
Abstract
Splatting is a volume rendering technique that projects and

accumulates voxels onto the screen. It is able to incorporate a
variety of reconstruction kernels without extra computational
overhead, as well as reduce computational and storage costs using
a sparse volume representation. Previous splatting algorithms
suffered from artifacts because they incorrectly separate volume
reconstruction and volume integration. The IASB (Image-Aligned
Sheet-Based) splatting overcomes these problems by accumulating
voxels onto sheets aligned to be parallel with the image plane. In
addition, it introduces a novel approach for splatting to cull
occluded voxels using an opacity map, called an occlusion map,
that provides a substantial speedup in serial implementations.

Parallel approaches to volume rendering are able to
overcome the enormous amount of computation required. We
present a parallel solution to the IASB splatting approach that
leverages its image-aligned volume partition construction. The
occlusion culling technique poses difficulties in developing a
parallel solution due to its inherent serial nature. Our approach
assigns processors to render data closest to the screen first and
propagates an opacity map to avoid rendering occluded data. Data
communication is substantially reduced making use of occlusion
culling, as well as view coherence. We utilize a dynamic load
balancing scheme where tasks are partitioned in image space. Our
implementation runs on both NOW (network-of-workstations) and
MPP platforms. We present results and analysis on a NOW cluster
of Pentium II’s.

1.  Introduction
Volume rendering has been widely applied to visualize volume

data sets in such fields as computational science, engineering, and
medicine. A volume is a tessellation of a bounded region in 3D
space by volume cells, called voxels (or volume elements). Vol-
ume rendering is an enormous computational task where data set
sizes of 5123 are now commonplace. Algorithms can be classified
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as image order, object order, or hybrid approaches. To accelerate
volume rendering, researchers have reported using parallel solu-
tions and specialized hardware. Parallel systems, such as MPP’s
[21] and NOW’s [2][3], provide flexibility as well as scalability
which are useful to many practitioners, while specialized hardware
are currently only capable of interactive renderings of small sized
datasets.

Splatting [23] is an object order approach. The flexibility in
splatting to choose reconstruction kernels, with no extra costs, dis-
tinguishes splatting from the other methods. In addition, it allows
for a sparse volume representation that holds only non-transparent
voxels. Previous splatting approaches suffer from artifacts, that are
overcome by the Image-Aligned Sheet-Based (IASB) splatting
approach [16]. IASB splatting accumulates voxels onto image-
aligned sheets that span the volume. In addition to the image qual-
ity improvements achieved, an extension to the algorithm [18]
introduced a novel mechanism to cull occluded data in rendering.
This acceleration provides substantial speedups, especially for
opaque data sets. For example, to rendering a 2563 volume data set
(Fig. 3b) takes 145 sec/frame on a PC with 300MHz Pentium II.
With occlusion culling, the time is reduced by an order of magni-
tude to 17 sec/frame.

In this paper, we present a parallel solution to the IASB splat-
ting with occlusion culling. The methods presented in the existing
parallel splatting literature [6][11][13][14] can well be extended to
perform IASB splatting for cases where occlusion is light (trans-
parent data sets or data sets that branch heavily like a nerve neu-
ron) with good scalability. Here, we instead focus on a more
challenging case, that is, the case where heavy occlusion is avail-
able. For the sample data set (Fig. 3b), assuming perfect scalabil-
ity, without occlusion being considered, one needs 10 nodes to
render the data set in parallel to achieve a rate of one single node
using occlusion culling. A meaningful parallelization needs to use
occlusion acceleration in such a case. However, due to its serial
nature, occlusion culling is non-trivial in a parallel solution. 

We use a view dependent object-space data partition and an
image-space task partition. We utilize a dynamic load balancing
scheme where workload is estimated on a per tile basis. Our algo-
rithm keeps an occlusion map to cull occluded data. Only visible
data need to be communicated within a single view. Between mul-
tiple views, data communication is further reduced by taking
advantage of view coherence. Our results show scalable speedups
over multiple frames on a NOW cluster with 16 Pentium II 300
MHz nodes. For the data set just mentioned, our implementation
renders at 1.5 sec/frame using all 16 nodes.

