
Volume Interval Segmentation and Rendering
Praveen Bhaniramka†, Caixia Zhang*, Daqing Xue*, Roger Crawfis*, Rephael Wenger*

†Silicon Graphics, Inc. *The Ohio State University

Abstract
Direct volume rendering has seen many improvements since its
inception fifteen years ago. In this paper, we segment the volume
into geometrically disjoint regions that can be rendered to provide
a more effective and interactive volume rendering of structured
and unstructured grids. Our segmentation is based upon intervals
within the scalar field, producing a set of geometrically defined
interval volumes. We present many advantageous properties in
using interval volumes, and provide several new rendering
operations or shaders to provide effective visualizations of the 3D
scalar field. In particular, we demonstrate new technologies that
allow interval volumes to be rendered interactively and/or used to
reduce the amount of rasterization or rendering primitives in a
volume renderer. We illustrate the use of interval volumes to
highlight contour boundaries or material interfaces. Several
surface shaders that can easily be integrated in the volume
renderer are presented. To construct the interval volumes, we cast
the problem one dimension higher, using a higher-dimensional
isosurface construction for interactive computation or
segmentation. The algorithm is independent of the dimension and
topology of the polyhedral cells comprising the grid, and thus
offers an excellent enhancement to the volume rendering of
unstructured grids. We present examples using hexahedral and
tetrahedral cells from time-varying and multi-attribute datasets.

CR Categories: I.3.3 [Picture/Image Generation]: Display
algorithms

Keywords: Volume Rendering, Unstructured Grids, Interval
Volumes, Time-Varying data, Projected Tetrahedra, Shirley-
Tuchman

1 Introduction
With the widespread use of high performance computing systems,
some application simulations are capable of producing large
datasets. These simulations tend to be time varying, adding
another dimension to the problem. Additionally, these simulations
produce multiple attributes like density, momentum and energy at
each of the sample points (nodes). It is valuable to visualize the
interrelationships between these values in the current geometric
context.

Interactive visualization of curvilinear and unstructured data sets
is critical and has been an active area of research for quite some
time now. Maximum interactivity has been achieved using
massively parallel supercomputers [8][20][21] to render the data
in parallel using image-order [6] and object-order [7]
decomposition techniques. Alternatively, the unstructured grids
can be resampled into regular rectilinear grids and then rendered
taking advantage of hardware accelerated rendering using 3D
textures [18]. Along with the need for interactivity, there is a need

for better data visualization tools, which allow navigating the data
set in a more intuitive manner, as well as allow for correlation
between the multiple attributes.

In this paper, we try to address some of these issues by using
interval volumes as a region-of-interest extraction algorithm and
by using fast volume visualization techniques. We show how
interval volumes can be computed interactively for arbitrary
polyhedral cells using a fast isosurfacing algorithm. The
isosurfacing algorithm is completely automatic [3][5] and does
not require either manually triangulating the surface patches
[19][25] or performing a simplicial decomposition of the
polyhedral cells [1][24][30][31]. We show that this algorithm
extends to general convex polyhedra and prove that our algorithm
is correct. We further build upon this work to come up with new
visualization techniques for effective visualization of interval
volumes and present results from 3-dimensional and 4-
dimensional (time-varying + 3-spatial dimensions) grids with
hexahedral and tetrahedral cells. Compared with other direct
volume rendering methods, this interval volume method can
segment the volume data and highlight the boundary surfaces
between the interval volumes. Specifically, our main contributions
described in this paper are as follows:
1. Improved interval volume calculation and triangulation based

on higher-dimensional iso-contouring.
2. Proof-of-correctness of the interval volume algorithm.
3. Using interval volumes to segment the volume, highlight

contour surfaces, and render the data effectively.
4. Application of interval volumes for both structured and

unstructured grids, as well as multi-attribute and time-
varying data.

5. Application of interval volumes to flow visualization.

In the following sections we look at some of the previous work
done in this domain. We then give an overview of our interval
volume computation algorithm, followed with visualization
techniques for our interval volumes. We end with some results of
our work and present future directions of research in this domain.

2 Previous Work
Unstructured Volume Rendering – Shirley and Tuchman [28]
presented a new algorithm for hardware accelerated rendering of
unstructured tetrahedral grids by approximating the projection to
screen space using a set of triangles. Grids consisting of different
cells are first decomposed into a tetrahedral representation using
simplicial decomposition techniques [1][24]. Williams extended
Shirley-Tuchman’s approach to implement direct projection of
other polyhedral cells in their HIAC rendering system [35] and
used high accuracy light integration functions to model the light
transport through the medium [34]. Recently, with the advent of
programmable graphics hardware, a tremendous amount of work
has been done in implementing the Shirley-Tuchman algorithm on
graphics hardware using the programmable vertex and fragment
shader pipelines on the GPUs [32][37]. In all of the above cases,
the rendering performance of the projected tetrahedra algorithm is
typically proportional to the number of cells to be rendered. The

†{praveenb}@sgi.com
*{zhangc, xue, crawfis, wenger}@cis.ohio-state.edu

rendering process involves visibility sorting (usually O(nlogn))
and projection (O(n)) of the polyhedral cells. As an alternative to
projection, polyhedral cells can be sliced to compute a polygonal
approximation for hardware-accelerated rendering [39][10].

