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ABSTRACT

Splatting is a fast volume rendering algorithm which achieve
its speed by projecting voxels in the form of pre-integrated interp
lation kernels, or splats. Presently, two main variants of the spla
ting algorithm exist: (i) the original method, in which all splats are
composited back-to-front, and (ii) the sheet-buffer method,
which the splats are added in cache-sheets, aligned with the v
ume face most parallel to the image plane, which are subseque
composited back-to-front. The former method is prone to cau
bleeding artifacts from hidden objects, while the latter metho
reduces bleeding, but causes very visible color popping artifac
when the orientation of the compositing sheets changes sudde
as the image screen becomes more parallel to another volume fa
We present a new variant of the splatting algorithm in which th
compositing sheets are always parallel to the image plane, elim
nating the condition for popping, while maintaining the insensitiv
ity to color bleeding. This enables pleasing animated viewing
volumetric objects without temporal color and lighting discontinu
ities. The method uses a hierarchy of partial splats and employs
efficient list-based volume traversal scheme for fast splat access
also offers more accuracy for perspective splatting as the deco
position of the individual splats facilitates a better approximatio
to the diverging nature of the rays that traverse the splatting ke
nels.

1 INTRODUCTION

Volume rendering has gained great popularity in recent yea
as it allows the user to comprehend and visualize a volumet
dataset in its true continuous three-dimensional representation,
not just as a shell of isosurfaces, as is the case in polygonal mod
In volume rendering, the three-dimensional structures do not ne
to be segmented into binary objects, but can retain their natu
fuzzy character, which is more appropriate considering that a vo
possibly constitutes a mix of various materials. A binarization wi
the goal of producing an isosurface, tiled with polygons, destro
this interplay of microsurfaces that will produce subtle but perce
tible variations of color in a volumetric display. With volume visu
alization, objects of interest can be rendered embedded in th
surrounding structures, represented by semitransparent clou
This helps the user to keep track of existing spatial relationshi
and at the same time makes for a more natural and realistic disp
Maintaining the volumetric representation also enables users
manipulate volumes and interact with its structures. Volume mo
phing, sculpting and surgical simulations are just a few examp
of the immense potential that such a representation has to offer

Volume rendering is appropriate for any discrete dataset th
was acquired from a formerly continuous object via samplin
Most medical imaging technologies, such as MRI, CT, Ultrasoun
PET, and SPECT fall into this category. Volume rendering is al
often used in scientific simulations, such as CFD or FEM, whic
approximate a continuum by a discrete representation, and ge
ate their output on some discrete grid, usually irregular or curvili
m-2015 Neil Ave, 395 Dreese Lab, Columbus, OH 43210,
{mueller, crawfis}@cis.ohio-state.edu,
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ear. The medical applications, on the other hand, mostly acqu
their data as an axial stack of 2D slices, where the slices are u
formly sampled on a square grid, but the axial distance betwe
slices is larger than theL1 sample distance within the slices. Hence
a voxel is not a cube, but a box with a square base. Interpolation
intermittent slices is required if one desires a cubic grid. Shap
based interpolation [5] has become the method of choice for t
task, but note that the interpolation of slice data increases the m
nitude of the already large volume datasets even more. It is prefe
ble that the volume renderer can deal with this unequal grid scal
without requiring extra interpolated slices.

Polygonal surface renderers compress the 3D data into a v
sparse, vertex-edge-polygon representation, which enables fast
play, even if none of the widely available polygon graphics har
ware is used. Volume renderers, on the other hand, consider
full, uncompressed dataset, which increases both the required c
putational effort and the demands on data management.

In recent years, various volume rendering methods have be
proposed that all aim to be faster than the traditional raycast
method. One way to classify these algorithms is by how mu
graphics hardware they utilize. On one end is the pure softwa
based shear-warp algorithm, which achieves impressive speed
using a smart data structure and intensive data pre-processing
On the other end is the class of dedicated volume rendering boa
[7][14]. The performance of the shear-warp algorithm is very se
sitive to changes in the transfer functions, while the hardware so
tions, although extremely fast, suffer from the symptoms of a
hardwired approach: they provide less flexibility than an algorith
configured on a general purpose machine. For this ongo
research our philosphy is to exploit the readily available, high
optimized polygon graphics hardware with 2D texturing as mu
as possible for the purpose of volume rendering, without addi
dedicated custom hardware. On the other hand, we also seek
algorithm that can be efficiently used should no graphics hardw
be at hand.