In Section 2, we briefly describe previous parallel approaches to
volume rendering. Next, we describe the IASB splatting algorithm
in Section 3. Our parallel solution to IASB splatting is presented in
Section 4. We discuss the system architecture, results and analysis
of our parallel implementation in Section 5. Finally, Section 6 con-
cludes the paper and discusses future work.
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2.  Parallel Volume Rendering
Much research towards parallel ray-casting has been reported in

the literature, primarily due to the simplicity of the algorithm. To
avoid volume data redistribution costs, researchers have proposed
the distribution of data to processing nodes, where each node pro-
cesses its own data for all frames or views. Each node generates a
partial image with its data, which are then accumulated and com-
posited into the final image [8][12][13][15].

Researchers have also investigated partitioning screen space
into square tiles or contiguous scanlines, to be used as the basic
task to be sent or assigned to processing nodes. For better load bal-
ancing, the task queue can be ordered in decreasing task size, such
that the concurrency gets finer until the queue is exhausted[4].
Load balancing can also be achieved by having nodes steal smaller
tasks from other nodes, once they have completed their own tasks
[20][25]. Finally, timeout stamps for each node can be added, such
that if the node can not finish its task before the timeout, it takes
the remnant of the task, re-partitions it and re-distributes it [5].

Shear-warp factorizes the viewing matrix into a 3D shear, a pro-
jection and a 2D warp to the final image. Shear-warp has problems
with resampling, but is fast in nature [9]. In [10], a parallel shear-
warp implementation on shared-memory architectures has been
reported with decent timing benchmarks. Amin et. al [1] ported the
shear-warp algorithm onto a distributed memory architecture, by
partitioning in sheared volume space and using an adaptive load
balancing. [22] improves the parallel shear-warp implementation
on distributed memory architectures by dividing the volume data
after the shear operation into subvolumes parallel to an intermedi-
ate image plane of the shear-warp factorization.

Splatting and cell projection methods have also been parallel-
ized using a sort-last paradigm. The community has researched
parallel splatting algorithms [11] that do not utilize occlusion-
based acceleration. The volume data is distributed in either slices
(axis-aligned planes) [6] or blocks [11] to processing nodes. Those
are then rendered, in parallel, to partial images which are compos-
ited for the final image by the master node. Speed-ups can further
be achieved by only passing the non-empty parts of the partial
images [6] or by parallelizing the final compositing stage using a
screen space partitioning [11]. Hierarchical data structures such as
a k-d tree can be applied to facilitate prompt compositing and
occlusion culling [13]. Machiraju and Yagel [14] report a parallel
implementation of splatting, where the tasks are defined by a sub-
volumes. Each processor is assigned a subvolume. The images are
composited together in depth-sort order, also performed in parallel.

For both splatting and shear-warp, the amount of work is
directly related to the number of relevant voxels. Balanced parti-
tions are difficult, and complicated adaptive load-balancing
schemes are needed. While with ray-casters, distributing data in a
balanced fashion is often easy, though load balancing remains an
issue.

3.  IASB Splatting With Occlusion Culling
Splatting, first presented by Westover [23], projects voxels in

depth-sorted order. Volume reconstruction and volume integration
are performed by placing a 3D reconstruction kernel, e.g. a 3D
Gaussian, at each voxel, and then accumulating projections of
these kernels onto the image plane with 2D kernels called splats.
Computationally, each splat is represented by a discrete footprint
table which holds the integration of the 3D reconstruction kernel

and can be pre-computed. A voxel is accumulated onto the image
by first shading it, and then resampling its footprint, weighted by
the voxel’s color and opacity, at each pixel within its extent.
Westover’s [23] first algorithm individually projects voxels and
accumulates them onto the screen. This algorithm is prone to color
bleeding, as shown in [16]. To address this problem, Westover [24]
introduced an algorithm that first accumulates voxels onto axis-
aligned sheets that partition and span the volume, and then com-
posite these sheets into the final image. Unfortunately, this
approach introduces severe popping artifacts in animations when
the axis alignment changes abruptly as the view moves [16].

To overcome these problems, recently the IASB splatting algo-
rithm [16] was introduced. Here, sheets are aligned to be parallel
with the image plane. Given a view, sheets are uniformly distrib-
uted along the view direction within the z-extent of the volume.
The spacing between two neighboring sheets is the sheet thickness.
The number of sheets is computed by dividing the z-depth extent of
the volume by the sheet thickness. An improvement in image qual-
ity was achieved by slicing the 3D reconstruction kernel into an
array of 2D voxel sections, each representing a partial integration
through the voxel. A footprint table is an array of footprints, whose
size is determined by dividing voxel extent by the sheet thickness.
It is indexed by which subsection of a voxel falls between two
sheets. In addition, when using FTB traversal, it also allows for the
ability to cull occluded voxels from rendering. An occlusion map,
or buffer, holds the accumulated opacity at each pixel during ren-
dering. This map is successively updated and passed to the next
sheet. In sum, the IASB splatting algorithm performs the following
steps:

