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Abstract 
Direct volume rendering has seen many improvements since its 
inception fifteen years ago. In this paper, we segment the volume 
into geometrically disjoint regions that can be rendered to provide 
a more effective and interactive volume rendering of structured 
and unstructured grids. Our segmentation is based upon intervals 
within the scalar field, producing a set of geometrically defined 
interval volumes. We present many advantageous properties in 
using interval volumes, and provide several new rendering 
operations or shaders to provide effective visualizations of the 3D 
scalar field. In particular, we demonstrate new technologies that 
allow interval volumes to be rendered interactively and/or used to 
reduce the amount of rasterization or rendering primitives in a 
volume renderer. We illustrate the use of interval volumes to 
highlight contour boundaries or material interfaces. Several 
surface shaders that can easily be integrated in the volume 
renderer are presented. To construct the interval volumes, we cast 
the problem one dimension higher, using a higher-dimensional 
isosurface construction for interactive computation or 
segmentation. The algorithm is independent of the dimension and 
topology of the polyhedral cells comprising the grid, and thus 
offers an excellent enhancement to the volume rendering of 
unstructured grids. We present examples using hexahedral and 
tetrahedral cells from time-varying and multi-attribute datasets. 
 
CR Categories: I.3.3 [Picture/Image Generation]: Display 
algorithms 
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1 Introduction 
With the widespread use of high performance computing systems, 
some application simulations are capable of producing large 
datasets. These simulations tend to be time varying, adding 
another dimension to the problem. Additionally, these simulations 
produce multiple attributes like density, momentum and energy at 
each of the sample points (nodes). It is valuable to visualize the 
interrelationships between these values in the current geometric 
context.  
 
Interactive visualization of curvilinear and unstructured data sets 
is critical and has been an active area of research for quite some 
time now. Maximum interactivity has been achieved using 
massively parallel supercomputers [8][20][21] to render the data 
in parallel using image-order [6] and object-order [7] 
decomposition techniques. Alternatively, the unstructured grids 
can be resampled into regular rectilinear grids and then rendered 
taking advantage of hardware accelerated rendering using 3D 
textures [18]. Along with the need for interactivity, there is a need 

for better data visualization tools, which allow navigating the data 
set in a more intuitive manner, as well as allow for correlation 
between the multiple attributes. 
 
In this paper, we try to address some of these issues by using 
interval volumes as a region-of-interest extraction algorithm and 
by using fast volume visualization techniques. We show how 
interval volumes can be computed interactively for arbitrary 
polyhedral cells using a fast isosurfacing algorithm. The 
isosurfacing algorithm is completely automatic [3][5] and does 
not require either manually triangulating the surface patches 
[19][25] or performing a simplicial decomposition of the 
polyhedral cells [1][24][30][31]. We show that this algorithm 
extends to general convex polyhedra and prove that our algorithm 
is correct. We further build upon this work to come up with new 
visualization techniques for effective visualization of interval 
volumes and present results from 3-dimensional and 4-
dimensional (time-varying + 3-spatial dimensions) grids with 
hexahedral and tetrahedral cells. Compared with other direct 
volume rendering methods, this interval volume method can 
segment the volume data and highlight the boundary surfaces 
between the interval volumes. Specifically, our main contributions 
described in this paper are as follows: 
1. Improved interval volume calculation and triangulation based 

on higher-dimensional iso-contouring. 
2. Proof-of-correctness of the interval volume algorithm. 
3. Using interval volumes to segment the volume, highlight 

contour surfaces, and render the data effectively. 
4. Application of interval volumes for both structured and 

unstructured grids, as well as multi-attribute and time-
varying data. 

5. Application of interval volumes to flow visualization. 
 
In the following sections we look at some of the previous work 
done in this domain. We then give an overview of our interval 
volume computation algorithm, followed with visualization 
techniques for our interval volumes. We end with some results of 
our work and present future directions of research in this domain.  