Interval Volumes - An interval volume is the set of points in a
scalar field enclosed between two isosurfaces defined by two
different isovalues. In [22], Max et. al. split each linear
tetrahedron into interval based upon the transfer function.
Fujishiro [12] introduced interval volumes as a solid fitting
algorithm. A few applications of interval volumes were presented
in [14][13]. Fujishiro computed a tetrahedralization of the interval
volume by computing the intersection of two convex polyhedra
enclosed by the isosurfaces given by the Marching cubes
algorithm [19], within each cell. Nielson [25] computes the
tetrahedralization by first decomposing each cube in the grid to
five tetrahedra. Nielson then uses an efficient lookup table to
compute the interval volume within each simplex and decompose
it into tetrahedra. The tetrahedralization is constructed manually
by analyzing all the possible intersections of a tetrahedron with an
interval enclosed by two isosurfaces. Banks [2] counts the cases
for a family of visualization techniques, including iso-contours
and interval volumes. Ji [17] tracks the interval volumes using
higher dimensional isosurfacing.

In this paper, we use interval volumes to create disjoint volume
segments, or intervals. We show how interval volumes provide a
more compact representation of the regions-of-interest in both
structured as well as unstructured datasets. In addition to reducing
the cell count, interval volumes provide a segmentation of the data
into easily discernable regions. We feel this material layer
interface provides an advantage over smoothly varying transfer-
functions, which are often too fuzzy to display distinct material
boundaries. In this paper, we present many different schemes,
employed for interactive visualization of large time-varying data
sets, using fast interval volume construction coupled with
projection based volume rendering.

3 Interval Volume Computation
In [3], we presented a new algorithm for computing isosurfaces in
arbitrary dimensional data sets. The algorithm proceeds by
generating isosurface patches within each d-dimensional
polyhedral cell comprising the d-dimensional grid. The output of
the algorithm is a set of (d-1)-dimensional simplices forming a
piecewise linear approximation to the isosurface. The algorithm
constructs the isosurface piecewise within each cell in the grid
using the convex hull of an appropriate set of points. In [5] we

present a proof of correctness for the n-dimensional isosurface
construction and show that it correctly produces a triangulation of
a (d-1)-manifold with boundary.

For a function f(x,y,z) sampled on a three dimensional grid, the
interval volume [12] is defined by If(α,β) = {(x,y,z): α ≤ f(x,y,z) ≤
β}. More generally, for a function f : Rd→R in any dimension, the
interval volume is defined by If(α,β) = {(x1,…,xd): α ≤ f(x1,…,xd)
≤ β }. Intuitively, the interval volume is the set of points enclosed
between the two isosurfaces corresponding to the isovalues, α and
β. For a d-dimensional grid, the interval volume is a d-
dimensional subset of the grid and can be represented by a
collection of d-simplices.

The interval volume can be represented as the projection of an
isosurface in one higher dimension. Let π be the projection
function mapping Rd+1 to Rd given by π(x1,…,xd,xd+1) = (x1,…,xd).

Theorem 1: Given a continuous function f : Rd→R and two scalar
values α < β, if F(x1,…,xd,t) = f(x1,…,xd) − (α (1−t) + β t) and S is
the isosurface given by F(x1,…,xd,t) = 0 for 0 ≤ t ≤ 1, then π(S) is
a 1-1 mapping of S onto the interval volume If(α,β).

Proof: The isosurface S is given by the equation f(x1,…,xd) − (α
(1−t) + β t) = 0 or, equivalently, f(x1,…,xd) = (α (1−t) + β t).
Since t is between 0 and 1, inclusive, f(x1,…,xd) is between α and
β, inclusive, for every point on S. Thus π(S) is a subset of If(α,β).
For every point (x1,…,xd) ∈ If(α,β), we have f(x1,…,xd) equals
some γ where α ≤ γ ≤ β. Choosing some tγ such that α (1− tγ) + β
tγ = γ gives the point (x1,…,xd, tγ) which lies on S. Thus π(S)
equals If(α,β). For each point (x1,…,xd) ∈ If(α,β), the scalar tγ is
unique and thus π(S) is 1-1.
Q.E.D.

Theorem 1 leads directly to an interval volume construction
algorithm using isosurface construction. The scalar field is lifted
into one higher dimension, an isosurface is constructed in that
higher dimension, and the isosurface is projected back down into
the original dimension.

