test bench for research in visualization. Our open source framework can be used for
creating both single user and collaborative visualization applications. To demonstrate the potential of the system,
we have developed several applications using this system, such as the Volume Compositor. Volume Compositor is
a volume rendering application providing shader program support, layer support and a high quality user interface.
In volume rendering and scientific visualization, the majority of the algorithm implementations are using new
hardware capabilities for maximum performance. Shader programs are used to employ programming capabilities
of modern graphics hardware. That led us to including a shader editor to the Volume Compositors user interface.
This allows faster shader development for shader-based algorithm implementations. Instead of recompiling and
executing a program, the developer can see the results of modification immediately as s/he commits the changes
in the shader editor. Another goal was to make the design flexible, both for developing standalone as well as
distributed applications and algorithms. We decided to split the system into a set of components that allow
the system to be distributed and allow easy code maintenance. A major criterion in splitting was to keep the
components loosely coupled. Compared to monolithic systems, separate components may require a large number
of interconnections between them and thus make the system overly complex, directly violating our design goal.
By keeping coupling low, we achieve easier system modification and make the system distributed.

2. RELATED WORK

There are different dimensions in collaborative visualization. Collaborative visualization systems can be roughly
subdivided by several criteria. First, type of visualization: synchronous and asynchronous. Second, kind of
display systems that are utilized: standard displays, large displays, immersive systems, handheld devices. Third,
location: same locations or different location.

We should emphasize that distributed visualization does not automatically mean collaborative. Making the
system distributed in many cases only implies improving the performance by utilizing resources of more than a
single machine. For a detailed coverage of the field we suggest the following excellent review by Brodlie et al.!

Historically, a number of well-known visualization frameworks have been made distributed. Usually, as in
case with AVS? this includes execution of some parts of the system on remote machines. Later on, support for
collaboration has been added. VTK was extended to provide support for collaboration in CAVE-type environ-
ments3.* IBM Data Explorer® and later,® supports execution of some of its modules on the remote machines.
Collaborative capabilities were added to” with modules from the® project. Another well-known visualization

system with support for collaborative and distributed visualization is VisTrails?.1?

Recent research in developing web-based collaboration tools includes Many Eyes!! and Swivel.'? They employ
an asynchronous collaboration model. Typical collaboration sessions consist of creating/modifying visualization,
uploading them to the website such that later users can modify the visualization, or discuss it and leave comments
and annotations. Other systems, such as'? are utilizing new web2.0 technologies (for example, AJAX4) without
altering the interactive visualization paradigm.

The term grid computing has become increasingly popular recently. It refers to the use of multiple intercon-
nected computers for computation as opposed to performing the same tasks on a single supercomputer. The gViz
project!® is aimed towards adding gridenabled collaboration support to Iris Explorer and pV3.16 OptIPuter!'”
provides collaboration for multi-gigabyte earth science datasets. RAVE!® is another grid based visualization
system.

Our system can be described primarily as a synchronous distributed collaboration one; however, we also show
how we can employ asynchronous scenarios for our system. The rest of the paper is organized as follows: in
section 3 we describe system architecture, in section 4 we talk about Volume Compositor, application built on
top of the framework. Section 5 covers additional use cases for the framework. Section 6 describes layers, and
section 7 provides additional implementation details.

3. SYSTEM ARCHITECTURE

The system consists of three kinds of concrete entities, a light-weight object definition (proxies), communication
and synchronization mediators, and implementation objects, such as OpenGL drawables. Figure 1 (left) shows
a rough view of the interrelationships between these entities.

The proxy objects are shared among different machines, different software architecture configurations and
with the user-interface components. Any entity that the developer/researcher would like to share is a proxy,
including cameras, drawables, transfer functions and lights. As such, we call these entities Assets. Distribution
of the proxies is done with the aid of an AssetManager class which is an object pool for all the shared proxies
in the system. If a particular remote machine needs an instance of a proxy, it gets the (remote) reference from
the AssetManager. Synchronization, in case of object modification (for example, changing camera parameters),
is done by subscribing to change events associated with each proxy. In this regard, each proxy object can be
viewed as a publisher to which interested parties can subscribe.