4.  Parallel IASB Splatting

4.1  Overview
Most parallel approaches to splatting have used an object-space

partitioning of the volume, assigning these subvolumes to process-
ing nodes. It is shown that such data partition minimizes data com-
munication [19]. To parallelize the IASB splatting algorithm in the
same manner, each node will compute multiple sheets, which must
then be composited in order. When occlusion is not considered or
there is little occlusion, e.g. highly transparent or very lightly

Pre-compute footprint table array;
For each view do

Initialize the occlusion map to zero opacity;
Transform each voxel (vx, vy, vz) to eye space (sx, sy, sz);
Bucket-toss the voxels by z-location into an array of buckets, 

i.e. one bucket per sheet. A bucket represents the area 
between two neighboring sheets. A voxel is inserted into a 
bucket if its extent overlaps it. Depending on the sheet thick-
ness, a voxel may be inserted into more than one bucket.

For each sheet do
For each voxel in bucket do

If this voxel is not occluded then
For each pixel within extent of the footprint do

Resample the footprint and update the pixel;
Update the occlusion map with the pixel opacity;

End;
End;
Composite the sheet onto the final image;

End;
End;



occluded data sets, such an approach would very likely offer scal-
able parallel implementations. While this is very useful in practice,
we opt to focus ourselves on the more interesting and challenging
case, the case when there is heavy occlusion. As we presented in
Section 1, even with a linear speed up, this simple approach needs
10 nodes to render the sample data set at a rate that one single node
can achieve with occlusion culling. In order for a meaningful paral-
lel speed up under such a scenario, this pure object-space approach
can not leverage the speedups gained by occlusion culling. On the
other hand, while image-space partitioning will be able to utilize
occlusion culling, it is prone to inferior load balance as well as
expensive data redistribution costs. We designed a hybrid data par-
titioning approach to take advantage of both object space partition-
ing and image space partitioning.

The sheet thickness corresponds to the step size in a Riemann
sum approximation to the volume integration. To define work
based on sheets is too fine grained. Instead, we group successive
sheets together to define a larger image-aligned region, called a
slab. All sheets within a slab are composited to an image of this
slab, called a slab image. The final image is obtained by composit-
ing the slab images. One straightforward parallel scheme to IASB
splatting is to simply assign a slab per processor and then accumu-
late the slab images. As with simple object-space task partitioning
schemes, this approach is not able to exploit inter-slab occlusion in
a parallel fashion. The occlusion culling makes the IASB algorithm
serial. In order to determine if data within a slab is occluded, all the
slabs in front of it must be computed first.

In the algorithm we devised, data is partitioned into bricks. All
processors work on a single slab before the next slab image is
computed. We use a task partitioning scheme that divides image
space, i.e. the slab images, into image tiles. The screen space parti-
tioning is performed dynamically, by building a quadtree for each
slab of each view. The actual tiles, termed macrotiles, assigned to
rendering nodes are usually at a non-leaf level in the quadtree. We
balance loads by estimating the workload per macrotile with a heu-
ristic based on bricks. An occlusion map, initialized at the front-
most slab, is propagated with the task assignments and updated
upon each task’s completion. In the following sections we describe
our algorithm in more detail.

4.2  Volume Partition & Brick Culling
We subdivide the volume into bricks, of size . This

grouping of voxels allows the definition of a work load on a macro
scale rather than at each voxel. In addition, data communication
favors larger message sizes due to the constant per-message start-
up costs. From experiments, we choose v to be 8 in our implemen-
tation. As mentioned before, splatting allows for a sparse represen-
tation, and thus each brick contains only relevant, i.e. non-
transparent, voxels. Each voxel is represented by its location as
three floats (x,y,z), an 8-bit density value, and an 8-bit per compo-
nent gradient (nx, ny, nz). This amounts to 16 bytes per voxel. 

A summed area table (SAT) computed over the occlusion buffer
is used to cull away bricks directly [7]. For each brick, we con-
struct a tight bounding box of the sparse voxel list within it. Given
a viewing direction, we quickly project the 3D bounding box into
the framebuffer. We then calculate a 2D bounding box of this pro-
jection. After retrieving the values in the SAT occlusion map, cor-
responding to the four corners of the 2D bounding box, we can
easily compute the average opacity in this region. If the average
opacity is already 1.0, then this entire brick is occluded.