The method that fits our demands best is the splatting te
nique, proposed by Lee Westover [19]-[21]. This algorithm
reduces the interpolation complexity of raycasting from the num
ber of samples along the rays to the number of voxels within one
several iso-ranges. In splatting, each voxel is represented by a
kernel which is pre-integrated into a 2D footprint, weighted by th
voxel value and mapped onto the image plane. The collection of
projected footprints then forms the final image. By mapping th
footprint as an image onto a polygon, we can employ standard
texture mapping hardware for the projection process [2]. Howev
the footprint interpolation is also easily done in software with fa
DDA and bit-blt procedures [10][12]. Splatting can be performe
either in object-order [19]-[21] or, as a ray-based approach,
image-order [12]. Each approach offers its own set of accelerat
techniques: iso-voxel lists [3], splat hierarchies [9] for the objec
order technique, and space leaping [23], bounding boxes [16], a
early ray-termination [4] for the ray-based approach. The optim
choice depends on the nature of the data.

The use of pre-integrated kernels introduces inaccuracies i
the compositing process since the 3D reconstruction kernel is co
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posited as a whole, and not piecewise, as part of an interpolated
sample along a viewing ray. This may lead to the bleeding of colors
of hidden background objects into the final image [19][21]. The
sheet buffer method, proposed subsequently in [20][21], reduces
this problem, but causes disturbing popping artifacts in animated
viewing. Section 3 discusses both methods in greater detail.

While in orthographic splatting all footprints have the same
size, in perspective splatting the size of the footprints must be var-
ied depending on their distance from the observer. This distortion,
achieved by a distant-dependent stretch of the footprints, is neces-
sary to enable the interpolation kernel to act as a lowpass filter in
volume regions in which the sampling rate of the diverging ray grid
falls below the grid sampling rate. More detail on this problem is
provided in [13] and [17].

This paper is structured as follows. First, in Section 2, we pro-
vide a description of previous work that is relevant to the research
presented here. Then, in Section 3, we deal with the disturbing
color popping artifacts that occur in sheet buffer-based splatting.
We first analyze the origins of these artifacts and then proceed to
describe our new splatting approach that eliminates the condition
for popping while maintaining the insensitivity to color bleeding.
In Section 4 we outline a convenient list-based volume traversal
method that allows an efficient implementation of all three splat-
ting methods,i.e., the two original ones and the new one, to run
efficiently. Finally, in Section 5, we show some results that were
obtained with the new enhancements, and follow with conclusions
and an outlook into future work in this line of research.

2 RELEVANT PREVIOUS WORK

The basic element in most volume rendering applications is
the volume rendering integral in its low-albedo form, first
described by Kajiya and Von Herzen [6]. For each pixel ray, we
computeIλ(x,r), the amount of light of wavelengthλ coming from
ray directionr that is received at pointx on the image plane:

(1)

HereL is the length of rayr. We can think of the volume as
being composed of particles that receive light from all surrounding
lightsources and reflect this light towards the observer according to
the specular and diffuse material properties of the particles [11].
Thus, in (1),φλ is the light of wavelengthλ reflected at locations
in the direction ofr. Since volume particles have certain densitiesµ
(i.e., opacities), the light scattered ats is attenuated by the volume
particles betweens and the eye according to the exponential atten-
uation function. The process of merging colors and opacities along
the ray is calledcompositing.

Usually (1) cannot be solved analytically, and thus a dis-
cretized form is used. A good approximation is obtained with ray-
casting, where a ray samples the volume at equidistant points,
compositing the sample values from front to back. A ray sample
value is computed by placing an interpolation kernel at the ray
sample location and weighting the surrounding volume grid sam-
ples by the kernel function. The interpolated values can then be
used to index transfer functions that steer the effect that this inter-
polated value has on the integral. Transfer functions may control
color, opacity, and also gradients.