The Mediator entities provide a clean separation of concerns from the underlying graphical elements and
the communication and synchronization with the proxy objects. They reside on the remote machines and each
remote client will have its own instance. This differs from the proxy instances which (logically) are global across
all machines. Mediators are implemented using a decorator pattern, where each graphic entity is wrapped with
a mediator and mediators communicate among themselves to determine the amount of synchronization that is
needed. Synchronization with the proxy objects is done lazily.

Proxies

Keep the data
1l

Mediators

Provide local copies of the proxies
Handle User Interaction

‘id
Graphics

Render drawables
to the screen

Figure 1: On the left: main entity types in the system. Right: Volume Compositor interface screenshot.

The graphics entities, like the mediator entities, reside on each remote machine. Classes at this level deal
directly with graphics library, for example VTK, OpenGL or DirectX by providing the necessary graphics library
calls. The architecture provides a clear separation of responsibilities between different parts of the system, similar
to a model-viewcontroller (MVC) architecture with proxies being the model, mediators being the controller, and
the graphics tier being the view.

4. VOLUME COMPOSITOR

Using the framework mentioned in the previous section, we developed the Volume Compositor, a multilayer
volume rendering application. It contains a 3D rendering and a 2.5D compositing engine, flexible user interface,
and distribution capabilities. By referring to the compositing engine as 2.5D we emphasize the use of layers
and layer compositing. Such use can be thought of as an extension to the concept of compositing, from the
general meaning associated with Porter and Duff composing operators, to a more general and more flexible set
of functions.

The concept of layer is central to this application. By using the term layer, we refer to a 2D container for
storing an image, on which a general compositing operator is defined. All drawables are rendered to one or
more layers. The composition order can be changed and the layers can be exported and imported in a format
readily utilized in a 2D paint package. A number of tasks for volume exploration are performed by processing the
layers instead of applying more expensive 3D rendering techniques, thus combining the aspects of image-based
rendering. Examples include two level volume rendering, masking and magnification.

4.1 User Interface

In this section, we describe Volume Compositors user interface. Before proceeding, a quick overview of visual-
ization workflow in the system is necessary. A visualization session usually consists of the following steps. First,
the user loads the datasets s/he is interested in. Next, the appropriate drawables (geometric primitives) are
created these could be boxes or planes. Then, region(s) of interest (ROI) are selected; in most cases ROI is a
rectangular box. Then, the user creates a set of layers. A drawable can be rendered to multiple layers. Finally,
the user specifies which material is applied to which of the drawables and layers. The complexity of the process
is minimized by a number of predefined templates that the user can select from. The user interface gives full
control of all the elements described above.

Anything that can be rendered in our system is a drawable. Currently, we have the following types of
drawables: volumetric regions, boundaries, outlines, and planes. Depending on the selected geometric primitive,
the user can modify the size and orientation of a drawable. All the above transformations can be done both via
changing the properties in the corresponding properties tab, or by direct manipulation with mouse and keyboard.

Each drawable has a Material property. Material specifies how the drawable is rendered. Material has a
shader or a color and blending properties. We have implemented a set of predefined materials and corresponding
shaders in our system. Material editor is used for material creation and editing. Material assignments are done
with the Drawable Ul component. Material assignment sets up the correspondence between the materials and
drawables, and materials and shaders. A material can be shared across any number of drawables. Material editor
also allows the user to assign uniform variables for the shaders.

The shader editor allows the user to modify and compile shaders on the fly. The results of the modification
of a shader program are presented right after the user commits any changes. This makes shader development
interactive, thus greatly increasing developers productivity. The key benefit of adding shader control to the
system is that it breaks the standard rewrite/recompile cycle, when any change to a shader program requires
restarting the system. Currently, shader development in our system is similar to other shader development tools,
like Shader Designer!® or Render Monkey.2°

Layers are one of the key elements of the system. The layers and the user interface for layer manipulations
resemble that of Photoshop. Layers can be turned on/off, created and deleted. The user can change the order in
which the layers are composited, as well as the opacity of each layer. Each layer is also a drawable, which allows
applying of materials (and thus shaders) to it.

oo o
;| \—‘—%Iﬁmphlm |
[emree || |[e | |

Figure 2: Distributed clients access the proxies remotely.