4.3  Image-Space Partition & Load Balancing
We employ an image-space task partitioning scheme. An image

region can be one of these types: empty, fully opaque or non-fully
opaque. An empty image region has no voxels in the sparse vol-
ume representation that project to it, and is not rendered. Fully
opaque regions will not be rendered because all pixels will have
full opacity. Only non-fully opaque image regions have to be ren-
dered. Of course, an image tile can be of different types in different
slabs, however, fully opaque tiles remain fully opaque.

We need a heuristic for workload estimation, such that load bal-
ancing schemes can be devised on this basis. One method is to use
the number of voxels projecting to a region as the estimation. But
this approach does not take into account the rendering work that
won’t occur because of occlusion. Instead, the heuristic function
we use is the number of non-opaque pixels that are overlapped by
one or more bricks within a image region. This is straight-forward
to calculate by using the bounding boxes of bricks’ projections.
The reason for this heuristic is that when a pixel has reached full
opacity, it is not updated any more in IASB splatting, whereas,
empty pixels will never require work. With an opaque data set, a
pixel reaches full opacity within a small number of updates. When
occlusion is to take place, the number of voxels to be rendered does
not relate well to the total amount of work needed. As a result of
image-space partitioning, we obtain a set of non-fully opaque
image regions with an estimated per region workload. This set of
image regions is sorted, in decreasing order of estimated workload,
into a queue. We then assign the image regions in the queue to ren-
dering nodes in a round robin fashion, starting from the head of the
queue. After a rendering node completes its task, it requests
another task from the queue. If no more tasks are left in the queue,
this rendering node idles, waiting for the start of the next slab.

For load balancing, we desire the partitioned tasks to be fine
grained. Smaller image regions are favored. But as we will show in
Section 5.1, we would also like to control the total number of tasks.
The reason is that splatting employs large reconstruction kernels,
which provide better interpolation. Unfortunately, this also leads to
heavy overlapping across partition boundaries. To ensure correct-
ness, any splats and bricks overlapping a boundary must be dupli-
cated at and processed by all nodes processing image regions
neighboring that boundary. Hence, the total amount of work
increases. When the screen extents of a splat or brick are compara-
ble to the size of an image tile, this overlapping effect considerably
increases the collective total amount of work, leading to a decrease
in parallel speedup. Therefore, we desire larger image tiles for effi-
cient speedups. These two opposing needs form a trade-off. Fur-
thermore, this trade-off is view and data set dependent. We can
only search for the optimum in the trade-off via experimentation.
To achieve an optimum in this trade-off, one must look for the
image region size that is just small enough for acceptable load bal-
ance. Therefore, we allow the user to input a parameter defining
the ‘desired’ ratio of number of image regions (tasks) vs number of
rendering nodes. By tweaking this ratio parameter, an optimal
trade-off with respect to a data set can be found. To achieve good
speedup for our data sets, the ratio should be between 2.0 and 3.0. 

The image-space could be partitioned statically, which is simple
and efficiently indexed. But to allow for easy search for the opti-
mum in the trade-off, we need the flexibility to vary region sizes. A
quadtree hierarchy is implemented in our algorithm, with the leaf
nodes being small static non-empty tiles. The tasks are assigned at
a level higher than the leaf tiles, i.e. macrotile. We choose the mac-
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rotile size by building and inspecting the image tile quadtree of
each slab image. The leaf nodes of the tree are  pixels in
our implementation. We partition a slab image by first computing
the desired number of macrotiles from the ratio: (# of macrotiles)/
(# of nodes), supplied by the user. The quadtree is then built in a
bottom-up fashion, until a level is reached where the number of
tiles found to be rendered on that level is more than the desired
number of macrotiles. From our experiments we found that typi-
cally, a full quadtree is not built. Rather, we usually observed only
around three levels. Macrotiles are then placed onto a task queue,
sorted and assigned to processors.

In Fig. 1, we present an analysis our workload estimation
scheme on real data. An arbitrary view of the Brain data set (Fig.
3b) was rendered in parallel with 9 rendering nodes. For the first
slab, our algorithm decided to use a macrotile size of 64, and found
38 such macrotiles to render. It estimated the work load, and sorted
the macrotile queue in decreasing order. During rendering, we
recorded the actual time the rendering nodes took to render each
macrotile, as well as the order in which each macrotile is com-
pleted. In Fig. 1a, we compare the order based on estimated work-
load with the recorded order in which macrotiles got rendered,
using each order as one axis. The ideal case would show a linear 45
degree line. We see this pattern for macrotiles after the 16th posi-
tion in the estimated queue. We see a rather unorganized pattern
below the 16th position because the first 16 macrotiles are com-
pletely covered by bricks. The estimated order among the first 16
macrotiles was less determined, as shown by Fig. 1b, where we
show the estimated order vs. the measured rendering time. The first
16 macrotiles took about the same amount of time with minor vari-
ations. After the first 16 macrotiles, the rendering times show a
sorted order. 

