
Rendering Implicit Flow Volumes

Daqing Xue, Caixia Zhang, Roger Crawfis*

Department of Computer Science and Engineering
The Ohio State University

ABSTRACT

Traditional flow volumes construct an explicit geometrical or
parametrical representation from the vector field. The geometry is
updated interactively and then rendered using an unstructured
volume rendering technique. Unless a detailed refinement of the
flow volume is specified for the interior, information inside the
underlying flow volume is lost in the linear interpolation. These
disadvantages can be avoided and/or alleviated using an implicit
flow model. An implicit flow is a scalar field constructed such
that any point in the field is associated with a termination surface
using an advection operator on the flow. We present two
techniques, a slice-based three-dimensional texture mapping and
an interval volume segmentation coupled with a tetrahedron
projection-based renderer, to render implicit stream flows. In the
first method, the implicit flow representation is loaded as a 3D
texture and manipulated using a dynamic texture operation that
allows the flow to be investigated interactively. In our second
method, a geometric flow volume is extracted from the implicit
flow using a high dimensional iso-contouring or interval volume
routine. This provides a very detailed flow volume or set of flow
volumes that can easily change topology, while retaining accurate
characteristics within the flow volume. The advantages and
disadvantages of these two techniques are compared with
traditional explicit flow volumes.

CR Categories and Subject Descriptors: I.3.3 [Computer
Graphics]: Picture/Image Generation – Display Algorithms,
Viewing Algorithms; I.3.6 [Computer Graphics]: Methodology
and Techniques – Interaction techniques.

Keywords: interval volume rendering, implicit stream flow, flow
visualization, graphics hardware

1. INTRODUCTION

Traditional flow volume rendering, as proposed by Max et al.
[Max93], constructs an explicit geometrical representation of the
separating volume using a streamline advection operator applied
to the underlying vector field. The geometry is rendered using an
unstructured rendering technique. Information within the flow
volume boundary is usually incorrect unless a detailed refinement
of the interior volume is specified. Van Wijk [Wijk1993] extracts
implicit stream surfaces from a three-dimensional vector field
which are rendered using traditional polygonal rendering
methods. Although the flow structure can be well-tracked by the
stream surfaces, the flow information inside or behind the surface
is not visible. Multiple stream surfaces could be generated, but
these would either occlude each other or a polygonal rendering
system that can accurately support semi-transparent rendering of
surfaces would be needed. We examine the problem of extending
the implicit stream surfaces to that of implicit flow volumes. We
develop new renderings of the implicit flow in which both the
surface and the interior can be highlighted. By careful tracking
and encoding of the advection parameters, we achieve highly
parameterized surfaces which can be easily texture mapped for
greater clarity. In this paper we present two techniques, slice-
based three-dimensional texture mapping and interval volume
rendering with tetrahedron projection, to render the underlying
implicit flow.

 (a) (b) (c)
Figure 1: Visualization using implicit flow volumes. (a) Tornado dataset rendered by 3D texture mapping; (b) A coupled-charge
dataset rendered using interval volumes with five interior stream surfaces textured by streamline-like texture; (c) A large flow volume
in which the stream and time surfaces of the flow are textured for greater clarity.

*{xue | zhangc | crawfis}@cse.ohio-state.edu

Our overall goals in this study include the examination of more
dynamic and detailed flow visualizations in three-dimensions, in
particular, as it relates to advection-based flow volumes. Our
criteria, thus include real-time interaction with the advection
operation, support for animation through the flow, and
visualization of large areas of the flow with minimal clutter.

The remainder of this paper is organized as follows. Section 2
examines related work in flow volume rendering. Section 3
provides an introduction of the implicit flow calculation, and our
implicit flow volume representation. Section 4 gives an overview
of the rendering of the implicit flow volume. Two rendering
techniques, three-dimensional texture-based rendering and
interval volume rendering are described in sections 5 and 6,
respectively. In section 7, we compare these two methods with
the traditional flow volume rendering technique.