Development within our system can be also described in terms of declarative programming. Certain properties
are exposed in the IDE and can be modified without writing the code.

OpenGL lights are used in a number of shaders. The light control allows the user to create and manipulate
lights. The user can turn the lights on and off and change light direction. Same light can be used in several
shaders. The user can also create light collections with any number of lights as well as modify each lights
individual parameters. Transfer function interface allows creating and modifying 1D and 2D transfer functions.

5. USE CASES

In this section we describe different types of use cases that can be solved by our system. We explain the versatility
of the architecture and show how it gives the researchers necessary flexibility in developing new applications.

5.1 Single User Visualization

We concentrate on the description of our system as a framework for distributed collaborative visualization
research. However, it is important to keep in mind that the framework can also be successfully employed in
single user scenarios for visualization research and development. The Volume Compositor, briefly described in
previous section, is an example of this.

Development of new visualization algorithms is aided by providing feature-rich and easy to use interfaces as
well as giving the user freedom to develop new algorithms at different levels. For example, one can use our API
in C# or Python for fast prototyping of new applications, rapidly develop shaders with the shader editor, and
create libraries of materials and shaders. The user can also save different visualization states to be loaded at a
later time.

5.2 Collaborative Visualization

In collaborative visualization, several users work on the same visualization. There are different dimensions of
collaboration. The users may simultaneously interpret the visualization; they may simultaneously modify and
tune visualization parameters. They may work in the same room or in different cities. In some cases, there
is no need for collaboration to happen at the same time. How do all these issues impact the collaboration
process? What are the exact needs of the users to maximize the efficiency?” We explore these questions in the
next paragraphs, highlighting different scenarios and showing how our system is utilized in these cases. We also
provide an analysis of the architectural and implementation trade-offs.

Our system provides basic synchronization and distributed functionality. The system currently provides
synchronous display and control on any number of remote clients. The maximum number of clients is bounded
only by the performance of the hardware and network connection properties. The system supports either a
clientserver model or peer-to-peer communication. Either of these can be extended to some sort of a mixed
communication or hierarchical control.

There are several scenarios for collaborative visualization with our system; we start from the very simple
and obvious ones, and continue with more advanced examples. System architecture gives us enough flexibility
to allow easy implementation of the scenarios described below. In all examples we assume that there is only one
copy of each proxy object in the system. When this is not the case, we specifically mention this.

5.3 Real-Time Collaboration

In our first scenario a single workstation and one or more PDAs are utilized. This scenario is particularly useful
when the workstation provides output to a big tiled display or other immersive environment such as a CAVE.
Each collaborator has a PDA. The PDA is a Windows CE device and is used to control input parameters and
perform user interaction, while the workstation is used as a major graphics rendering back-bone and is a high end
graphics system. The PDA has two user interface components: camera controller and a transfer function editor.
The camera control Ul component allows zooming, panning and rotation. The transfer function editor allows
use and modification of 1D or 2D transfer functions. Both Ul components can be interacted with either PDA
keys or with a stylus. The visualization changes interactively as the user modifies camera or transfer function
parameters at the PDA. The PDA does not require high-end graphics capabilities.

Visualization systems are increasingly used for teaching in different areas. One such area is medical education.
For example, a volume rendering system can provide initial training for medical students. Instead of using real
cadavers, the students explore the volumetric datasets interactively on the computer.

Our scenario is an interactive learning session, when a group of students is working on the sample visualization
project. There is a single instructors workstation and up to 20 students machines. The instructor acts as an
administrator, having full control over the visualizations produced by the students. Instructor sees every students
visualization in a separate window and uses the full set of UI components to control materials, shaders, cameras
and layers of each of the projects. The user interface allows instructor either to modify the students project
concurrently or to lock it to prevent possible collisions. The visualization session consists of the set of assignments
that students should complete. For the first one the students produce a rendering of the particular bone. While
exploring the dataset, the instructor views all of the projects that the students are working on, and can modify
them, if necessary. The next task is more complex the students are asked to modify the visualization in a way
that the soft tissue around the bone is also visible. Finally, the students create the volumetric cut. Instructor
has control not only of individual machines but can also perform group tasks, such as saving the snapshots of
all the students projects.