2 Previous Work 
Unstructured Volume Rendering – Shirley and Tuchman [28] 
presented a new algorithm for hardware accelerated rendering of 
unstructured tetrahedral grids by approximating the projection to 
screen space using a set of triangles. Grids consisting of different 
cells are first decomposed into a tetrahedral representation using 
simplicial decomposition techniques [1][24]. Williams extended 
Shirley-Tuchman’s approach to implement direct projection of 
other polyhedral cells in their HIAC rendering system [35] and 
used high accuracy light integration functions to model the light 
transport through the medium [34]. Recently, with the advent of 
programmable graphics hardware, a tremendous amount of work 
has been done in implementing the Shirley-Tuchman algorithm on 
graphics hardware using the programmable vertex and fragment 
shader pipelines on the GPUs [32][37]. In all of the above cases, 
the rendering performance of the projected tetrahedra algorithm is 
typically proportional to the number of cells to be rendered. The 
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rendering process involves visibility sorting (usually O(nlogn)) 
and  projection (O(n)) of the polyhedral cells. As an alternative to 
projection, polyhedral cells can be sliced to compute a polygonal 
approximation for hardware-accelerated rendering [39][10]. 
 
Interval Volumes - An interval volume is the set of points in a 
scalar field enclosed between two isosurfaces defined by two 
different isovalues. In [22], Max et. al. split each linear 
tetrahedron into interval based upon the transfer function. 
Fujishiro [12] introduced interval volumes as a solid fitting 
algorithm. A few applications of interval volumes were presented 
in [14][13]. Fujishiro computed a tetrahedralization of the interval 
volume by computing the intersection of two convex polyhedra 
enclosed by the isosurfaces given by the Marching cubes 
algorithm [19], within each cell. Nielson [25] computes the 
tetrahedralization by first decomposing each cube in the grid to 
five tetrahedra. Nielson then uses an efficient lookup table to 
compute the interval volume within each simplex and decompose 
it into tetrahedra. The tetrahedralization is constructed manually 
by analyzing all the possible intersections of a tetrahedron with an 
interval enclosed by two isosurfaces. Banks [2] counts the cases 
for a family of visualization techniques, including iso-contours 
and interval volumes. Ji [17] tracks the interval volumes using 
higher dimensional isosurfacing. 
 
In this paper, we use interval volumes to create disjoint volume 
segments, or intervals. We show how interval volumes provide a 
more compact representation of the regions-of-interest in both 
structured as well as unstructured datasets. In addition to reducing 
the cell count, interval volumes provide a segmentation of the data 
into easily discernable regions. We feel this material layer 
interface provides an advantage over smoothly varying transfer-
functions, which are often too fuzzy to display distinct material 
boundaries. In this paper, we present many different schemes, 
employed for interactive visualization of large time-varying data 
sets, using fast interval volume construction coupled with 
projection based volume rendering. 

3 Interval Volume Computation 
In [3], we presented a new algorithm for computing isosurfaces in 
arbitrary dimensional data sets. The algorithm proceeds by 
generating isosurface patches within each d-dimensional 
polyhedral cell comprising the d-dimensional grid. The output of 
the algorithm is a set of (d-1)-dimensional simplices forming a 
piecewise linear approximation to the isosurface.  The algorithm 
constructs the isosurface piecewise within each cell in the grid 
using the convex hull of an appropriate set of points. In [5] we 

present a proof of correctness for the n-dimensional isosurface 
construction and show that it correctly produces a triangulation of 
a (d-1)-manifold with boundary.  
 
For a function f(x,y,z) sampled on a three dimensional  grid, the 
interval volume [12] is defined by If(α,β) = {(x,y,z): α ≤ f(x,y,z) ≤ 
β}. More generally, for a function f : Rd→R in any dimension, the 
interval volume is defined by If(α,β) = {(x1,…,xd): α ≤ f(x1,…,xd) 
≤ β }. Intuitively, the interval volume is the set of points enclosed 
between the two isosurfaces corresponding to the isovalues, α and 
β. For a d-dimensional grid, the interval volume is a d-
dimensional subset of the grid and can be represented by a 
collection of d-simplices. 
 
The interval volume can be represented as the projection of an 
isosurface in one higher dimension. Let π be the projection 
function mapping Rd+1 to Rd given by π(x1,…,xd,xd+1) = (x1,…,xd). 
 
Theorem 1: Given a continuous function f : Rd→R and two scalar 
values α < β, if F(x1,…,xd,t) = f(x1,…,xd) − (α (1−t) + β t) and S is 
the isosurface given by F(x1,…,xd,t) = 0 for 0 ≤ t ≤ 1, then π(S) is 
a 1-1 mapping of S onto the interval volume If(α,β). 
 