As described by Porter and Duff [15], theover operator com-
posites a back sample with a front sample. The back sample is
attenuated by the front sample’s opacity, and the color contribu-
tions of the individual samples are attenuated by their individual
transparencies. The compositing process is a weighted sum of the
two samples, based on their attenuation factors. For theover oper-
ator (theunder operator is just the complement), a composited
color C0 is computed from a back sample with color/opacity (CB,

αB) and a front sample (CF, αF) with the following expression:

(2)

Here, the colors written in lower case denote sample colors t
were pre-multiplied by their respective sample opacities. By usi
theover operator in sequence, all sample values along a ray can
composited in this way to yield the final color at the image pixel

Porter and Duff used their framework to composite mult
layer cel images. Volume rendering can be represented in t
framework as well. By decomposing a volume into a stack of sa
pled (image) sheets, aligned parallel to the projection plane, we
render a projection image by compositing these sheets back
front (or front-to-back). The 3D texture-mapping hardwar
approach by Van Gelder and Kim [18], and also the one by Cabr
Cam, and Foran [1], does just this. In both approaches, each im
sheet is individually interpolated from the volume samples. It
easy to see that interpolated sheet based-rendering is equivale
raycasting, with all rays being traced simultaneously (s
Figure 1). It is bound to be the best approach to approximate
volume rendering integral of (1). However, just like in raycasting
we must choose the sheet distance sufficiently small to avoid ali
ing effects due to the imperfect interpolation filter. For sample di
tances other than the unit voxel distance we must also norma
the sample opacities.

The interpolated slice-based approach was also mentioned
Westover in his dissertation [21] as the ideal approximation to vo
ume rendering. However, it is an approach that does not lend its
well to acceleration methods (other than 3D texture mappin
since the sheets slice the volume data indiscriminately.

As was mentioned in the introduction, splatting gains i
speed by reordering the volume rendering integral so that ea
voxel’s contribution to the integral can be viewed isolated from th
other voxels. An interpolation kernel is placed at each voxel loc
tion. This enables one to view the volume as a field of overlappi
interpolation kernelsh which, as an ensemble, make up the contin
uous object representation. A voxelvj’s contribution is then given
by , wheres follows the integration of the interpola-
tion kernel in the direction of the ray. If the viewing direction is
constant for all voxels or if the interpolation kernel is radially sym
metric, we may pre-integrate into a lookup-table,i.e., the
kernel footprint, and use this table for all voxels. We can then m
the voxel footprints, scaled by the voxel values, to the screen wh

I λ x r,( ) φλ s( ) µ t( ) td
0

s
∫– 

 exp
0

L
∫ ds=

c0 CBαB 1 αF–( ) CFαF+ cB 1 αF–( ) cF+= =

image plane

ra
ys

interpolated slice planes

ray/slice sample points

FIGURE 1. Equivalence of raycasting and slice-based volume
rendering. In slice-based volume rendering, the interpolated
slice planes are composited as images back-to-front (or front
to-back). Slice-based volume rendering is equivalent to
raycasting, with all rays being cast simultaneously.

vj h s( ) sd∫⋅

h s( ) sd∫
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they accumulate into the projection image [19]. Thus, in contrast
raycasting, splatting considers each voxel only once (for a 2
interpolation on the screen), and not several times (for a 3D int
polation in world space). In addition, as an object-order approa
we only need to consider the relevant voxels, which in many cas
only constitutes 10% of the volume voxels [22]. Also in contrast
raycasting, line integrals across a voxel are now continuous
approximated with good quadrature, and don’t require normaliz
tion of α to compensate for sample distance. Finally, the efficie
pre-integrated kernel representation allows splatting to use qual
tively better kernels (with larger extents) than the trilinear filte
typically employed by raycasting.

3 A NEW, SUPERIOR SHEET-BUFFER SPLATTING
ALGORITHM

Both of the splatting methods that are in use today,i.e., the
composite-every-samplemethod and the sheet-buffer method, ma
exhibit very visible artifacts. These artifacts stem from the signi
cant deviation of these methods from the discrete volume rend
ing model shown in Figure 1. The composite-every-samp
splatting method violates the discrete volume rendering mod
because a volume sample point is not first reconstructed based
the values of the surrounding voxels before its visibility is dete
mined. Instead, each voxel is independently composited on
image plane, without spreading its contribution along the ma
viewing axis (see [21] for a more thorough treatment). The she
buffer method was prescribed to eliminate these artifacts, howev
it did so at the cost of disturbing popping artifacts for some view
point transitions. This is described next.