5.4 Asynchronous Collaboration

We have described cases when the users are working synchronously. However, this is not always necessary.
Moreover, there are cases when asynchronous collaboration may be preferable over a synchronous one. An
example of such a case is collaborative work on medical or technical illustration. An example is shown in Figure
3 (left). The first user have rendered the foot and committed the changes. The second user exported the layers
to Photoshop and added the labels to create an illustration.

i o De-Sync
' e — !

Asset Asset | [Asset |
Manager | Manager ﬁnlﬂ_aﬂ

===y —— -
Sync
Phalanges . L [._
B 8 - e [
Machine A Machine B Machine A Machine B
Asset |
Manager
Metatarsophalangeal
Joint ‘ Asset Asset ‘ L _
Manager| Manager | Asset ~Asset e
e | manager Manager| Manager
SIEIEIEIE]
5]
Machine A Machine B MachlnaA Machine B Machine C

Figure 3: Left: medical illustration created with our framework. Foot and the drop shadow are rendered to the
different layers. Blur operator was applied to the shadow to make it look soft. The layers were exported to
Photoshop where labels were added. Right: AssetManagers in distributed scenarios.

One more application is segmentation several researchers may work together to segment a dataset. It is not
always necessary for their collaboration to happen in real time. Assume the following scenario. A researcher
in New York is working on segmentation with his or her colleague in LA. The researcher in New York provides
initial segmentation and notifies the researcher in LA. The researcher in LA checks the results, modifies the
visualization project and notifies researcher in New York of the change. The process is iterative: they keep
working on the project until they achieve the final segmentation.

5.5 Implementation Details

Our typical approach to ensure real-time synchronization currently implemented in the system is to keep only
one copy of each proxy object in a global AssetManager residing only at one machine and allow all other
machines to access proxies remotely. This ensures that all the machines see the same state of the proxy objects.
Asynchronous collaboration is supported in the following way. A new instance of AssetManager is created at
each of the machines. The proxies for these machines are created by cloning corresponding objects from the
original AssetManager. This is illustrated in Figures 3 (right) a) and b). Originally machine As AssetManager
was used by both machine A and remotely by machine B. Asynchronous collaboration is supported by creating
an additional AssetManager residing on machine B. Machine B starts listening only to updating events generated
locally. Machine B, however, still can access proxies residing in As AssetManager and vice versa. Switching back
to synchronized collaboration is done by substituting the local AssetManager by the original remote one from
machine A. This example is a special case of a general m-n relationship with m AssetManagers and n machines
that use them. In this general case AssetManagers may be organized in a hierarchy, such as in Figure 3(right)
d). In the figure AssetManagers at the bottom are synchronized through the topmost AssetManager.

The sets of proxy objects when there are multiple AssetManagers may be either disjoint or overlapping.
Disjoint AssetManagers can keep different types of proxies, for example a separate one may be designated to
manage volume proxies, while another is used for materials and shaders. Case when the AssetManagers contain
copies of the same objects is shown in Figures 3 (right) a) and b).

Up to this point we havent discussed where the datasets are being stored. In case of very large datasets
this becomes an important question. Traditional solution to this problem is creating some sort of a centralized
data server. Main advantage of using centralized data server is the achieved flexibility. With the data server
there is no need to send the whole dataset over the network; this may be beneficial when dataset is very large,
for example in the case of seismic data. We achieve this by implementing a volume handler (mediator) with
this functionality. The object of the handler class resides on the data server machine. The proxy objects and
AssetManager dont have to be modified. When the dataset is rendered on the client machine, the request for data

Figure 4: Examples of the use of layers. a) Skull rendering. b) Skull rendered with a halo. Skull and halo are
rendered to separate layers. Halo is produced by blurring a 2D shadow. c) and d) 2D-drop shadows. Right:
kidney magnification. Right top: torso dataset with a non-magnified kidney. Right bottom: the kidney is
rendered to a separate layer, thus when it is magnified, the ribs are not distorted.

goes from the graphics level to the local mediator object, which, in turn, gets it from the handler on the server.
The connections between data server and clients are managed by the handler and proxies and AssetManager are
not involved. The handler supports data compression and level-of-detail data processing.