4.4  Data Distribution & View Coherence

Using image-space partitioning, data distribution is un-avoid-
able. When the view changes, the image space data redistribution
involves a large number messages. The small message sizes usu-
ally incurred are inefficient for communication, due to the constant
per message start-up overhead. Effective load balancing schemes
are limited with such data distribution schemes as well.

Alternatively, we implemented a master/slave framework. The
slave nodes are the rendering nodes. They collaborate on each slab,
rendering all the macrotiles. The master node plays the role of data
server and task scheduler. It loads in the sparse volume data, and in
a slab-by-slab fashion, builds up the task queue, broadcasts the un-
occluded bricks to the rendering nodes. Then, the master assigns
macrotiles to rendering nodes. After all the macrotiles are com-
pleted, the server updates the occlusion map with the results sent
back, culls occluded data portions in the subsequent slab, and starts
the cycle to render the subsequent slab.

Using the slab-by-slab approach and the broadcast operations is
suitable for our goals. First, with slabs, the occlusion results of the
slabs in the front can cull away the occluded portions in the follow-
ing slabs from being processed. The total amount of data commu-
nicated is a close approximation to the un-occluded portion of the
total volume, and can be small in size and locally cacheable by all
the rendering. Second, the large number of point-to-point or multi-
casts messages for data re-distribution are replaced with one single
optimized collective communication operation, Bcast. Third, when
all the rendering nodes locally cache the un-occluded volume por-
tions, any flexible load balancing scheme can be adopted with no
additional data redistribution. Finally, with caching enabled on the
rendering nodes, newly appearing volume portions are incremen-
tal. The communication is affordable and fast. Efficient multi-
frame rendering is supported.

Fig. 2 further illustrates this broadcast based data distribution
scheme. Fig. 2a shows an initial view and the IASB algorithm
using 4 volume slabs. The white areas represent the parts of the
volume that are occluded, thus not broadcast, while the small
pieces in black are. When the viewpoint changes, as shown in Fig.
2b, the areas shown in grey represent bricks that were not broad-
cast in the previous view. If the rendering nodes are able to cache
the data received for a previous view, less amount of data commu-
nication is required, and essentially, each rendering node would
then possess locally the non-occluded portion of the volume. This
data is discovered on the fly. 

16 16×

Figure 1:  (a) Sorted order based on estimated workload vs
measured order. (slab 1 of 3-slabs setup, UNC Brain). (b) Sorted
order based on estimated workload vs. measured per macrotile
rendering time (sec).
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(b) Figure 2:  Data broadcast for two nearby views for an opaque
object. (a) A volume rendered from an initial view. The white
option is occluded and is not broadcast. The bricks in the dark
pieces are broadcast and rendered. (b) The data (grey pieces) to
be broadcast for a next (close-by) view.
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Our experiments in Section 5.2 show that for a practical data set
(assuming 5 degree/frame movement), this incremental amount of
newly un-occluded volume is only 1% of the total sparse volume,
amounting to less than 0.5% of the total raw volume size. The data
resident on each rendering node is only ~15% of the total volume.
Hence, at little communication costs, we achieve the flexibility to
use most load-balancing schemes to adopt occlusion accelerations.

4.5  Summary

In summary, our basic parallel algorithm is as follows.

Of course the actual implementation overlaps communication
and computation as much as possible. This is not illustrated in the
pseudo code to aid in understanding.

5.  Results & Analysis
In this section, we evaluate some important aspects of the paral-

lel algorithm that we have developed. These aspects include load
balancing, data communication for new frames, the amount of data
resident on each node, rendering timings using 3, 5, 9, 13 and 16
nodes, as well as the speed up curves and a scalability analysis.