3.1 Origin of the popping artifacts in sheet buffer-based
splatting

In the sheet buffer method, splats are added within sheets t
are aligned parallel to the volume face most parallel to the ima
plane. (As a matter of fact, each sheet is constituted by a volu
slice.) After a sheet buffer has been accumulated, it is composi
into a cache image that traverses the volume back to front. T
sheet-buffer splatting method comes closer to the discrete volu
rendering model. In contrast to the composite-every-samp
method, the voxel contributions are now added in slices, just like
the discrete model. However, two problems remain: (i) the slic
are not parallel to the image plane, and (ii) a voxel spreads
entire energy into one slice, and not several, as dictated by
extent of the interpolation kernel. Thus the visibility calculation i
still not accurate.

It is primarily the former issue that leads to the disturbin
color popping artifacts when the main orientation of the sheet-bu
ers abruptly switches from one volume axis to another. An exam
of this artifact is shown in Figure 2. Here, Figure 2a shows a bina
cube viewed at a 45˚ angle. We notice that the left face is mu
brighter than the right face of the cube. Figure 2b shows the cu
viewed at an angle of 45.2˚. Now the right cube face is muc
brighter than the left face. Besides the fact that neither of the tw
renderings is correct (both faces should have the same shade
none of them should be as bright), the switch of the bright are
from the left to the right is disturbing in animated viewing.

Consider now Figure 3, where we illustrate this situation
2D. In this figure, the image plane makes a 45˚ angle with the v
ume axis. This is the angle at which the sheet-buffer orientation
just about to switch and color popping is just about to occur. Let
consider an extreme case, where we render a binary cube with
lightsource and the eye at infinity. Hence, the two head-on cu
faces both receive the same amount of shading. Notice that o
the face voxels receive a non-zero shading value, since all ot
voxels have a gradient of zero.
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Let us now go through a numerical example to illustrate o
point. A Gaussian function with a radial extent of 2.0 is chosen
the splatting kernel. The pre-integrated kernel function is given b

(3)

where the overlapping kernels sum to 1.0 in a unity volume, with
some tolerance. Table 1 shows the results of the color composit
process for the two representative face rays, ray1 and ray2. Here, we
use front-to-back compositing (see equation (2)).

We see in Table 1, that ray1’s color is obtained in an additive
process within a single sheet, while ray2’s color is composited
across five sheets. We also see that the bright color of ray1 comes
from adding the entire kernel contribution at once, instead of co
positing the kernel contributions along the ray. It is an inherent d
advantage of splatting’s pre-integration scheme that it replaces
compositing of voxel contributions along a viewing ray by add

(a) (b)

FIGURE 2. A cube is rendered with sheet buffer based-
splatting at an orientation of (a) 45˚, (b) 45.2˚. In (a), the sheet
buffers are parallel with the left cube face, in (b) they are
parallel to the right cube face. Notice that the brighter cube
face is always the one that is parallel to the sheet buffers.

interpolation kernel footprints,

im
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sheet buffer #

ray2

ray1

y

x

1

2
3
4
5

6
7
8
9

centered at grid locations

composited footprints fpc

added footprints fpa

1

2

1
2

FIGURE 3. Sheet buffer-based splatting: Ray1 and ray2,
penetrating one of each visible volume faces, accumulate
considerably different colors opacities. (Only the face voxels
have non-zero shaded colors, since everywhere else th
gradients are zero.) While ray1 adds all splat colors within a
single sheet buffer, ray2 composites them across several sheet
buffers. Since compositing yields smaller results than adding,
the pixel of ray1 is much brighter that than the pixel of ray2.
Had the sheet-buffer been oriented along the y-axis, this
situation would be reversed.
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tions. This leads to a magnification of the contributions of the front
voxels since the colorcadd (and the opacityαadd) produced by
addition is greater than the colorccomp (and αcomp) produced by
composition. Consider the two pairs of voxel footprints fpa and fpc
shown in Figure 3 that accumulate via addition or compositing,
respectively. Here,α1, α2, and c1, c2 are the opacities and colors,
respectively, that are interpolated by the footprints. We see that the
colorcadd obtained by adding the footprint pair fpa:

(4)

is significantly greater than the colorccompproduced by composi-
tion of footprint pair fpc:

(5)

We shall now offer a solution that prevents these problems.