The interval volume algorithm proceeds as follows:

1. Let f(x1,…,xd) define a d-dimensional function.
2. Let scalar values, α, β (α < β), be the desired isovalues

bounding the interval.
3. Let F(x1,…,xd, t) be the (d+1)-dimensional function, given

by, F(x1,…,xd,t) = f(x1,…,xd) − (α (1−t) + β t), such that

f(x,y)=α f(x,y)=β

Interval surface triangulation

f(x,y)=α f(x,y)=β

2D interval surfaces 3D volume F(x,y,t)

F(x,y,0)=f(x,y)-α
F(x,y,1)=f(x,y)-β

Figure 1. Two-dimensional illustration of the interval volume algorithm

()

=−
=−

=
1,),,(
0,,,

),,,(
1

1
1 tforxxf

tforxxf
txxF

d

d
d β

α
L

L
L

4. Compute the zero-valued isosurface, S, given by F(x1,…,xd,
t) = 0 for 0 ≤ t ≤ 1.

5. Let π be the projection function mapping Rd+1 to Rd given by
π(x1,…,xd,xd+1) = (x1,…,xd). The desired interval volume,
If(α,β), is then given by π(S).

For a regular three dimensional scalar grid with hexahedral cells,
we construct the interval volume by lifting the hexahedral cells to
four dimensional hypercubes and building the isosurface
piecewise within each hypercube[3]. The interval volume is then
given by projecting the isosurfaces to R3. In our implementation,
we pre-compute a lookup table for all possible intersections of the
4-dimensional isosurface with a 4-cell. See [29] for the lookup
table generation code. If a 3-cell has n vertices, we compute the
interval volume by lifting the 3-cell to a 4-cell with 2n vertices.
The isosurface lookup table for a cell with 2n vertices has 22n = 4n
cases. However, some of these cases are never used in interval
volume generation. Actually, only 3n of the cases can contribute
to the interval volume computation. See [17] for more details.

Once the table has been pre-computed, we use this lookup table to
compute the isosurface triangulations, piecewise, within each 4-
cell. This approach provides considerable speedup to the
isosurface construction process.

Figure 1 provides a two-dimensional analogy for the interval
volume algorithm. Here, the 2D function is f(x,y)=|x|+|y|, and we
are interested in the region α ≤ f(x,y) ≤ β. We construct a 3D
volume according to the step 3 above. The zero-valued isosurface
in the volume is the triangulation using an isosurfacing algorithm,
like ours [3]. The final interval surface enclosed by the α− and β−
valued isocontours is given by the 2D projection of the isosurface
triangulation. Since two isocontours for different isovalues can
never intersect, we avoid flipped triangles in the resulting mesh.

In order to visualize a larger range of isovalues (α1,α2,…,αn), our
approach can be extended to tetrahedralize the volume using n
steps along the t axis. Thus, the function, F(x1,…,xd,t), is given by

F(x1,…,xd,t) = f(x1,…,xd) − (αi +(∆α i /∆τ i)(t−t i)) for t i ≤ t < ti+1

where,
∆α i = α i+1 −α i , and ∆τ i = t i+1 −t i

This gives us our necessary interpolating property:
F(x1,…,xd,t i) = f(x1,…,xd) − α i

This allows multiple intervals within the volume to be visualized
consecutively, showing the different contour surfaces at the
intersection of the adjacent intervals.

Since the isosurface triangulation is consistent, the interval
volume triangulation will also be consistent. The problem of face
mismatches across cell boundaries is often referred to as the
cracking problem [25]. Albertelli [1] and Max [24] also address
this issue and present algorithms for consistent tetrahedral
decomposition of polyhedral cells. Our algorithm handles the
cracking problem in the table generation stage by using a
lexicographical ordering of the isosurface vertices and then
building the convex hull incrementally, adding one vertex at a
time in the specified order. This is similar to the scheme used by
[25] and [24], which ensures canonical triangulations across cell
boundaries and generates consistent meshes. The use of an
isosurface lookup table makes the interval volume algorithm
efficient.

Entries in the four dimensional isosurface lookup table can have
as many as 26 simplices. However, as previously noted, not every
four dimensional case can be realized by interval volumes. Our
algorithm produces at most 22 simplices in the interval volume for
any three dimensional cube. We contrast this with [25] which
divides the cube into five tetrahedra and constructs the interval
volume in each tetrahedron. Within each tetrahedron the interval
volume can require up to six simplices giving a total of thirty
tetrahedra for the cube. This total can be realized by the cube in
Figure 2 whose black vertices have a value above the isovalue β
and whose white vertices have avalue below the isovalue α.