Proof: The isosurface S is given by the equation f(x1,…,xd) − (α 
(1−t) + β t) = 0 or, equivalently, f(x1,…,xd) = (α (1−t) + β t).  
Since t is between 0 and 1, inclusive,  f(x1,…,xd) is between α  and 
β, inclusive, for every point on S. Thus π(S) is a subset of If(α,β). 
For every point (x1,…,xd) ∈ If(α,β), we have f(x1,…,xd) equals 
some γ where α ≤ γ ≤ β. Choosing some tγ such that α (1− tγ) + β 
tγ = γ gives the point (x1,…,xd, tγ) which lies on S. Thus π(S) 
equals If(α,β).  For each point (x1,…,xd) ∈ If(α,β), the scalar tγ is 
unique and thus π(S) is 1-1. 
Q.E.D. 
 
Theorem 1 leads directly to an interval volume construction 
algorithm using isosurface construction.  The scalar field is lifted 
into one higher dimension, an isosurface is constructed in that 
higher dimension, and the isosurface is projected back down into 
the original dimension. 

 
The interval volume algorithm proceeds as follows: 
 
1. Let f(x1,…,xd) define a d-dimensional function. 
2. Let scalar values, α, β (α < β), be the desired isovalues 

bounding the interval. 
3. Let F(x1,…,xd, t) be the (d+1)-dimensional function, given 

by, F(x1,…,xd,t) = f(x1,…,xd) − (α (1−t) + β t), such that 

f(x,y)=α f(x,y)=β

Interval surface triangulation

f(x,y)=α f(x,y)=β 

2D interval surfaces 3D volume F(x,y,t) 

F(x,y,0)=f(x,y)-α
F(x,y,1)=f(x,y)-β

Figure 1. Two-dimensional illustration of the interval volume algorithm
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4. Compute the zero-valued isosurface, S, given by F(x1,…,xd, 
t) = 0 for 0 ≤ t ≤ 1. 

5. Let π be the projection function mapping Rd+1 to Rd given by 
π(x1,…,xd,xd+1) = (x1,…,xd). The desired interval volume, 
If(α,β), is then given by π(S). 

 
For a regular three dimensional scalar grid with hexahedral cells, 
we construct the interval volume by lifting the hexahedral cells to 
four dimensional hypercubes and building the isosurface 
piecewise within each hypercube[3]. The interval volume is then 
given by projecting the isosurfaces to R3. In our implementation, 
we pre-compute a lookup table for all possible intersections of the 
4-dimensional isosurface with a 4-cell. See [29] for the lookup 
table generation code. If a 3-cell has n vertices, we compute the 
interval volume by lifting the 3-cell to a 4-cell with 2n vertices.  
The isosurface lookup table for a cell with 2n vertices has 22n = 4n 
cases.  However, some of these cases are never used in interval 
volume generation.  Actually, only 3n of the cases can contribute 
to the interval volume computation. See [17] for more details.  
 
Once the table has been pre-computed, we use this lookup table to 
compute the isosurface triangulations, piecewise, within each 4-
cell. This approach provides considerable speedup to the 
isosurface construction process.  
 
Figure 1 provides a two-dimensional analogy for the interval 
volume algorithm. Here, the 2D function is f(x,y)=|x|+|y|, and we 
are interested in the region α ≤ f(x,y) ≤ β. We construct a 3D 
volume according to the step 3 above. The zero-valued isosurface 
in the volume is the triangulation using an isosurfacing algorithm, 
like ours [3]. The final interval surface enclosed by the α− and β− 
valued isocontours is given by the 2D projection of the isosurface 
triangulation. Since two isocontours for different isovalues can 
never intersect, we avoid flipped triangles in the resulting mesh.  
 
In order to visualize a larger range of isovalues (α1,α2,…,αn), our 
approach can be extended to tetrahedralize the volume using n 
steps along the t axis. Thus, the function, F(x1,…,xd,t), is given  by  
 
F(x1,…,xd,t) = f(x1,…,xd) − (αi +(∆α i /∆τ i)(t−t i))  for t i ≤ t < ti+1  

where, 
∆α i  = α i+1 −α i , and ∆τ i  = t i+1 −t i 

This gives us our necessary interpolating property: 
F(x1,…,xd,t i) = f(x1,…,xd) − α i 

 
This allows multiple intervals within the volume to be visualized 
consecutively, showing the different contour surfaces at the 
intersection of the adjacent intervals.  
 