One of the issues that arise when talking about distributed applications is robustness, i.e. the ability of the
application to perform properly if one or more of the clients crashes. In case of a single AssetManager such as
in Figure 3(right) a), non responsive clients do not affect the rest of the clients. For example, if machine B in
Figure 3 (right) a) froze, application at the machine A would still run. This is accomplished by using a one-way
asynchronous communication from the proxies to the mediator level (as shown in Figure 1), thus non responsive
clients dont bring the system to a halt.

With multiple AssetManagers the scenarios become slightly more complicated; however in such cases we
also have more flexibility a machine that has its own AssetManager may remain active when other stop their
execution. The following example shows in detail one of the crashing scenarios. Consider two systems, A and
B, as shown in figure 3 (right) c¢). There are some proxies in As AssetManager that are used by B, and there
are some proxies in Bs AssetManager that are used by A; the sets of proxies are disjoint. Whenever one of A or
B terminates or freezes, the other one has to terminate, because the remote proxies are no longer available. A
straightforward solution is achieved by enforcing proxies overlap, i.e. for any remote proxy a local copy should
be created.

6. LAYERS

The use of layers is an important feature of our system. The layers= employ the same idea as the layers in
Photoshop. Thorough coverage of the layers is beyond the scope of the paper, thus in this section we show some
results done with the use of layers. In Figure 4 on the left the skull is rendered without and with the drop
shadows and a halo. On the right we demonstrate the use of a layer based magnification. The kidney is rendered
to a separate layer and thus is magnified without distorting the ribs.

21

7. SYSTEM IMPLEMENTATION
7.1 .NET Platform

Our implementation is based upon the C# programming language and the .NET framework.?? First introduced
in 2000, .NET provides the following features to the applications: interoperability, language independence,
common language runtime and a rich set of standard libraries. The Common Language Runtime (CLR) allows
code written in different .NET languages to be compiled to an intermediate language that is interpreted by the
platform. Just-in-time compilation is used to improve performance.

.NET Remoting is a technology that allows distributed applications to communicate by using the references to
so-called remote objects. .NET hides from the developer the complexity of the underlying network protocols. The
framework automatically generates object stubs and provides communication mechanisms. From a developers
standpoint, the use of remoting is quite straightforward: after proper initialization, remote objects can be used
as if they were local. All the proxies in our system support remoting. This allows distributed applications to
operate with the same proxies, thus achieving synchronization.

Some care needs be taken when making proxies remote. For example, making a volumetric dataset a proxy,
we may force one or more copies of the dataset across the network, which in case of large datasets is not desirable.
As discussed in the Use Cases section, one solution is to create a separate data server. The proxy merely indicates
the basic properties of the dataset. The underlying mediators can then reference data from a local store or stream
it from the data server.

Performance is always an issue in graphics and visualization. When designing the system, performance was
not the major concern, however. The design goals were to create scalable, easy to distribute, maintain and
modify visualization system with extensive use of shaders and convenient user interfaces. Still, we achieve good
performance results. These are due not to a set of optimizations, for example, but to overall system architecture
which ensures such things as lazy initialization, minimizing the number of events thrown and processed, updating
objects only when necessary (lazy updates). Some of the performance benefits come from the fact that we use
layers and perform image manipulation instead of more computationally expensive volume rendering in a number
of cases. In total, for many test cases the overall performance was better with our new system.

7.2 System Design

There are a number of key classes and interfaces that we will describe in detail to provide a better understanding
on how the system operates. As mentioned in the Architecture section, the system has three different kinds
of entities. The top proxy tier provides object sharing and remoting functionality, the mediator tier works
with local copies of the proxies, and the graphics tier provides the necessary graphics library calls. Major
classes and relationships between them are shown in Figure 5. The relationship between various classes is
the same across the three tiers; at each tier they implement the same interfaces. For example, IMaterial is
implemented by MaterialProxy, MaterialHandler and Material GL. Class diagrams for the key interfaces and proxy
classes are shown in Figure 6. For example, at the proxies tier, ViewProxy contains one or more LayerProxies;
each LayerProxy has a collection of drawable proxies, each of them, in turn, has a MaterialProxy. The same
relationship is followed by mediators tier (handler classes), as well as by the graphics tier.