2. RELATED WORK

Various techniques have been proposed to render vector fields.
We focus on the work for rendering 3D vector fields. Crawfis and
Max [Crawfis93] introduce a textured splat method to provide a
dense global visualization of the 3D vector field. Line Integral
Convolution, LIC [Cabral93], provides another dense
visualization with more accurate local features. Rezk-Salama et
al. [Rezk-Salama99] explore rendering volumetric LIC using 3D
texture mapping hardware to examine the flow fields. Auxiliary
clipping geometries are used to reveal the LIC pattern. Another
dense visualization technique is the Image-Based Flow
Visualization (IBFV) technique [Wijk01; Laramee03]. Telea and
van Wijk [Telea03] extend the IBFV method to 3D IBFV to
visualize three-dimensional flow fields. These methods provide
fine-grain localization of the flow, with the aim of texture
synthesis for a more global perception of the vector fields.
Avoiding excessive clutter through tuning the various parameters,
or restricting the range of the visualization can be difficult with
these systems.

In contrast to the above dense visualization techniques, Zöckler et
al. [Zöckler96] use illuminated streamlines to depict the 3D vector
field. Other geometry-based methods include the stream
polyhedron [Schroeder91], stream surfaces [Hultquist92], implicit
stream surfaces [Wijk93], flow volumes [Max93], streamballs
[Brill94] and saddle connectors [Theisel03]. Li et al. [Li03,

Shen04] propose a hybrid method, where geometry is first
constructed and voxelized into a coarse mesh. Each voxel in this
coarse mesh is replaced with a dense 3D volume texture. The
voxelized geometry, streamlines in their case, is fixed during the
rendering and cannot be changed interactively.

3. FUNCTIONAL MAPPING AND IMPLICIT FLOWS

Given a flow field (vector field), we first determine a multi-
variate field in which each sample point in the field is assigned
attributes from the flow. The basis of our implicit flow volumes
extends from the implicit surface definition of van Wijk [Wijk93].
The visualization diagrams for van Wijk’s implicit stream surface
and our implicit flow volume are illustrated in Figure 2. He
associates a scalar field with the inflow boundary of the
computational grid, and then for each remaining grid point, he
traces a streamline backwards in the flow until it reaches the
boundary (ignoring critical points within the flow). The scalar
field is evaluated at this location, and the grid point is assigned
this scalar value. This amounts to a mapping of the 3D vector
field to a 3D scalar field, R3−>R. An iso-contour surface is then
extracted from this resulting scalar field to provide the stream
surface. In addition to the obvious volume versus surface
difference1, three major differences exist between our technique
and that of van Wijk. First, we either delay the specification of the
scalar field on the inflow boundary, or eliminate the mapping onto
a scalar field entirely. This allows us to develop new flow
volumes without having to recompute the costly advection
operations. Secondly, we associate several additional attributes
with each sample point which allow for better user interaction,
complex feature specification and enhanced surface
representations. Finally, we allow for the user specification of
many arbitrary boundary surfaces, which we call termination
surfaces, indicating the termination of the backwards advection
process. These can be used to place a termination surface around
each critical point, allow for the specification of inflow and
outflow boundaries [Mahrous04] or as a user-controlled
segmentation of the flow. Westermann et al. [Westermann00] also
use an implicit method to convert the vector field to the scalar
field by storing the advection time. They render time surfaces
using a level-set method by taking advantage of 3D texture
mapping hardware. Their method is pretty similar to van Wijk’s
implicit method, but without the need for the inflow mapping.

A general functional mapping is associated with each sample
point. Here we define a sample point as any location in three-

1 Van Wijk actually points out the extension of implicit stream surfaces to
stream volumes, as well as a flow of ink metaphor.

a

b

c

a'

b'

c'

b’ (f, u, v, t)

c’ (f, u, v, t)

a’(f, u, v, t)

Figure 3: Backwards advection. Left: Three points, a, b and
c, and their streamlines from the termination face. Right:
each point (streamline) is assigned a 4-tuple, (f,u,v,t),
according to its advected (backwards) position on the
termination face.