3.2  A new sheet buffer-based splatting method that
eliminates popping

We just illustrated that the popping artifacts in the sheet-
buffer splatting method are due to the circumstance that the sheet
buffers do not maintain a constant spatial orientation with respect
to the image plane. Furthermore, the bright colors on the left face
of Figure 2a resulted from adding the entire splat contributions at
once, instead of compositing them along a ray. Both of these prob-
lems can be taken care of by recalling the discretized volume ren-
dering model of Figure 1. Here, parallel slices cut across the
volume, interpolating it into a sequence of 2D images, which are
then composited back-to-front. Splatting has a somewhat different
volume representation: Here, the volume is not an array of discrete
data points that are used to support 3D interpolation, rather, it is a
field of overlapping 3D spherical interpolation kernels, each
chopped into (sphere) sections by the parallel slicing planes. The
thickness of these kernel sections is determined by the distance
between the slicing planes. Since we add to the sheet buffer all ker-
nel material that is bounded by two slicing planes, and not just the
kernel cross-section that is cut by a slicing plane, we view a pair of
slicing planes as a slicing slab of certain width (or thickness).

Consider Figure 4, where our new splatting algorithm is illus-
trated. The sheet buffer is now parallel to the image plane, and only
the contributions of the kernel sections that fall within the extent of
the current slicing slab are added to the sheet buffer. Then, similar

to the traditional sheet-buffer method, once a sheet buffer h
received all contributions, it is composited with the current imag
and the slicing slab is advanced forward.

This new method requires an array of overlapping, pre-int
grated kernel sections (see Figure 5). A slab which intersect
voxel kernel then simply picks the appropriate pre-integrated k
nel section. We use 128 such sections, spaced apart by∆s=(kernel-
Extent+slabWidth) / 128(see Figure 5, note that symmetry allow
the reuse of sections for part of the kernel width). The integrati
width is the pre-set slab width. By using a splatting kernel of sma
extent, we can keep the number of intersected kernel slabs
voxel and the associated amount of additional interpolation ope
tions at moderate levels. For instance, the kernel proposed
Crawfis and Max [2], that was specifically designed for accura
splatting, has a radial extent of only 1.6, which would requir
about four footprint mappings per voxel (given a slab width of 1.0
The number of compositing operations is increased by the sa
amount than the number of footprint mappings, due to th
increased number of sheet buffers. Notice that shading is only p
formed once per voxel, thus no extra computations are requi
here. In addition, since we use 2D texture mapping hardware
map the footprints plus the graphics engine to perform the comp
iting, at least some of the extra work inflicted by the increase
number of sheet buffers may be hidden by the high performance
today’s graphics workstations.

cadd α1 α2+( ) c1 c2+( )⋅ α1c1 α1c2 α2c1 α2c2+ + += =

ccomp α2c2 1 α1–( ) α1c1+ α2c2 α2c2α1– α1c1+= =

Table 1: Rays ray1 and ray2 composite different colors. The
accumulated color depends on the orientation of the sheet
buffer with respect to the orientation of the volume faces the
rays are penetrating. The true colorC0=c0/α0.

Ray1

Ray2

sheet
buffer #

kernel weight opacity
α0

pre-mult.
colorc0

true color
C0

1 0.446·(1+2·0.5+2·
0.0625) = 0.947

0.947 0.898 0.948

sheet
buffer #

kernel
weight

opacity
α0

pre-mult.
colorc0

true
colorC0

3 0.0278 0.0278 0.0007 0.0025

4 0.223 0.2446 0.0483 0.197

5 0.446 0.592 0.198 0.334

6 0.223 0.683 0.218 0.319

7 0.0278 0.6912 0.218 0.315

slicing slab width

kernel sections

im
age plane

contributing

sheet buffer /
current

slicing slabs

slicing slab

interpolation kernel

FIGURE 4. Adding the kernel sections, obtained by slicing the
interpolation kernel by the current slicing plane, to the current
sheet buffer.

slabWidth

pre-integrated slab0

pre-integrated slab j+1

FIGURE 5. Array of pre-integrated overlapping kernel sections.
The integration width of the pre-integrated slabs is determined
by the slab width. The offset between adjacent slabs is∆s.

pre-integrated

pre-integrated slabN

 slabj

∆s

kernel
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Figure 7a and b show the cube of Figure 2, now rendered w
the new image-parallel sheet-buffer method. The Gaussian ker
of equation (3) and a slab width of 1.0 was used. We observe t
the previous imbalance of brightness between the two cube fa
no longer exists. The cube has the same shades for both im
plane orientations, 45˚ and 45.2˚, which implies that popping
longer occurs. Notice also that the overall brightness of the cube
reduced, as now the kernel contribution has been divided into fo
parts which are composited back-to-front and are no longer add
all at once. This represents an improvement of the splatting meth
towards the ideal discrete volume rendering model, however,
retains the advantages of splatting in that the ray integral is s
continuous. Hence, the opacities do not have to be normalized
ray length, no matter what slab thickness we use.