Since the isosurface triangulation is consistent, the interval 
volume triangulation will also be consistent.  The problem of face 
mismatches across cell boundaries is often referred to as the 
cracking problem [25]. Albertelli [1] and Max [24] also address 
this issue and present algorithms for consistent tetrahedral 
decomposition of polyhedral cells. Our algorithm handles the 
cracking problem in the table generation stage by using a 
lexicographical ordering of the isosurface vertices and then 
building the convex hull incrementally, adding one vertex at a 
time in the specified order. This is similar to the scheme used by 
[25] and [24], which ensures canonical triangulations across cell 
boundaries and generates consistent meshes. The use of an 
isosurface lookup table makes the interval volume algorithm 
efficient.  

 
Entries in the four dimensional isosurface lookup table can have 
as many as 26 simplices.  However, as previously noted, not every 
four dimensional case can be realized by interval volumes.  Our 
algorithm produces at most 22 simplices in the interval volume for 
any three dimensional cube.  We contrast this with [25] which 
divides the cube into five tetrahedra and constructs the interval 
volume in each tetrahedron.  Within each tetrahedron the interval 
volume can require up to six simplices giving a total of thirty 
tetrahedra for the cube.  This total can be realized by the cube in 
Figure 2 whose black vertices have a value above the isovalue β 
and whose white vertices have avalue below the isovalue α.   

 

Figure 2. Cube (black vertices > β, white vertices < α) 

3.1 Non-Hexahedral Grids 
The higher dimension isosurface computation algorithm proposed 
in [3] is independent of the topology of the polyhedral cells in the 
grid. Hence, the same lookup table generation and interval volume 
computation algorithm can be applied to unstructured grids 
composed of other cell types including tetrahedra, pyramids and 
prisms [1]. When a 3-dimensional grid consisting of topological 
cubes (hexahedra) is used to compute the corresponding 4-
dimensional grid, the resulting 4-cells are still topological cubes. 
This does not hold true for other types of grids. For a grid 
computed from tetrahedral cells, the 4-cells generated by our 
dimension elevation technique are not simplicial (4-tetrahedra). 
The new 4-dimensional grid consists of 4-prisms with tetrahedral 
faces. Each cell has 8 vertices and 16 edges as shown in Figure 3. 
The green and blue edges represent the tetrahedral faces 
corresponding to w=0 and w=1 and the maroon edges connect 
these two faces.  
 
We use our lookup table generation algorithm to compute the 
lookup table for the 4-prism. A similar approach can be used to 
generate lookup tables for 4-prisms whose faces are 3-pyramids or 
3-prisms. The isosurface lookup table for the 4-prism shown in 
figure 3 has 256 (= 28) entries, but only 81 (= 34) entries are used 
for interval volumes. The maximum number of tetrahedra in the 
interval volume is 6 for any tetrahedron, which matches the 
maximum number of tetrahedra produced in [25].  The average 
number over the interval volume cases is approximately 3.9 
tetrahedra. 
 

 

 
Figure 3. 4-prism with a tetrahedral base 
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3.2 Time-Varying Interval Volumes 
Multiple time-steps add another dimension to the data set. For 
time varying data sets, interval volumes can be computed using 
two schemes. The first scheme computes the interval volumes 
separately for each time step of the data set using the algorithm 
discussed above. The user can then cycle through all the time 
steps to visualize and interact with the data in real time.  
 
An alternative approach uses the following two-step algorithm. In 
the first step, we use our isosurfacing algorithm to compute a 4-
dimensional volume representing a time-varying interval volume. 
This is accomplished by applying the isosurfacing algorithm 
directly on a 5-dimensional grid to generate a surface comprised 
of 4-simplices. In the second step, the 4-simplices are sliced along 
the time axis to interactively generate the interval volume for the 
corresponding time step. The slicing is achieved by applying an 
isosurfacing algorithm using the time value as an isovalue. This 
scheme is analogous to rendering time varying isosurfaces [3] and 
allows slicing at non-integral time-steps to compute interpolated 
interval volumes between consecutive time steps. As an 
alternative to slicing, we can volume render the 4-tetrahedra 
directly by using an opacity mapping or pseudo-coloring for the 
time variable. 