We implement our parallel solution on a NOW cluster consist-
ing of 16 Pentium II 300 MHz CPU’s connected by a Myrinet/GM
(1.2Gbps full duplex) interconnection network, running MPI. We
dedicate one node as the Master, while the rest are assigned as
Slave nodes whose sole job is to render the macrotiles. The sample
data set we used for a detailed analysis is the UNC Head MRI data
set, which has a  voxels. Each voxel contains pre-
computed gradients and position, amounting to 256 MBytes of
data. Removing any voxels associated with air, reduces this total to
80MBytes. We use a 3D Gaussian with a 2.0 object space radius.
The image resolution is . No graphics hardware is used.
We simulate the user interaction by rotating the user around the
center of the volume at 5 degrees/frame.

5.1  Load-Balance
The brick organization adds to the problem described in

Section 4.3, where small slab-tile sizes actually increase the total
amount of work to be performed. Reducing the brick size results in
a trade-off between more overhead in data management/communi-
cation and better load balancing. Due to the space limit, we do not
present results pertaining to varying brick sizes.

The communication with each slave rendering node involves
receiving a broadcast, Bcast, update for the un-occluded data in the
current slab, and performing point-to-point communication with
the master node to obtain a macrotile to work on. The master node
sends the slave a macrotile, the slave node renders into this macro-
tile, when done, sends the macrotile back to the master via point-
to-point communication. The slave then waits for a next macrotile
in the slab. If no macrotiles are left in the queue, the slave waits
until all the other nodes finish and the master node broadcasts data
for the next slab. There are 4 types of working states that a slave
can be in: rendering, participating in Bcast, point-to-point commu-
nications, or waiting. A break down of the timings for an arbitrary

Pre-compute a brick partition structure over the volume (relevant
voxel list in each brick);

Initialize occlusion map/image;
For each slab in FTB order Do

Construct quadtree of non-
empty/opaque tiles of this 
slab;

Build quadtree and collect 
macrotiles

Build a queue sorted by esti-
mated workload

Broadcast unoccluded bricks 
to all rendering nodes;

For each macrotile in queue
Assign to a rendering node;
Receive/Combine the result 

into the slab image;
Update occlusion map for 

full image;
End

End;

Receive assigned macrotile
For each sheet in current mac-

rotile do
Apply occlusion test for 

voxel and brick culling
If exist un-occluded voxels

Splat into sheets with 
occlusion testing;

Collect computed tiles
Update occlusion map, 
Composite the tile to 

image;
Endif;

End;
Send resulting macrotile to 
server node

Server node Rendering nodes
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Figure 3:  (a) Break down of a typical view in the frame sequence, rendering with 16 nodes (upper, 15 slave rendering nodes), and 5
nodes (lower, 4 slave rendering nodes), using the 3-slabs setup. The slab rendering time is shown separately for each slab. (b) Sample
image of this frame.



frame (3-slab) using 16 nodes (15 slave nodes) and 5 nodes (4
slave nodes) is shown in Fig. 3a. The 16-node break down is
shown at the top, with the 5-node results at the bottom.

In both cases, the communication time, both Bcast and point-to-
point, is minor, comprising only about 5% of the total time on
average. However, the barrier wait consumes about 15% to 20% of
the total time with 16 nodes, where the level in the image plane
quad tree is at a macrotile size of 64 pixels. For tiles of this size,
the macrotiles on the boundary of the human head’s projection can
become significantly smaller than the ones at the interior of the
projection. Therefore, although we are using a tile workload esti-
mation scheme and building a sorted task queue based on the esti-
mation, the lack of smoothness in the workload variation from the
front towards the end of the queue degrades the load balancing.
Constrasting this to the 5-node case, the macrotiles are of 128 size
and much better load balancing is achieved. The total rendering
time (summation of the rendering time for slabs 1, 2, 3) takes up
more than 90% of the total spent time per frame.

Parallel computing researchers often use a dynamic load balanc-
ing scheme in which the tasks are dynamically partitioned to guar-
antee proper load balancing. We implemented this, but did not see
an improvement in the overall timing. This is due to the overlap-
ping effects discussed in Section 4.3. We are left with the predica-
ment that larger tile sizes reduce the amount of overhead, but
smaller tile sizes produce better load balancing. Our timing shows
that with 64 sized macrotiles, as shown in Table 1, the summation
of the rendering time on all the 15 slave rendering nodes is 16.6
seconds. When the macro-tile size is reduced to 32 pixels, the
summed rendering time almost doubles to 27.88 seconds, but the
wait time is cut in almost half.