Figure 2. Cube (black vertices > β, white vertices < α)

3.1 Non-Hexahedral Grids
The higher dimension isosurface computation algorithm proposed
in [3] is independent of the topology of the polyhedral cells in the
grid. Hence, the same lookup table generation and interval volume
computation algorithm can be applied to unstructured grids
composed of other cell types including tetrahedra, pyramids and
prisms [1]. When a 3-dimensional grid consisting of topological
cubes (hexahedra) is used to compute the corresponding 4-
dimensional grid, the resulting 4-cells are still topological cubes.
This does not hold true for other types of grids. For a grid
computed from tetrahedral cells, the 4-cells generated by our
dimension elevation technique are not simplicial (4-tetrahedra).
The new 4-dimensional grid consists of 4-prisms with tetrahedral
faces. Each cell has 8 vertices and 16 edges as shown in Figure 3.
The green and blue edges represent the tetrahedral faces
corresponding to w=0 and w=1 and the maroon edges connect
these two faces.

We use our lookup table generation algorithm to compute the
lookup table for the 4-prism. A similar approach can be used to
generate lookup tables for 4-prisms whose faces are 3-pyramids or
3-prisms. The isosurface lookup table for the 4-prism shown in
figure 3 has 256 (= 28) entries, but only 81 (= 34) entries are used
for interval volumes. The maximum number of tetrahedra in the
interval volume is 6 for any tetrahedron, which matches the
maximum number of tetrahedra produced in [25]. The average
number over the interval volume cases is approximately 3.9
tetrahedra.

Figure 3. 4-prism with a tetrahedral base

000 100

110

010

001 101

111

011
w = 0

w = 1

Edges connecting
w = 0 and w = 1

3.2 Time-Varying Interval Volumes
Multiple time-steps add another dimension to the data set. For
time varying data sets, interval volumes can be computed using
two schemes. The first scheme computes the interval volumes
separately for each time step of the data set using the algorithm
discussed above. The user can then cycle through all the time
steps to visualize and interact with the data in real time.

An alternative approach uses the following two-step algorithm. In
the first step, we use our isosurfacing algorithm to compute a 4-
dimensional volume representing a time-varying interval volume.
This is accomplished by applying the isosurfacing algorithm
directly on a 5-dimensional grid to generate a surface comprised
of 4-simplices. In the second step, the 4-simplices are sliced along
the time axis to interactively generate the interval volume for the
corresponding time step. The slicing is achieved by applying an
isosurfacing algorithm using the time value as an isovalue. This
scheme is analogous to rendering time varying isosurfaces [3] and
allows slicing at non-integral time-steps to compute interpolated
interval volumes between consecutive time steps. As an
alternative to slicing, we can volume render the 4-tetrahedra
directly by using an opacity mapping or pseudo-coloring for the
time variable.

4 Interval Volume Visualization
We use an implementation of the Projected Tetrahedron algorithm
from Shirley and Tuchman [28] to render the interval volumes.
The algorithm approximates a tetrahedron using one to four
triangles depending on the screen projection of the tetrahedron’s
vertices. We implement the Projected Tetrahedron algorithm
using the vertex program of programmable graphics hardware
[37]. For the visibility sorting, we use the MPVONC algorithm by
Williams [33] which provides an O(nlogn) algorithm for
approximate visibility ordering of non-convex meshes. Even
though the algorithm is not guaranteed to give correct results in
the presence of certain boundary anomalies, it works well for our
purposes.

We use a 2D texture to implement the volume rendering integral
through a tetrahedron as suggested in [22]. The 2D texture stores a
pre-computed exponential integration, which is then indexed
according to the ray length through the projected tetrahedron’s
thick vertex and the mean of scalar values at the ray entry and exit
points. The table lookup and interpolation is done by the graphics
hardware using per vertex texture coordinates. This scheme
provides a simple approximation to the volume rendering integral
described in [33]. The approximation to the optical model can be
improved by using the pre-integrated volume rendering technique
proposed by [26] which uses 3D textures to lookup a pre-
computed light integral function.

4.1 Rendering Techniques for Interval Volumes
In this section, we build upon our work of interval volume
construction to come up with new rendering techniques using
interval volumes for effective visualization of volumetric data
sets. We will first introduce the basic ones and then show our new
shaders.

4.1.1 Constant Colored Intervals
We compute small intervals and use a constant color and opacity
for rendering the complete interval by assigning the same isovalue
(chosen to be the mean of the isovalues) to all the vertices in the
interval volume. This has the advantage of accurate integration
and the applicability of simplified and more efficient rendering

algorithms. Wylie [37] and Weiler [32] both report rendering
times for constant colored tetrahedra that are twice the speed of
linearly varying tetraheda. The images in Figure 4 are interval
volumes from the Tapered Cylinder data set rendered using this
technique.

For multiple intervals, we assign each interval a distinct color
value. Since these intervals are used to generate a single
tetrahedral mesh for the cumulative interval, the grid needs to be
sorted in a visibility order before rendering. For best results, we
keep the number of intervals small and the adjacent colors visibly
distinct. Figure 4a shows the data set with four intervals colored
red, green, blue and yellow with constant opacities. A linear
opacity ramp for the transfer function is used in Figure 4b,
reducing the occlusion from the lower-valued intervals.