4 Interval Volume Visualization 
We use an implementation of the Projected Tetrahedron algorithm 
from Shirley and Tuchman [28] to render the interval volumes. 
The algorithm approximates a tetrahedron using one to four 
triangles depending on the screen projection of the tetrahedron’s 
vertices. We implement the Projected Tetrahedron algorithm 
using the vertex program of programmable graphics hardware 
[37]. For the visibility sorting, we use the MPVONC algorithm by 
Williams [33] which provides an O(nlogn) algorithm for 
approximate visibility ordering of non-convex meshes. Even 
though the algorithm is not guaranteed to give correct results in 
the presence of certain boundary anomalies, it works well for our 
purposes. 
 
We use a 2D texture to implement the volume rendering integral 
through a tetrahedron as suggested in [22]. The 2D texture stores a 
pre-computed exponential integration, which is then indexed 
according to the ray length through the projected tetrahedron’s 
thick vertex and the mean of scalar values at the ray entry and exit 
points. The table lookup and interpolation is done by the graphics 
hardware using per vertex texture coordinates. This scheme 
provides a simple approximation to the volume rendering integral 
described in [33]. The approximation to the optical model can be 
improved by using the pre-integrated volume rendering technique 
proposed by [26] which uses 3D textures to lookup a pre-
computed light integral function. 

4.1 Rendering Techniques for Interval Volumes 
In this section, we build upon our work of interval volume 
construction to come up with new rendering techniques using 
interval volumes for effective visualization of volumetric data 
sets. We will first introduce the basic ones and then show our new 
shaders. 

4.1.1 Constant Colored Intervals 
We compute small intervals and use a constant color and opacity 
for rendering the complete interval by assigning the same isovalue 
(chosen to be the mean of the isovalues) to all the vertices in the 
interval volume. This has the advantage of accurate integration 
and the applicability of simplified and more efficient rendering 

algorithms. Wylie [37] and Weiler [32] both report rendering 
times for constant colored tetrahedra that are twice the speed of 
linearly varying tetraheda. The images in Figure 4 are interval 
volumes from the Tapered Cylinder data set rendered using this 
technique.  
 
For multiple intervals, we assign each interval a distinct color 
value. Since these intervals are used to generate a single 
tetrahedral mesh for the cumulative interval, the grid needs to be 
sorted in a visibility order before rendering. For best results, we 
keep the number of intervals small and the adjacent colors visibly 
distinct. Figure 4a shows the data set with four intervals colored 
red, green, blue and yellow with constant opacities. A linear 
opacity ramp for the transfer function is used in Figure 4b, 
reducing the occlusion from the lower-valued intervals.    
 
 
 
 
 
 
 
 
 
 
Figure 4a. Multiple constant colored intervals (236K tetrahedra) 
 
 
 
 
 
 
 
 
 
Figure 4b. Multiple constant colored, linear opacity intervals 

4.1.2 Time-Cycled Intervals 
With new hardware capable of rendering over one million cells 
per second, and the fact that interval volumes consume relatively 
few tetrahedra, real-time rates can be guaranteed for even the 
most refined of meshes by limiting the interval size. Thus, we can 
leverage time in our portrayal of the interval volumes. We build a 
separate display list or vertex array for each interval and loop 
through each interval, displaying it using a constant color. Since 
the cells have a constant color, the volume integration can be 
calculated in any order and no sorting is required. This is similar 
to the Data Slicer technique [11], where constant color and 
splatting are utilized.  
 
Figure 5 shows three adjacent intervals rendered using this 
technique and a continuous transfer function applied which uses 
distinct colors for adjacent intervals. The interval volumes are 
computed directly from the hexahedral grid, without any 
decomposition. The intervals contain 46K, 57K and 61K 
tetrahedra respectively which can be rendered at approximately 20 
frames per second. The minimal tetrahedral decomposition for the 
whole grid, using 5 tetrahedra per hexahedral cell [1] has 
approximately 615K tetrahedra. An MPEG movie 
(TimeCycle.mpg) showing this technique is presented as 
supplementary material.  
 
 
 
 
 



 
 
 
 
 
 
 
 

 
Figure 5. Interval volumes extracted by progressively increasing 
the mean interval value.  