-— Proxies
View

Layer

Camera - * Texture
J . ~=— Mediators
Drawable
Material —a— Graphics
2 3 Uniform
Light Shader Variable
% B Unife
) Iniform
Light Shader Variable
= : Uniform
/ Light Shader Variabie

Figure 5: Relationships between classes in the three tiers are the same.

7.3 Classes and Interfaces

Every object that should eventually be rendered to the framebuffer implements an IDrawable interface. The key
method in the interface is Render(). Examples of drawables are volumetric regions, slice planes and outlines. In
the corresponding proxies these methods are stubbed, however; the real rendering happens in the graphics tier.

All the proxies in our system are called assets and implement IAssetManaged interface. The AssetManager
class stores references to every proxy. The AssetManager acts as a server, and thus at any time the necessary proxy
can be accessed by calling AssetManager.Instance.getItem(). Each asset is referenced by its type and string id.
For example, the main camera may be retrieved with the code: AssetManager.Instance.GetItem(typeof(Camera),
Main Camera).

MaterialProxy, MaterialHandler and Material GL classes implement the IMaterial interface. The methods of
IMaterial include MakeActive() and Deactivate() for enabling the material just before rendering, and disabling
it after rendering has been completed. Each material has a corresponding shader that is used to render the
material. The system provides a lengthy set of predefined shaders and materials. A shader program contains
a set of vertex, fragment and geometry routines. We associate uniform variables with a material, not a shader.
This means that the same shader for volume rendering, for example, may be used to render two different volumes
with different transfer functions. The volume rendering shader is the same, while the uniform variables (volumes
and transfer functions) are different.

A view contains any number of layers. Each view has its own collection of references to the layers and
includes a camera for compositing. A layer can be thought of as compositing container of drawables as well as
IBR-like image. From an implementation standpoint, a layer produces a 2D texture. LayerProxy contains a list
of drawables to be rendered, a material for the layer and a texture proxy to render into. Layer is a 2D texture
and can be used in any material requiring a texture.

Textures are employed extensively in the system. They are used for representing transfer functions, layers
and volumes. Transfer functions may be one or two-dimensional. Layers are represented as two-dimensional
textures, and volumes as three-dimensional textures. Texture proxies keep information about texture format
and size. A texture handler takes care of binding/unbinding of textures to texture units. TextureGL provides
simple enable/disable functionality. The mediator (handler) in this case provides both the synchronization as
well as pushes the data into OpenGL.

There are a number of classes that represent basic mathematical and geometric objects: regions of interest,
planes, points, scalars, etc. These provide a consistent framework for user manipulation and are the building
blocks of most drawables. A volumetric drawable contains a region of interest. A slice plane contains a plane as
well as the region of interest. If two drawables share the same mathematical entity, any change in this entity is
reflected in both drawables.

Lights are used in a variety of shaders. Though it is possible to set up light parameters directly in every
shader, it is much more convenient to create a light or light collection, and use gl_Light references in the shader
to get the corresponding light parameter. We use slice-based volume rendering in the system, employing 3D
textures. We also have implemented a one-pass raycaster.

7.4 Remoting

The following classes are used to provide remoting functionality. MarshalByRefObject is a .NET framework
class that enables access to remote objects in applications that support remoting. SharedObject is the base class
for all the proxies in the system. Fach shared object extends MarshalByRefObject class and implements the
TAssetManaged interface. Thus, each shared object can be accessed remotely as an asset in the AssetManager.