In Figure 7a, b and c we have varied the slab width. Figure
shows the cube rendered with a slab width of 0.5, while Figure
and c show the cube rendered with a slab width of 1.0 and 2
respectively. The improvements for a slab width of 0.5 are visib
but not significant, while a slab width of 2.0 produces strong pe
odic artifacts. These occur since the slice planes section the ker
differently depending on their location on the cube face. In regio
where “thick” kernel sections are composited close to the ima
plane, bright regions ensue. This effect is equivalent to the o
expressed on the left cube face in Figure 2a.

Notice that the thinner we make the slabs, the closer w
approximate splatting to the ideal volume rendering integral
equation (1), however, the cost is quite high.

Thinner slabs produce darker images (as can be observe
Figure 7a, b, and c), due to the inequivalence of the adding a
compositing operation. If we want to make the images obtain
with different slab widths similar in color intensity we need to
manipulate the footprint tables. Since within a sheet, the contrib
tions of all intersected voxel kernels are additive, we can determ
this normalization factor by considering one voxel kernel in isola
tion from all others. Figure 8a shows a kernel intersected by tw

(a) (b)

FIGURE 6. Binary cube rendered with the new image-paralle
sheet buffer splatting method at: (a) 45˚, (b) 45.2˚. In both cas
the slab width was 1.0. We observe that both front faces ha
now equal brightness in both renderings. Not only is this correc
but it also implies that popping at 45˚ no longer occurs.
(a) (b)
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thin slicing slabs of widthwslab. The contributions of the two kernel
sections are composited back-to-front. In Figure 8b we have do
bled the distance between the slicing planes, and the kernel is in
sected by thicker slicing slabs of width 2·wslab. The pre-integrated
kernel sections are now twice as thick than the ones in Figure
and the contributions of the two kernel sections, formerly separa
in Figure 8b, have been added into a thicker slab.

The colorccompresulting from compositing the two thin slabs
is (note that we obtain interpolated color and opacity by scaling t
voxel opacityαv and colorcv, respectively):

(6)

The color resulting from adding the two thin slabs into th
thick one is as follows (this is equivalent of using the thick slabs f
rendering instead of the thin ones):

(7)

With good approximation:

(8)

(taking an averageαv=0.5, but other values are possible).
Thus, when computing the kernel footprints, we subtract t

factor

for each section of the thick slab. In this way, it will render voxels
approximately the same color intensity than the two composit
thin slabs. Using this approximation, we can build slab hierarch
with thicknesses of powers of 2. Other thicknesses may be norm
ized via linear interpolation. This differs from Laur and Hanrahan
[9] scheme of increasing the Gaussian exponent, but it can m

2·wslab
wslab

hf hb hf +hb

integration

slicing planes

integration

slicing planes

(a) (b)

FIGURE 8. The composited integrals of two different widths
of slicing slabs for a single voxel kernel: (a)hf is the kernel
section integral of a slab of widthwslab andhb is the section
integral of an adjacent slab of the same width, (b)hf +hb is the
integral of a thick slab of width 2·wslab.
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FIGURE 7. Binary cube rendered with
the new image-parallel sheet buffer
splatting method at 45˚ with a slab width
of: (a) 0.5, (b) 1.0, (c) 2.0. We observe
that a slab width of 2.0 produces strong
periodic artifacts, while a slab width of
0.5 does not improve image quality
much. We conclude that a slab width of
1.0 is sufficient for our method.
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generally be applied to non-Gaussian kernels.
The algorithm is easily expanded to perspective, the traver

and selection algorithm remain the same. Due to the partitioning
the splats the quality is likely to increase, since in perspective t
splats must undergo a linear distortion along the viewing axis (
mentioned in the introduction and described in [17]), which is be
ter represented by pre-integrated kernel sections than by pre-in
grated full kernels. The necessary tilt of the kernels towards t
direction of the traversing rays is also more accurately impl
mented this way. (See [13] for more details on accurate perspec
splatting).