4.1.3 Prioritized Intervals 
A new technique is derived here from the medical imaging 
community. Maximum Intensity Projection or MIP prioritizes 
features of interest by modifying the ray integration function to 
select the scalar value with the greatest intensity [15]. The MIP 
algorithm prevents an important feature from being occluded by a 
less important feature by bringing the important feature to the 
forefront. We use a painters-like algorithm and let the user 
prioritize the intervals to ensure that the highest priority interval is 
the most visible. This is easily accomplished by sorting the 
intervals, not according to the viewing rays, but according to their 
priorities. Thus, we paint the higher priority intervals on top of the 
lower priority intervals. Much like MIP, when this is combined 
with interactive rendering, the motion parallax provides the 
necessary depth information, while the intervals of interest are 
always visible. Figure 6 shows snapshots of this technique applied 
to the Tapered cylinder data set. The priorities are reversed in the 
adjacent figures to show different features of the flow. An MPEG 
movie (MIP.mpg) showing this technique can be found in 
supplementary material. Unlike 4.1.1, in this case we treat the 
distinct intervals as separate tetrahedral meshes and render them 
independent of the other intervals. Hence, the tetrahedral meshes 
representing the individual constant colored intervals themselves 
do not need to be sorted. 

4.1.4 Intervals with Textured Boundary Surfaces 
Direct volume rendering of interval volumes might generate 
fuzzy-looking images for certain datasets. Highlighting the 
boundary surfaces between the interval volumes would allow us 
to provide a better mental segmentation of the volume and prevent 
important internal features from being occluded. Our interval 
volume computation algorithm offers the ability to compute the 
boundary surfaces between interval volumes without any 
computational overhead. The surfaces are extracted during the 
interval volume construction, simply by checking if the vertices 
are on the boundary or not. This occurs when all vertices of a face 
have the value which is equal to one of the iso-values. This 
information is easily encoded into the isotables. The surfaces are 
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using interval volumes to extract flow volumes is presented in 
[38]. 
 

                        
 
      Figure 8. Boundary surface with silhouette enhancement 
 

                  

                           
 
     Figure 9. Boundary surface with 1D texture mapping 

4.2 Time-Varying Data sets 
As an alternative to traditional animation, multiple time-steps can 
be rendered within the same view [36]. This can be done by 
assigning different color values to each time step and then 
rendering them as multi-valued volume intervals. These intervals 
are smeared on top of each other. Fast moving regions have 
distinct colors as shown in Figure 10, which uses four consecutive 
time steps rendered using this technique.  
 
 
 
 
 
 
 
 
 
 
Figure 10. Four time-steps of the flow smeared on top of each 
other and rendered with different colors (R, G, B, Y) 

4.3 Multi-Attribute Data sets 
Computing the interval volume using one attribute and then 
rendering this volume using another set of attributes allows better 
spatial correlation between these attributes. Figure 11 shows an 
interval volume computed using density values and then rendered 
using the corresponding energy values. Animating this over time 
shows how the energy distribution changes in high-density 
regions of the grid.  
 

The interval volume algorithm can also be extended to implement 
constructive solid geometry operations on multi-attribute data sets 
using multi-pass algorithms. For example, to implement an 
intersection between ranges of two scalars defined over the field, 
 
 
 
 
 
 
 
 
 
Figure 11. Multi-attribute visualization. Interval volume 
computed using density but rendered using energy. 
 
we first extract an interval volume from the original grid using the 
range for the first scalar value. During the interval volume 
construction, we interpolate and store the second scalar values in 
the resulting grid as well. The output of the first pass is then used 
in a second interval volume construction pass using the range 
provided for the second scalar attribute. The resulting mesh would 
correspond to the geometric intersection of the two scalar ranges. 
The same algorithm can be applied in any dimension.  
 
Figure 12 shows an example from a flow visualization 
application. Here, we consider two attributes: implicit value and 
advection time. Figure 12a and 12b are the interval volumes, 
computed using the implicit value and advection time in the flow, 
respectively. The stream volume is first generated using the range 
of implicit values as isovalues. The stream volume is then 
truncated to a range of the advection time steps by applying the 
interval volume algorithm to the volume in 12a. Figure 12c is the 
intersection of Figure 12a and 12b. 
   