Figure 4a. Multiple constant colored intervals (236K tetrahedra)

Figure 4b. Multiple constant colored, linear opacity intervals

4.1.2 Time-Cycled Intervals
With new hardware capable of rendering over one million cells
per second, and the fact that interval volumes consume relatively
few tetrahedra, real-time rates can be guaranteed for even the
most refined of meshes by limiting the interval size. Thus, we can
leverage time in our portrayal of the interval volumes. We build a
separate display list or vertex array for each interval and loop
through each interval, displaying it using a constant color. Since
the cells have a constant color, the volume integration can be
calculated in any order and no sorting is required. This is similar
to the Data Slicer technique [11], where constant color and
splatting are utilized.

Figure 5 shows three adjacent intervals rendered using this
technique and a continuous transfer function applied which uses
distinct colors for adjacent intervals. The interval volumes are
computed directly from the hexahedral grid, without any
decomposition. The intervals contain 46K, 57K and 61K
tetrahedra respectively which can be rendered at approximately 20
frames per second. The minimal tetrahedral decomposition for the
whole grid, using 5 tetrahedra per hexahedral cell [1] has
approximately 615K tetrahedra. An MPEG movie
(TimeCycle.mpg) showing this technique is presented as
supplementary material.

Figure 5. Interval volumes extracted by progressively increasing
the mean interval value.

4.1.3 Prioritized Intervals
A new technique is derived here from the medical imaging
community. Maximum Intensity Projection or MIP prioritizes
features of interest by modifying the ray integration function to
select the scalar value with the greatest intensity [15]. The MIP
algorithm prevents an important feature from being occluded by a
less important feature by bringing the important feature to the
forefront. We use a painters-like algorithm and let the user
prioritize the intervals to ensure that the highest priority interval is
the most visible. This is easily accomplished by sorting the
intervals, not according to the viewing rays, but according to their
priorities. Thus, we paint the higher priority intervals on top of the
lower priority intervals. Much like MIP, when this is combined
with interactive rendering, the motion parallax provides the
necessary depth information, while the intervals of interest are
always visible. Figure 6 shows snapshots of this technique applied
to the Tapered cylinder data set. The priorities are reversed in the
adjacent figures to show different features of the flow. An MPEG
movie (MIP.mpg) showing this technique can be found in
supplementary material. Unlike 4.1.1, in this case we treat the
distinct intervals as separate tetrahedral meshes and render them
independent of the other intervals. Hence, the tetrahedral meshes
representing the individual constant colored intervals themselves
do not need to be sorted.

4.1.4 Intervals with Textured Boundary Surfaces
Direct volume rendering of interval volumes might generate
fuzzy-looking images for certain datasets. Highlighting the
boundary surfaces between the interval volumes would allow us
to provide a better mental segmentation of the volume and prevent
important internal features from being occluded. Our interval
volume computation algorithm offers the ability to compute the
boundary surfaces between interval volumes without any
computational overhead. The surfaces are extracted during the
interval volume construction, simply by checking if the vertices
are on the boundary or not. This occurs when all vertices of a face
have the value which is equal to one of the iso-values. This
information is easily encoded into the isotables. The surfaces are

rendered as
internal fea
shading, th
visualization

Figure 6
shows ex
show the

Figure 7 sh
surface rend
internal sur
indistinguis

 Figure 7. I

We also ap
field, we f
advecting th
implicit vol
regions-of-i
intervals. T
to provide b
flow inform
silhouette e
volume. Fig
texture map
the texture s

. Prioritized intervals - first figure (Y, B, G, R)
ternal surface of the flow, the next two (R, G, B, Y)
internals of the flow using different viewpoints.
 semi-transparent polygons to prevent occlusion of
tures. Coupled with texture mapping and surface
ese surfaces give better depth cues and make the
 more informative for certain applications.

ows an interval volume with the inner boundary
ered in yellow with specular shading. Notice how the
face of the interval, which would otherwise be

hable, is easily highlighted using our technique.

nterval volume with boundary surface highlighted

ply this technique to flow visualization. For a flow
irst generate an implicit stream volume by pre-
e field and storing the advection information in the
ume. We then use interval volumes to render the
nterest along with boundary surfaces between these
he surfaces are shaded and textured using techniques
etter segmentation of the volume and provide better

ation. Figure 8 shows multiple boundary surfaces with
nhancement to help distinguish the surfaces from the
ure 9 shows a textured boundary surface using 1D

ping. In this figure, the surface is a stream surface, and
hows the streamlines. A more detailed description on

using interval volumes to extract flow volumes is presented in
[38].