4 IMPLEMENTATION

We have implemented all three splatting methods discuss
i.e, the traditional sheet-buffer method, the new image-paral
sheet-buffer method, and the composite-every-sample method.
used an algorithm that builds upon the fast list-splat travers
method presented by Crawfis [3]. However, while the origin
algorithm capitalized on the fact that all voxels within the iso
range had similar colors and therefore did not require an orde
back-to-front (or front-to-back) traversal, the new version does n
make this assumption. It is therefore suitable for a more gene
class of volume data sets. Let us now explain these new enhan
ments in further detail.

After the volume is read from memory, the voxels are sorte
with respect to their value. This pre-sorted list of voxel values th
enables the quick retrieval of relevant voxels within one or mo
iso-ranges via binary search. By maintaining a list of these relev
voxels,Lr, which can be sorted by various keys, we can quick
change shading parameters and transfer functions. Spatial and
poral coherency can be used to quickly updateLr, should the iso-
range(s) change.

In both the composite-every-sample method and the n
image-aligned sheet-buffer method we sort the voxels inLr with
respect to their distance from the viewing plane, while in the she
buffer method we sort the voxels inLr according to their position
on the volume axis most perpendicular to the image plane. T
sorted voxels inLr are then mapped and composited according
the respective splatting method. We used 2D texture mapping ha
ware to both project the splats and to perform the compositin
Diffuse and specular shading was done in software. It was fou
that the algorithm’s run time is dominated by the polygon tran
form and rasterization operations. The added complexity of t
image-aligned sheet-buffer method with respect to the tradition
sheet-buffer method can be determined by the factorsplatExtent/
slabWidthand affects largely only the projection operations.

5 RESULTS

Figure 9a shows two consecutive frames of a flight around t
UNC MRI-brain dataset (256×256×145 voxels), rendered with the
traditional sheet-buffer splatting method. The viewing plane
angled about 45˚ with respect to either of the two front volum
faces. The sheet buffer direction changes between the two fram
and we observe that in the first frame the patient’s front face
overly bright, while in the next frame the persons cheek appe
highly illuminated. In an animated view we would perceive thi
sudden change of brightness distribution as a very noticeable p
ping. Notice that the alignment of the compositing sheets with t
volume slices reveals the severe staircasing of the object,
instance at the forehead and at the cheeks, where the objec
insufficiently lowpass-filtered.

Now consider Figure 9b, where two frames at similar orient
tions to the ones in Figure 9a are shown, but this time rende
with the new slicing-slab splatting method. We observe that t
brightness distribution is now more coherent with the underlyin
shading model and changes in a continuous fashion as the h
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rotates. Notice also that the object’s surface appears mu
smoother, the discontinuities at the cheek and the forehead are c
pletely gone. It is especially in these regions where the section
interpolation kernel provides for better reconstruction and compo
iting. In this figure, the width of the slicing slab was set to 1.0, th
unit voxel spacing distance. Figure 9c illustrates what happe
when a wider slab is used,i.e., a slab of width 2.0. One can now see
rather disturbing artifacts due to the insufficient and irregular com
positing along the object surface.

Finally, Figure 9d shows two views of a nerve cell datase
acquired by a confocal microscope and rendered with our new va
ant of sheet-buffer splatting. Again, no discrepancies in illumin
tion are visible between the two frames.

The number of relevant voxels in the MRI-brain dataset
about 1.2M (16% of the total number of voxels). Shading took 3.8
while rendering the splats took 4.2s for the traditional sheet-buf
method and 16.6s for the new method. Sorting took an extra 7s. T
nerve dataset had 0.9M (5%) relevant voxels. Shading took 2.9s
rendering took 2.8s vs. 9.0s. (All timings are for a SGI Onyx wit
InfiniteReality engine.) It is observed that the increased number
(partial) splats is roughly proportional to the increased computati
time.

Since our algorithm is best appreciated in animated viewin
the reader may refer to the provided conference CD for animat
sequences featuring the nerve cell, the UNC MRI dataset, an
segmented brain dataset. Animations obtained with both she
buffer splatting techniques are shown there. These sequences
also available on the World Wide Web under http://www.cis.ohio
state.edu/~mueller/popSplat/pop.html.