 Flow
field

v

Pre-
advection

Inflow
mapping

Scalar
field

g

Iso-
contouring

Implicit
stream
surface

 Flow

field
v

Pre-
advection

Multi-attribute
scalar field
(f, u, v, t)

3D texture
mapping

Implicit
stream
volume

Inflow
mapping

g=Φ(f,u,v)

Scalar
field

g

Interval
volume

rendering

Implicit
stream
volume

Figure 2: Visualization diagrams for van Wijk’s implicit stream
surfaces (top), and our implicit flow volumes (bottom).

dimensional space, preserving a continuous mapping operation. In
practice, we will generally associate a sample point with each
vertex in either the underlying computation grid or a
superimposed voxel grid. There are many attributes that can be
derived or mapped onto each sample point. Local operations, such
as velocity magnitude, vorticity, etc. provide simple filters. For
implicit flows, we associate, at a minimum, a termination surface
ID indicating which surface the backward streamline intersected
first, the coordinates on the termination surface in a local
coordinate frame to the surface, as well as the advection time
required for the flow to reach the termination surface (backwards,
or conversely, the time required for a point on the boundary to
reach the sample point). This is illustrated in Figure 3. Additional
attributes, such as the maximum velocity magnitude along the
streamline, average density along the streamline, etc., can also be
calculated and stored in this preprocessing stage. Thus, in general,
we have an operation computing a mapping from R3−>Rn. The
focus on this paper will be restricted to maintaining the four
attributes mentioned above: termination surface ID, parametric
position on the surface, and the advection time. Hence, for each
sample point we store a 4-tuple, (f,u,v,t), containing these values.
This 4-tuple representation will be the basis for all of our future
renderings.

4. RENDERING OF FLOW VOLUMES

Our task now is to examine methods for either rendering such a
field or extracting more meaningful regions from this space. This
suggests another mapping, one from the attribute space to optical
properties for rendering. In the sections that follow, we will define
a few such mappings. A primary criterion for such a mapping
rests in providing flexible and robust mappings that provide an
intuitive and simple interface. In order to better explore the flow,
the user needs to be able to interactively adjust and control this
mapping. This also suggests either techniques easily implemented
in graphics hardware, or easily calculated and rendered.

In this paper, we present two different techniques to model and
render the implicit flow volumes: slice-based 3D texture mapping,
and interval volume segmentation coupled with tetrahedron
volume and surface rendering. The first technique renders the
implicit 4-tuple flow field directly without the inflow mapping to
a scalar field, taking advantage of modern graphics hardware.
With the support of the dependent texture, we can change the
appearance and representation of the 3D flow volume using
advanced volume shaders. The advantages of this rendering
method are high interactivity and fine texture details rendered
throughout the 3D flow volume. In order to illustrate the flow on
stream surfaces and time surfaces, a second technique is used to
incorporate semi-transparent (zero-thickness) surfaces with the
flow volume. Similar to van Wijk’s implicit stream surface, a
flow mapping is necessary to obtain a scalar field on which an
interval volume segmentation [Bhaniramka04b] is applied. Here,
the flow volume is the extracted interval volume enclosed
between two iso-surfaces, and the stream surfaces and time
surfaces are iso-surfaces with respect to the scalar value and to the
advection time. The extracted flow volume can be rendered using
any tetrahedron rendering technique. In this paper, we chose the
projection-based tetrahedron rendering implemented with the
modern graphics hardware [Wylie02, Weiler02]. The 4-tuple can
be used as texture coordinates to map textures onto the stream and
time surfaces to illustrate the flow details. This interval volume
rendering technique has the advantages of a flexible inflow
mapping and incorporating textured stream and time surfaces with
the flow volumes. This semi-transparent surface texturing is not

possible with even the most advanced volume shaders. The next
two sections explain these two rendering techniques in more detail.