      
12a 12b 

 
                                                 12c 
Figure 12. Intersection of interval volumes for two attributes 

5 Results 
All the results presented in this paper have been generated using a 
PC with a QuadroFX 3000 graphics card and a Pentium IV 3.4 
GHz processor.  



 
Table 1 presents interval volume lookup table statistics for various 
polyhedral cells. The table gives the maximum and average 
number of simplices over all possible combinations of vertex 
values. 
 
Polyhedron Dimension Table 

Entries 
Average 

Simplices 
Maximum 
Simplices 

Tetrahedron 3 34 3.96 6 
4-simplex 4 35 8.35 14 
5-simplex 5 36 17.27 30 

Hexahedron 3 38 12.09 22 
 
Table 1. Interval Volume Lookup Table Statistics 
 
For the Tapered Cylinder data set, the current implementation of 
our algorithm takes approximately 172 milliseconds per time-step 
to compute the interval volume. This number was computed using 
the average over 20 time-steps (13000 to 13190) for a constant 
interval size (0.9934 - 0.9944) using the density attribute. The 
average number of tetrahedra generated in this case was 
approximately 55.9K per time-step. Our isosurfacing algorithm 
does a naive linear search through the grid cells for isosurface 
intersection. Preprocessing schemes [27] can be used to speed up 
the interval volume computation considerably by skipping empty 
cells. In the above case, the interval volumes intersect 
approximately 9150 cells on an average (the total number of 
tetrahedra is 55.9K and the average is 6 tetrahedra per cell), which 
is ~7.4 % of the number of cells in the grid. A histogram of the 
data set indicates that a large portion of the values have rather low 
and insignificant density values. In addition to saving valuable 
rendering cycles, interval volumes allow skipping these irrelevant 
regions, which could otherwise occlude other interesting features 
in the data set.  
 
Using the hardware implementation of the Shirley-Tuchman 
algorithm [37], we are able to achieve a rendering rate of 
approximately 1200K tetrahedra per second for constant-color 
tetrahedra and 700K tetrahedra per second for linear-color 
tetrahedra.  
 
The interval volume extraction time and the volume rendering 
time for the datasets are listed in Table 2. In this table, we select 
the isovalues which correspond to the images shown in this paper. 
 

Rendering time 
(frames per second) 

 
Data set 

Interval 
volume 

Construction 
time 

Number 
of 

tetrahedra Constant 
color 

Linear 
color 

Tapered 
Cylinder 

(curvilinear, 
64x64x32) 

 
172 ms 

 
55.9K 

 
21.5 fps 

 
12.5 
fps 

Implicit flow 
Dataset 

(64x64x64) 

 
377 ms 

 
601.8K 

 
2.0 fps 

 
1.2 fps 

Stream volume 
(601.8K 

tetrahedra) 

 
343 ms 

 
346.5K 

 
3.5 fps 

 
2.0 fps 

Torus distance 
field 

Dataset 
(256x256x256) 

 
6,127 ms 

 
1,868.7K 

 
0.64 fps 

 
0.38 
fps 

 
Table 2. Interval Volume Computation and Rendering 

Performance 

 
Even with the implementation of hardware Projected Tetrahedra, 
the rendering performance is not fast enough for large dataset 
and/or thick interval volumes. One of our future goals is to use a 
tetrahedral simplification technique (like the TetFusion algorithm 
[9]) to improve the performance in these cases.  
 

6 Conclusions and Future Work 
In this paper, we have presented an algorithm for computing 
interval volumes in structured and unstructured grids using a fast 
isosurface extraction algorithm. We have shown how the 
algorithm can be used with convex polyhedra of arbitrary 
dimensions and also presented results on different 4 and 5-
dimensional polyhedral cells. We have also shown how interval 
volumes can be used for interactive and more informative volume 
visualizations by providing distinct and discernable layers of 
volumetric material, either viewed together or as an animated 
sequence. Different rendering techniques have been demonstrated 
for interactive visualization of the data set.  
 
We believe that our algorithm has the potential of being an 
essential component of volume visualization tools. The current 
algorithm can be augmented with feature detection techniques to 
aid the user in identifying useful/interesting intervals in the field. 
We also want to extend the concept of constructive solid geometry 
for multi-attribute data sets to do arbitrary operations like unions 
and subtractions.   
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