 Figure 8. Boundary surface with silhouette enhancement

 Figure 9. Boundary surface with 1D texture mapping

4.2 Time-Varying Data sets
As an alternative to traditional animation, multiple time-steps can
be rendered within the same view [36]. This can be done by
assigning different color values to each time step and then
rendering them as multi-valued volume intervals. These intervals
are smeared on top of each other. Fast moving regions have
distinct colors as shown in Figure 10, which uses four consecutive
time steps rendered using this technique.

Figure 10. Four time-steps of the flow smeared on top of each
other and rendered with different colors (R, G, B, Y)

4.3 Multi-Attribute Data sets
Computing the interval volume using one attribute and then
rendering this volume using another set of attributes allows better
spatial correlation between these attributes. Figure 11 shows an
interval volume computed using density values and then rendered
using the corresponding energy values. Animating this over time
shows how the energy distribution changes in high-density
regions of the grid.

The interval volume algorithm can also be extended to implement
constructive solid geometry operations on multi-attribute data sets
using multi-pass algorithms. For example, to implement an
intersection between ranges of two scalars defined over the field,

Figure 11. Multi-attribute visualization. Interval volume
computed using density but rendered using energy.

we first extract an interval volume from the original grid using the
range for the first scalar value. During the interval volume
construction, we interpolate and store the second scalar values in
the resulting grid as well. The output of the first pass is then used
in a second interval volume construction pass using the range
provided for the second scalar attribute. The resulting mesh would
correspond to the geometric intersection of the two scalar ranges.
The same algorithm can be applied in any dimension.

Figure 12 shows an example from a flow visualization
application. Here, we consider two attributes: implicit value and
advection time. Figure 12a and 12b are the interval volumes,
computed using the implicit value and advection time in the flow,
respectively. The stream volume is first generated using the range
of implicit values as isovalues. The stream volume is then
truncated to a range of the advection time steps by applying the
interval volume algorithm to the volume in 12a. Figure 12c is the
intersection of Figure 12a and 12b.

12a 12b

 12c
Figure 12. Intersection of interval volumes for two attributes

5 Results
All the results presented in this paper have been generated using a
PC with a QuadroFX 3000 graphics card and a Pentium IV 3.4
GHz processor.

Table 1 presents interval volume lookup table statistics for various
polyhedral cells. The table gives the maximum and average
number of simplices over all possible combinations of vertex
values.

Polyhedron Dimension Table

Entries
Average

Simplices
Maximum
Simplices

Tetrahedron 3 34 3.96 6
4-simplex 4 35 8.35 14
5-simplex 5 36 17.27 30

Hexahedron 3 38 12.09 22

Table 1. Interval Volume Lookup Table Statistics

For the Tapered Cylinder data set, the current implementation of
our algorithm takes approximately 172 milliseconds per time-step
to compute the interval volume. This number was computed using
the average over 20 time-steps (13000 to 13190) for a constant
interval size (0.9934 - 0.9944) using the density attribute. The
average number of tetrahedra generated in this case was
approximately 55.9K per time-step. Our isosurfacing algorithm
does a naive linear search through the grid cells for isosurface
intersection. Preprocessing schemes [27] can be used to speed up
the interval volume computation considerably by skipping empty
cells. In the above case, the interval volumes intersect
approximately 9150 cells on an average (the total number of
tetrahedra is 55.9K and the average is 6 tetrahedra per cell), which
is ~7.4 % of the number of cells in the grid. A histogram of the
data set indicates that a large portion of the values have rather low
and insignificant density values. In addition to saving valuable
rendering cycles, interval volumes allow skipping these irrelevant
regions, which could otherwise occlude other interesting features
in the data set.

Using the hardware implementation of the Shirley-Tuchman
algorithm [37], we are able to achieve a rendering rate of
approximately 1200K tetrahedra per second for constant-color
tetrahedra and 700K tetrahedra per second for linear-color
tetrahedra.

The interval volume extraction time and the volume rendering
time for the datasets are listed in Table 2. In this table, we select
the isovalues which correspond to the images shown in this paper.

Rendering time
(frames per second)

Data set

Interval
volume

Construction
time

Number
of

tetrahedra Constant
color

Linear
color

Tapered
Cylinder

(curvilinear,
64x64x32)

172 ms

55.9K

21.5 fps

12.5
fps

Implicit flow
Dataset

(64x64x64)

377 ms

601.8K

2.0 fps

1.2 fps

Stream volume
(601.8K

tetrahedra)

343 ms

346.5K

3.5 fps

2.0 fps

Torus distance
field

Dataset
(256x256x256)

6,127 ms

1,868.7K

0.64 fps

0.38
fps

Table 2. Interval Volume Computation and Rendering

Performance

Even with the implementation of hardware Projected Tetrahedra,
the rendering performance is not fast enough for large dataset
and/or thick interval volumes. One of our future goals is to use a
tetrahedral simplification technique (like the TetFusion algorithm
[9]) to improve the performance in these cases.