5. SLICE-BASED 3D TEXTURE MAPPING

Traditional three-dimensional texture-based volume rendering
takes as input a pre-shaded RGBA voxel grid. This is loaded into
three-dimensional texture-memory and image-aligned proxy
geometry is rasterized with three-dimensional texture coordinates
specified, such that an interpolation of the texture-map values is
painted across the proxy geometry. This set of proxy geometry is
rendered in a back-to-front (or front-to-back) order, compositing
the next slice over the partially computed image. Recent research
[Westermann1998; Mueller1999; Kniss 2001] illustrate the
benefits of using post-classification. Here, the original scalar field
is mapped into the three-dimensional texture memory. The proxy
geometry is then used to interpolate a slice of the underlying
scalar field. Each interpolated value on this slice, then needs to be
mapped to an appropriate RGBA value for compositing. This is
supported through dependent textures in most modern systems.

Dependent textures allow both the representation and appearance
of the 3D volume to change. Li et al. [Li03] use small three-
dimensional dependent textures, indexed using a trace volume
generated from voxelized streamlines. The dependent texture
allows for colorful volumetric textures along the streamlines, and
due to its small size is more easily replaced, allowing for
animation effects along the streamlines. We extend their concept
of a trace volume to an implicit flow volume in which each voxel
is an n-tuple as defined in section 3. For interactive user-
controlled exploration, the system must support re-painting the
dependent texture in real time. In order to accomplish this, the
number of texels being updated in the dependent texture needs to
be limited. Our underlying functional mapping is a 4-tuple
mapped to an RGBA normalized format. OpenGL supports up to
four texture coordinates, but does not support four-dimensional
textures, so a 4-component dependent texture is only theoretically
possible. Besides, changing every value in a 4-dimensional
texture becomes prohibitively expensive as the resolution of the
dependent texture grows. Three-dimensional dependent textures
are supported, but if our goal is to allow the user to control the
appearance of the flow throughout the entire volume, a dependent
texture of at least the same size as the underlying voxel grid
would be required. This differs from Li et al. [Li03], in that our
goal is to change the underlying trace volume dynamically.
Updating the entire volume in real-time is not feasible for large
volumes. This also would greatly reduce the amount of texture
memory available for the implicit flow volume.

Our focus instead, has been on reducing the mapping down to a
2D parameterization of a single termination surface. Our

 Figure 4: Two different inflow textures advected thru the volume.

(a) (b)

approach, allows the user to paint the dependent texture colors
and opacities directly on this surface [Hanrahan90]. We call this
dependent texture, the inflow texture in the subsequent sections, as
it dictates the paint that is carried from the termination surface
into the flow. The next few sections provide details on a few of
these choices, as well as additional techniques which extend this
parameterization to utilize more attributes from the underlying 4-
tuple in the implicit flow representation.

5.1 User-Controlled Painting

Without loss of generality, we consider an implicit flow volume in
which only one termination surface exists, i.e., the backward
advections of all sampling points terminate on this surface. The
simplest such surface would be a single face of the bounding box
for the flow field. A dependent texture mapped to this face is used
as our lookup table. The (u, v) in the 4-tuple, (f, u, v, t), is
employed to index into the dependent texture, producing the
current fragment’s color and opacity. By changing the alpha
mask, we can dynamically change the three-dimensional
representation of the flow. With our user interface, we can brush
the inflow texture to get arbitrary representations of the flow.
Figure 4b shows an image in which the user hand-painted vis
2004 on the inflow texture on one face of a bounding box. In
addition to hand painting, the user can import any image for use
as the inflow texture. Figure 4a, has the IEEE Visualization 2004
conference logo used as an opacity and color texture. The painting
modes are supported for adding paint to the inflow texture. The
previous texture can be cleared and new paint added from the
user’s current brush, providing a moving flow volume. The
previous texture can simply be added to, building out regions of
interest in the flow. An eraser (a brush that reduces the opacity) is
also supported for refining these regions of interest. Finally, the
previous texture can be faded out over time by first reducing its
opacity and then adding new paint under the user’s control. This
provides a motion blur of the flow volume as it moves through the
field.