In an effort to try to alleviate this, after the macrotile queue is
built, we use 64 pixel tiles for initial tasks and partition the macro-
tiles left in the queue to 32 pixel tiles. For this configuration, the

total rendering time increased to 22.24 seconds, and the maximum
wait time was reduced to 0.21 seconds from the strictly 64-tile con-
figuration. This improvement in load-balancing or wait time does
not overcome the extra time incurred in the rendering. Therefore
we did not include this extension as a solution. The degree of gran-
ularity that the macrotiles can reach depends on the size of the
splat footprints. Using smaller kernels or larger data sets will
reduce the wait times, but increasing the image size effectively
increases the projected splat size and increases the overhead.

5.2  Data Distribution
Figure 4 illustrates the savings achieved with our data distribu-

tion and culling scheme. Fig. 4a plots the message and data sizes
using 3 and 5 slabs across many frames. The upper two curves in
Figure 4a show the amount of data identified as possibly needed
for each frame. Since occlusion occurs after slab boundaries, the 3-
slab scheme has more resident data for the current view. The total
amount of data needed for each view ranges from around 12 to 14
MBytes. This represents about 15% to 18% of the total volume
data. The lower curves in Figure 4a represent the amount of data
that needs to be actually updated for each new view. This amount
is on average only about 6% of the resident data, or about
400Kbytes to 600Kbytes. Thus, the data updated via the broadcast
is only about 1% of the total sparse splatting representation. This
low amount of data communication and storage requirements
allow us to easily replicate this data on every rendering node.
There is an initial communications penalty, as the first view
requires broadcasting all non-occluded data needed for that frame.
Fig. 4b, and c show the actual time spent in the Bcast operation
using 3-slabs and 5-slabs respectively. As expected, the initial
view needs a rather large amount of time for the broadcast, but the
broadcast time reduces substantially for subsequent views. The
efficiency of the log(n) broadcast time can be seen in these figures,
as the curves do not deviate much as the number of processors is
increased. Using 5 slabs involves 2 more broadcast messages than
with a 3 slabs. Due to the constant start up time involved in a
broadcast (global barrier), a little more time is spent using 5 slabs
than using 3 slabs on broadcast communications.

5.3  Speedup and Scalability
The wall-clock times to render the UNC Head data set, using 3-

slab and 5-slab setups, are shown in Fig. 5a, and b, respectively.
For each case, the rendering times with 3, 5, 9, 13 and 16 nodes are

TABLE 1. Macro-Tile Size vs. Rendering Time (sec) Increase 
and Load-balancing Improvement

Macrotile Size 64 pixels mix 64/32 pixels 32 pixels

Summed 
Rendering Time

16.6 22.24 27.88

Max Wait Time 0.28 0.21 0.15

Avg Rendering 
Time/Node

1.4 1.66 2.00
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Figure 4:  Analysis of data distribution. (a) The upper two curves show the total size of volume data resident on each node for every
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shown. The actual timings suggest that the 3-slab setup is slightly
faster due to the two additional slab barriers in the 5-slab setup.
The slab configuration is needed to cull down the amount of data
broadcast and stored on each rendering node. Reducing the number
of slabs/barriers would actually reduce the wait time. For evenly
divided slabs, our experiments showed that more than 3 slabs are
needed for a reasonably low storage requirement on each rendering
node. Future research will examine slab partitioning schemes that
partition the space non-uniformly to allow for wide slabs whenever
possible.

Our algorithm is designed to render data sets that have exploit-
able occlusion. The UNC Head data set is one typical such exam-
ple. Our analysis in the previous sections shows a picture of how
data sets of this category would perform. On the other hand, one
might be interested in the performance of our algorithm when
applied to data sets that do not exactly fall into this category.

We present the speed-up results of two other data sets, a blood
vessel data set (Fig. 6a) and a human skull data set (Fig. 6b). The
resolution of both is  voxels.

The blood vessel data set is branched in nature. There is not
much exploitable occlusion. The skull data set has some portions
of it showing strong occlusion, but not all portions of the data set
have this feature. We hope to demonstrate the applicability of our
algorithm in the three different scenarios represented by the three
data sets, UNC Head, Skull and Blood Vessel.

During an 18 frame sequence using 5 degree rotations per
frame, we record the actual rendering times for the 3-slab setup,
with 3, 5, 9, 13 and 16 processors. We compute the average speed
up, shown in Fig. 7a, for each frame except the initial one. Results
for all three data sets have been collected. 