6 Conclusions and Future Work
In this paper, we have presented an algorithm for computing
interval volumes in structured and unstructured grids using a fast
isosurface extraction algorithm. We have shown how the
algorithm can be used with convex polyhedra of arbitrary
dimensions and also presented results on different 4 and 5-
dimensional polyhedral cells. We have also shown how interval
volumes can be used for interactive and more informative volume
visualizations by providing distinct and discernable layers of
volumetric material, either viewed together or as an animated
sequence. Different rendering techniques have been demonstrated
for interactive visualization of the data set.

We believe that our algorithm has the potential of being an
essential component of volume visualization tools. The current
algorithm can be augmented with feature detection techniques to
aid the user in identifying useful/interesting intervals in the field.
We also want to extend the concept of constructive solid geometry
for multi-attribute data sets to do arbitrary operations like unions
and subtractions.

7 Acknowledgements
The Tapered Cylinder, Blunt Fin and Oxygen Post data sets are
part of NASA’s online data set repository and can be obtained
from http://www.nas.nasa.gov/Research/Datasets/datasets.html.
The VolVis reviewers pointed out many grammatical errors and
possible improvements to the text. Part of this work was
supported by a US National Science Foundation Career Award
(#9876022) and by NSF award #ACI-0222903.

References
[1] ALBERTELLI, G., AND R. A. CRAWFIS, Efficient subdivision of

finite-element datasets into consistent tetrahedra, in Proceedings of
IEEE Visualization '97, p.213-219, October 18-24, 1997, Phoenix,
Arizona.

[2] BANKS, D., AND S. LINTON, Counting Cases in Marching Cubes:
Toward a Generic Algorithm for Producing Substitopes, In
Proceedings of IEEE Visualization 2003, pp. 51-58.

[3] BHANIRAMKA, P., R. WENGER, AND R. CRAWFIS, Isosurfacing
In Higher Dimensions, in Proceedings of IEEE Visualization 2000,
Ertl, Hamann, Varshney, Ed., IEEE Visualization Proceedings, 2000,
15-22.

[4] BHANIRAMKA, P., AND Y. DEMANGE, OpenGL Volumizer: A
Toolkit for High Quality Volume Rendering of Large Data sets, in
IEEE Volume Visualization, 2002, Boston, MA.

[5] BHANIRAMKA, P., R. WENGER, AND R. CRAWFIS, Isosurface
Construction in any dimension using convex hulls, IEEE
Transactions on Visualization and Computer Graphics, March/April,
2004, Vol 10, No, 2, pp 130-141.

[6] BENNETT, J., R. COOK, N. MAX, D. MAY, P. WILLIAMS,
Parallelizing a high accuracy hardware-assisted volume renderer
for meshes with arbitrary polyhedra, in Symposium on Parallel and
Large-data Visualization and Graphics ‘01, San Diego, California.

[7] BURTON, L C., R. MACHIRAJU, AND D. S. REESE, Dynamic
View-Dependent Partitioning of Structured Grids with Complex
Boundaries for Object-Order Rendering Techniques, in Parallel
Visualization and Graphics, 1999, San Francisco, CA.

[8] CHEN, L., I. FUJISHIRO, AND K. NAKAJIMA, Parallel
Performance Optimization of Large-Scale Unstructured Data
Visualization for the Earth Simulator, in Eurographics Workshop on
Parallel Graphics and Visualiztion, 2002.

[9] CHOPRA, P., AND J. MEYER, TetFusion: An Algorithm for Rapid
Tetrahedral Mesh Simplification, In Proceedings of IEEE
Visualization 2002, pp. 133-140.

[10] CHOPRA, P., AND J. MEYER, Incremental Slicing Revisited:
Accelerated Volume Rendering of Unstructured Meshes, Proceedings
of IASTED Visualization, Imaging, and Image Processing 2002,
Málaga, Spain, pp. 533-538, Sept. 9-12, 2002.

[11] CRAWFIS, R. Real-time Slicing of Data Space, In Proceedings of
IEEE Visualization 1996.

[12] FUJISHIRO, I., Y. MAEDA, AND H. SATO, Interval volume: a
solid fitting technique for volumetric data display and analysis, in
IEEE Visualization ‘95, Atlanta, GA, 1995.

[13] FUJISHIRO, I., Y. MAEDA, H. SATO AND Y. TAKESHIMA,
Volumetric data exploration using interval volume, in IEEE
Transactions on Visualization and Computer Graphics, 2 (June
1996).

[14] GUO, B. Interval Set: A Volume Rendering Technique Generalizing
Isosurface Extraction, in Proceedings of IEEE Visualization ’95,
Atlanta, GA.