We describe the use of remoting in our system with the following scenario. There are two machines, A and
B. Machine A is being used as a remote display. It displays whatever is being rendered at the machine B. The
machine A does not need any user interface, except for selecting the network address of the machine B to setup
connection. When the application at the machine A is started, it gets the remote reference of the AssetManager.
Once this is done, a local view is created using remote ViewProxy object returned by the AssetManager. Then
machine A subscribes to the view changing events of the ViewProxy on machine B. The first time the view is
processed on machine A, it creates any necessary mediators for its components (for example, layers) recursively.
These are then associated with their corresponding proxies. Subsequently, any changes to one of these proxies
notifies its mediator, which sets a dirty bit. It also notifies its proxy container which will eventually instruct the
view to re-render. During the rendering any mediator whose dirty bit is set will re-sync with its proxy. Thus
a minimal set of objects must be synchronized and rendered. Each of the local mediators on machine A (the
objects from the middle tier) is created automatically via lazy initialization from the corresponding proxies. This
example shows how our systems architecture provides a straightforward and concise way of building distributed
visualization applications, minimizing programmers efforts.

7.5 Graphics tier

Our system architecture allows a developer to switch from current implementation with OpenGL to any other
graphics library, for example Direct3D. This can be done by substituting OpenGL calls with corresponding
Direct3D ones. The number of GL classes is small and the functionality is very well encapsulated and modular.
Since the three entities have a low coupling, the transition from one graphics library to another can be done
easily. This allowed us to add high level drawables with VTK to our lower-level OpenGL drawables. Likewise,
we have experimented with migrating the graphics tier to a Linux cluster controlling a power-wall.

8. CONCLUSION

We presented a new framework for single-user and collaborative visualization. The major design goals were
providing an easy to use, scalable, distributed system that can be used for visualization research. We showed
how the system can be used for a variety of visualization scenarios. The system is designed in a way that allows
researchers to easily add new functionality, either by directly implementing new classes in C#, or by using a
scripting language like Python. We hope that our system will become a standard workbench for research in
scientific visualization.

REFERENCES

[1] Brodlie, K., Duce, D., Gallop, J., Walton, J., and Wood, J., “Distributed and collaborative visualization,”
in [Computer Graphics Forum 23], 23 (2), 223-251 (2004).

[2] Upson, C., Faulhaber, T., Kamins, D., Laidlaw, D., Schlegel, D., Vroom, J., Gurwitz, R., and van Dam, A.,
“The application visualization system: A computational environment for scientific visualization.,” in [I[EEE
Computer Graphics Applications], 30-42 (1989).

[3] Cruz-Neira, C., Sandin, D., DeFanti, T., Kenyon, R., and Hart, J., “The cave: audio visual experience
automatic virtual environment.,” in [Commun. ACM 35, 6], 64-72. (1992).

[4] Leigh, J., Rajlich, P., Stein, R., Johnson, A., and DeFanti, T., “Tool for rapid tele-immersive visualization,”
in [CDROM proc. Of IEEE Visualization], (1998).
[5] Abrams, G. and Trenish, L., “An extended data-flow architecture for data analysis and visualization,” in
[Proceedings of IEEE Visualization], 263-270 (1995).
[6] OpenDX. http://www.opendx.org/.
[7] Foulser, D., “Iris explorer: a framework for investigation.,” in [SIGGRAPH Computer Graphics], 13-16
(1995).
[8] Wood, J., Wright, H., and Brodlie, K., “Collaborative visualization,” in [IEEE Information Visualization],
253-260 (1997).
[9] Bavoil, L., Callahan, S., Crossno, P., Freire, J., Scheidegger, C., Silva, C., and Vo, H., “Vistrails: enabling
interactive multiple-view visualizations,” in [Proceedings of IEEE Visualization], 135-142 (2005).
[10] Callahan, S., Freire, J., Santos, E., Scheidegger, C., Silva, C., and Vo, H., “Vistrails: Visualization meets
data management.,” in [SIGMOD], (2006).
[11] Viegas, F., Wattenberg, M., van Ham, F., Kriss, J., and McKeon, M., “Manyeyes: a site for visualization
at internet scale,” in [IEEE Transactions on Visualization and Computer Graphics], 1121-1128 (2007).
[12] Swivel. http://www.swivel.com/.
[13] Zhao, Y., Hu, C., Huang, Y., and Ma, D., “Collaborative visualization of large scale datasets using web
services,” in [Second International Conference on Internet and Web Applications and Services (ICIW 07)],
62— (2007).
[14] Garrett, J., “Ajax: A new approach to web applications.,” in
[http://www. adaptivepath.com/ideas/essays/archives/000385. phpspace0.lem], (2005).
gViz. http://www.comp.leeds.ac.uk/vvr/gViz/.
pV3. http://raphael.mit.edu/pv3/pv3.html.
Taesombut, N., Wu, X., Chien, A., Nayak, A., Smith, B., Kilb, D., Im, T., Samilo, D., Kent, G., and
Orcutt, J., “Collaborative data visualization for earth sciences with the optiputer,” in [Future Generation
Computer Systems], 955-963 (2006).
[18] Grimstead, I., Avis, N., and Walker, D., “Automatic distribution of rendering workloads in a grid enabled
collaborative visualization environment.,” in [Conference on High Performance Networking and Computing.
IEEE Computer Society], (2004).
Shader Designer. http://www.typhoonlabs.com/.
Render Monkey. http://ati.amd.com/developer/rendermonkey/ index.html.
Raman, S., Mishchenko, O., and Crawfis, R., “Layers for effective volume rendering,” in [I[EEE/EG Inter-
national Symposium on Volume Graphics], 81-88 (2008).
[22] .NET Framework. http://msdn2.microsoft.com/enus/ netframework/default.aspx.