6  CONCLUSIONS

In this work, we have tackled a prominent flaw of curren
splatting methods, i.e., the disturbing color popping artifacts th
occur with the traditional, sheet buffer-based splatting technique
this effort, we first analyzed the origins of these popping artifacts
was found that the color popping occurs when the orientation of t
compositing sheets changes suddenly as the image screen bec
more parallel to another volume face. To cope with these artifac
we presented a new splatting variant that still uses sheet-buffers,
in a more favorable way, eliminating the popping and reducin
color bleeding. In our method, the sheet buffers are always para
to the image plane, which prevents the main source of the popp
artifacts. However, since the sheet buffers are no longer align
with rows of splats, we need to add slabs of partial kernels with
the sheets. This has several advantageous side effects: (i) A v
kernel is no longer added as a whole, but composited in seve
parts along the viewing axis. This approximates the volume rend
ing integral better, yielding more accurate colors and reducing co
bleeding even more; (ii) The accuracy of the image and the rend
ing speed can be controlled by varying the width of the sheets.
could think of an adaptive algorithm in which the width of the
sheets is data-driven. This requires that the composition of a f
thin kernel sections yields the same color as one thick section, p
integrated over the same length. To address this issue we have
posed a normalizing scheme for hierarchies of kernel widths
powers of 2. Finally, (iii), the new sheet-based algorithm also h
several advantages for splatting in perspective. By dividing the k
nels into several sections we can better approximate the dep
dependent linear scaling of the kernel required for anti-aliasing
also approximates the “diverging ray problem” better: Since kern
are traversed by diverging rays, but the footprint can only hold r
integrals due to parallel rays, errors are committed. The division
the kernels into several parallel footprints allows the rays to appro
imate a step-wise diverging kernel traversal.

The new sheet-buffer method is more closely related to t
discretized volume rendering model than previous splatting me
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ods. The advantages over raycasting and 3D texture mapping
approaches [1][18], which are often used to apply this model, are
the added accuracy of continuous ray integrals and the ability to
use larger and better interpolation kernels. While Westover origi-
nally hinted on this basic idea in his thesis [21], it has not been
published or implemented to this date. In this paper, we have
shown several unaddressed problems and our solutions for these.
We have also shown how the chopped integrals can be pre-com-
puted into footprints and indexed efficiently during rendering.

Although the interpolation complexity of our algorithm is
higher than that of the traditional splatting approaches, it is still
much smaller than the effort required for raycasting. Our algorithm
still performs only 2D interpolations (raycasting does it in 3D), and
the number of required slab intervals is far less than the number of
sampling points along a ray a raycasting algorithm would need to
ensure proper anti-aliasing and integration. Given the much
improved image quality we consider the higher complexity of our
algorithm, with respect to current splatting approaches, a good
investment.

7 FUTURE WORK

We successfully utilized the graphics hardware for efficient
footprint mapping and sheet-buffer composition with the aim to
improve splatting’s rendering quality. In future work we plan to
concentrate on more improvement of the rendering speed. For
example, the sorting of our list of relevant voxels in the image-
aligned sheet-buffer method can be simplified to a bucket-toss,
where a bucket contains all splatting kernel slices that are added
within a particular slab. Furthermore, one could make the number
of kernel slices for an individual voxel dependent on the voxel’s
opacity. This is motivated by the observation that a voxel of low
opacity does not contribute much to the popping, and hence could
be splatted as a whole, while voxels of high opacity are more
noticeable and should be composited gradually as partial kernels.
Another criterion for choosing the number of voxel slices could be
the proximity of the voxel center to the slicing plane.

We currently use a Gaussian kernel with a radial extent of 2.0.
We plan to switch to the smaller kernel proposed by Crawfis and
Max [2] soon. This smaller kernel would reduce the number of par-
tial footprints that must be mapped per voxel.

Finally, we are also studying a mechanism that allows splat-
ting of volume grids with unequal grid scaling without having to
interpolate extra volume slices. It relies on a grid warping scheme
that transforms the non-cubic grid into a sheared cubic grid, which
can then be rendered with spherical splatting kernels as usual.
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FIGURE 9. UNC MRI-brain dataset rendered (a) with traditional sheet-buffer splatting, (b) with image-aligned sheet-buffer splatti
and a slab distance of 1.0, (c) with image-aligned sheet-buffer splatting and a slab distance of 2.0. In (d) a nerve cell is shown,
rendered with the new image-aligned sheet-buffer splatting method. (This figure is replicated in the color plates.)
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