[15] HEIDRICH, W., M. MCCOOL, AND J. STEVENS, Interactive
Maximum Projection Volume Rendering, In Proceedings of IEEE
Visualization 1995, pp. 11-18.

[16] JESPERSON, D., AND C. LEVIT, Numerical Simulation of Flow
Past a Tapered Cylinder, in RNR Technical Report, RNR-90-021,
October,1990

[17] JI, G., H. SHEN, AND R. WENGER, Volume Tracking using
Higher Dimensional Isosurfacing, In Proceedings of IEEE
Visualization 2003, pp. 209-216.

[18] LEVEN, J., J. CORSO, J. COHEN AND S. KUMAR, Interactive
visualization of unstructured grids using hierarchical 3D textures, in
Symposium on Volume Visualization ’02, Boston, MA.

[19] LORENSEN, W. E., AND H. E. CLINE, Marching cubes: A high
resolution 3d surface construction algorithm, in M. C. Stone, ed.,
Computer graphics, 1987, Anaheim, California, July 1987, pp. 163-
169.

[20] MA, K. L., AND T. W. CROCKETT, A scalable parallel cell-
projection volume rendering algorithm for three-dimensional
unstructured data, in IEEE Symposium on Parallel Rendering, ’97,
Phoenix, Arizona.

[21] MA, K. L AND T. W. CROCKETT, Parallel Visualization of Large
Scale Aerodynamics Calculations: A Case study on Cray T3E, in
IEEE Parallel Visualization and Graphics, 1999, San Francisco, CA.

[22] MAX, N., P. HANRAHAN AND R. CRAWFIS. Area and volume
coherence for efficient visualization of 3d scalar functions, in
Computer graphics, November 1990, pp. 27-33.

[23] MAX, N., B. BECKER, AND R. CRAWFIS, Flow Volumes for
Interactive Vector Field Visualization, in IEEE Visualization ‘93,
Los Alamitos, CA.

[24] MAX, N. Consistent Subdivision of Convex Polyhedra into
Tetrahedra, in Journal of Graphics Tools, 6 (3), 29-36, 2002.

[25] NIELSON, G. M., AND J. SUNG, Interval volume tetrahedrization,
in R. Y. a. H. Hagen, ed., IEEE Visualization '97, IEEE, November
1997, pp. 221-228.

[26] RÖTTGER, S., AND T. ERTL, A two-step approach for interactive
pre-integrated volume rendering of unstructured grids, in IEEE
Volume Visualization, ’02, Boston, MA, pp. 23-28

[27] SHEN, H. W., Isosurface extraction in time-varying fields using a
temporal hierarchical index tree, in IEEE visualization '98, IEEE,
October 1998, pp. 159-166.

[28] SHIRLEY, P. AND A. TUCHMAN, A polygonal approximation to
direct scalar volume rendering, in Volume Visualization Workshop,
1990, pp. 63-70.

[29] The Ohio State University. Isotable generation software.
http://www.cse.ohio-state.edu/graphics/isotable.

[30] WEIGLE, C., AND D. BANKS, Complex-valued contour meshing,
IEEE Visualization '96, IEEE, October 1996, pp. 173-180.

[31] WEIGLE, C., AND D. BANKS, Extracting iso-valued features in 4-
dimensional scalar fields, 1998 Volume Visualization Symposium,
IEEE, October 1998, pp. 103-110.

[32] WEILER, M., M. KRAUS, AND T. ERTL, Hardware Based View-
independent Cell Projection, in Symposium on Volume
Visualization, 2002, Boston, MA.

[33] WILLIAMS, P. Visibility Ordering of Meshed Polyhedra, in ACM
Transactions on Graphics, 11 (4), 103-126, April 1992.

[34] WILLIAMS, P., A Volume Density Optical Model, in IEEE Volume
Visualization Symposium, ’92, 61-68

[35] WILLIAMS, P., N. MAX, C. M. STEIN, A High Accuracy Volume
Renderer for Unstructured Data, in IEEE Transactions on
Visualization and Computer Graphics 4(1): 37-54 (1998).

[36] WOODRING, J., C. WANG, AND H. SHEN, High Dimensional
Direct-Rendering of Time-Varying Volumetric Data, In Proceedings
of IEEE Visualization 2003, pp. 417-424.

[37] WYLIE, B., K. MORELAND, L. A. FISK, AND P. CROSSNO,
Tetrahedral projection using Vertex Shaders, in Symposium on
Volume Visualization, 2002, Boston, MA.

[38] XUE, D., C. ZHANG AND R. CRAWFIS, Rendering Implicit Flow
Volumes, to appear in Proceedings of IEEE Visualization 2004.

[39] YAGEL, R., D. M. REED, A. LAW, P. W. SHIH AND N.
SHAREEF, Hardware Assisted Volume Rendering of Unstructured
Grids by Incremental Slicing, in Proceedings of Symposium on
Volume Visualization, 1996.