=
)

-
>,

-
Y

™=
=2 .9

)
P

| IAssetManaged

Interface))))
= [ILight & ITexture E3
=l Propertiss Interface Interface
ﬁ] Niame
= Methads Propertiss = Properties
% AcbChangedkventiandler B Anhint
@ AdbChangingEventtandler o Difuse
W Gafliame ﬁl Hosbion
W Reaguiedssety i&? Specular
W RemoveChangedtveniHander [= Methods
@ RemovechangingSventHandiar W Dirabia
Y Seffiame Enable (+ 1 overfoad) W unbid
| I¥iew
Interface
= Praperties P Elayer I
LurreniCamera Interface
Viesport
Methods [=l Properties
W Addaper 5 Ackive
W Compositel apers 2F Camera
¥ Removel ayver S Drawables
\ oo Material
) Tiiew = Methads | :[:raFwable
2 @ Zoncer rherface
YiewProxy Lo
Clasz & I=l Properties
= SharedObject L ILayer ﬁ) FoundngViakme
IDrawable B paaterial
ields ICloneatle s kel
- - [= Methods
g¥ _camera - LayerProxy [E3 W Randar
¢ ayers Class \
¢ _viewport ~b SharedChjact
=) Properties IDrawable
i [Fields .
rff CurrentCamera . { ROIBoxProxy
ﬁ‘ Layers = Properties Claee
2 Viewport S active b SharedObject
[Methads 25 Boundingolurne
. r Camera 1# Fields
7 DrawablePosition roperties
' Drawables 25 Bounding¥olume
20 Framebuffersetting 2R Box
L Height o material
& Image ROITaTextureMatrix
& LayerTexProxy =5 sliceDirection
& Métarlal e SliceThickness
 width = slicingMode
[Methads 25 WarlToROIMatrix
[+ Events Methods
) ITexture
22T,
—+ TexrtureProxy
Class

b Sharedohject
[# Fields

(=l Properties

i Depth
Height
TexelTvpe
‘Width

[+ Methads

] |

| ™aterial
Interface
=

Propetties
j_’ Backatarial
f Lompontor
2 Currentooly
B Sonthaterial
= Shadr

= Methods

W Deactivale

v Makedctive

() IMaterial
ICloneable

- MaterialProxy

Class
= SharedChject

Fields

=l Propetties
5 applyLighting
25 BackiMaterial
25 Compositor
25 CurrentColor
25 FronkMaterisl
ﬁ:' LightCollection
5 shader

25 Uniformyarisbleyalues
Methods

Figure 6: Major interfaces and proxy classes of our system.

»|

(15hader
Interface
a

| Properties

) BT Gui

1= Methods

W Deactivate
W MakeActive

() 1shader
(- shaderProgram
Class

= Sharadobject

[* Figlds

=| Properties
i FragmentList

0 MeedsLinked
WertexList

Methods