In case of the UNC Head, when using 3 nodes, where only 2
nodes are used for rendering, we achieve a speed-up factor of 2.5.
For 5 nodes, 4 rendering, we achieve a speed-up of 4.4. Here, the
master node is doing some work, but it is only scarcely utilized.
The high speed-up is primarily due to better caching performance.
The PII PCs that we have on our cluster only have 128KBytes level
2 cache, 16KBytes on-chip cache. But our software based
approach implements a full frame buffer in main memory. The
frame buffer implements 32-bit depth color at 512 by 512 image
resolution. Caching performance is much improved when a render-
ing node strictly manages a considerably smaller macrotile of the
frame buffer.

Although the master node is only scarcely used, and should be
considered a separate system dedicated to large-scale data manage-
ment, we still include it in our study of CPU utilization. In Fig. 7b,
we take the speed-up numbers and divide them by the total number
of CPU’s used. For the case of 3-CPU, the utilization is lower, due
to the primarily idle Master node. For our implementation, the
more processors used, the smaller the size of the macro-tiles
becomes. As discussed, the overhead of the overlapping bricks
increases as the macrotile size decreases, while the average utiliza-
tion decreases to about 67% with 16 nodes.

For the Skull data set, although the occlusion is less prevalent
than that of the UNC Head, similar results have been obtained. The
compromise in performance is tractable. Using 16 nodes, the aver-
age utilization is still around 63%. However, with the Blood Vessel
data set, the scalability is questionable. The system scales reason-
ably well below 10 nodes, beyond which scalability is poor. The
reason is that for such data sets that show little occlusion character-
istics, occlusion culling contributes little in speed up. The barriers
introduced between slabs hurt performance significantly, when the
number of nodes to meet at the barrier is large. Using less than 10
nodes, the macrotiles are relatively large, and the workload distrib-
utes evenly. When more nodes are being utilized, smaller macro-
tiles are used, load balancing becomes problematic. For such data
sets, actually in sequential mode, occlusion culling does not speed
up rendering much either. Parallel rendering targeted at such data
sets would achieve more scalable speedup results with a more
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Figure 5:  (a) The rendering time using a 3-slab setup with 3, 5, 9, 13
and 16 nodes, respectively. (b) The rendering time using a 5-slab
setup with 3, 5, 9, 13 and 16 nodes.
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Figure 6:  Two other data sets that we have experimented with.
(a) Blood vessels extracted from CT scan of human brain. (b) A
skull captured by MRI.

Figure 7:  (a) The average speed up using a 3-slab setup with 3, 5,
9, 13 and 16 CPUs, during the 18 frame-sequence. (b) The ratio of
the average speed up over the number of processors used, using a
3-slab setup.
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straightforward parallelization that does not incorporate occlusion
culling.

6.  Conclusions & Future Work
This paper presents an innovative approach to parallelizing

IASB splatting with occlusion culling, designed for efficient paral-
lel rendering of data sets (transfer functions) that show heavy
occlusion. The volume data is organized as object space bricks.
The tight bounding box of the sparse voxel list within each brick
facilitates fast and simple schemes for both brick level data culling
and workload estimation. During rendering, the concept of image-
aligned slab is leveraged to cull down the amount of data commu-
nication and data storage on the rendering nodes. Coupled with
view coherence, the image-aligned slab representation reduces the
data communication needed to two orders of magnitude lower than
the storage of the raw volume itself. Broadcast operations are used
such that one optimized collective communication operation dis-
tributes data to all parties in need. The duplicated non-occluded
data storage on all rendering nodes supports a flexible load balanc-
ing scheme, which utilizes a partial screen-space quadtree. 

There are two possible underlying hardware systems, a non-
symmetric one or a symmetric one. We currently use a single mas-
ter node for data communication, task management and schedul-
ing. On a non-symmetric type of system, where a powerful master
node has fast access to the disk storage, our prototype system
would be able to accommodate large data sets. But on a symmetric
system, such as SGI Origin 2000 and most NOW clusters, the cur-
rent implementation of ours is not scalable to large data sets. The
data management task should be distributed to each node on the
cluster, with each node possessing a portion of the volume, and
replacing the Bcast operation for data update operations with All-
Gather. In either case, the rendering algorithm is independent from
the data serving approach and stays the same.

For data sets that have a reasonable amount of occlusion to be
exploited, our system shows good scalability. With a 16-node Pen-
tium II 300MHz cluster, 63% to 67% CPU utilization is achieved.
But our algorithm is not designed for data sets that exhibit little
occlusion characteristics. Such data sets are more efficiently ren-
dered with a more straightforward parallel algorithm of the IASB
splatting without occlusion culling.
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