More complex termination surfaces can easily be supported,
provided a simple parameterization exists. This is in general, a
hard problem. In addition to flat planes, we currently support
spherical and cylindrical termination surfaces (useful for
bounding a neighborhood of a source), and a rectangular box
termination surface. The parameterization of the box is supported
through the use of OpenGL’s cube-maps. This allows for six
independent termination surfaces, onto which the user can paint
an inflow texture. Figure 1a shows an image generated with a
cube map for inflow texture on the tornado dataset.

5.2 Inflow Texture Animation

Max, Becker and Crawfis [Max93] included a simple modulation
of the opacity as a function of the advection time for their flow
volumes. By phase shifting this modulation function, they were
able to animate smoke puffs along their flow volumes. In our
implicit flow volume representation, the advection time has been
encoded into the 4-tuple for each sampling point. We define a
one-dimensional opacity table containing an opacity modulation.
For animation, we phase-shift this opacity modulation for each
time step. The advection time information of the sample point is
used to index into the opacity table. This is combined with the
dependent textures for the inflow texture, using multi-textures.
This produces a puff-like motion in the flow. By adding another
dependent texture, we can also encode the age of the paint on the
inflow texture. Adding this age to the advection time releases the

paint from the inflow texture through the flow field. We can also
automate this to provide flow representations using particles,
animated streamlines and propagating time fronts (see the
supplemental material).

5.3 Dual Inflow Textures

Periodic dye injection can help understand the interior structure
and highlight local features in the flow. Shen et al. [Shen96] use a
“smeared” noise texture to simulate dye. Instead, we use a multi-
texture technique. In addition to the user defined inflow texture,
we create a separate dual-inflow texture. The support for dual
inflow textures, allows for a separate high-frequency texture
without requiring the user to painstakingly paint in such details. A
high-resolution dependent texture can be used for this purpose.
This does not require a large amount of texture space, provided
the high-frequency texture is periodic and tile-able. Figure 5,
embeds a dual inflow texture with a regular grid pattern and a
Poisson disc pattern. Each inflow texture can be animated
separately. This allows one to model a periodic dripping or
injection of colored dye into the flow volume. The underlying
flow volume retains its global characteristics and multi-colored
sub-flows are passed through the flow volume. For the images in
Figure 6, an initial inflow texture, as shown in Figure 6a and a
dual inflow texture as shown in Figure 6b were used to generate
the image in Figure 6d. The image in Figure 6c shows the flow
volume without a high-frequency detail texture. Here, two
dependent textures are used, both indexed similarly, with a multi-
texturing operation that replaces the paint from the inflow texture
with the dual inflow texture.

6. INTERVAL VOLUME RENDERING

Our second technique for volume rendering the implicit flow
representation utilizes interval volumes and projected tetrahedron
rendering. To use this technique, a mapping from our 4-tuples into
a single scalar value is needed. The following equation describes
an implicit flow volume using this technique:

Figure 5: Complex cross-section for the inflow with dual-
texture support.

}))(),(),(),((|{ βα ≤Φ≤= ptpvpupfppI (1)

This equation determines the continuous set of points, p, which lie
on or inside the implicit flow volume, Ip, specified as an interval
of the scalar field mapping. Here, f is the termination surface ID
of the advection point, u and v are the normalized coordinates of
the point on the termination surface, and t is the advection time
with which the backwards advection for the sampling point
reaches this surface. The function, Φ, provides a mapping of the
implicit flow field to a single scalar distribution over the field, and
α and β are two iso-values specifying the boundaries of the flow
surface. We define our scalar field mapping as in [Wijk93], using
a similar methodology from Section 5. Many such mappings for
the same dataset are thus possible, each having a different iso-
value distribution. We maintain the association between the
sampling points and their 4-tuple, (f, u, v, t) from Section 3. This
information will be used in later sections to enhance the flow
volume appearance.

The scalar field distribution is used to extract the flow geometry
using a high dimensional iso-contouring routine
[Bhaniramka2000] [Bhaniramka2004a]. Interval volumes can be
calculated efficiently, by adding an extra dimension to the
underlying polyhedra, and duplicating each vertex in this
dimension with a scalar value from the original vertex, shifted
according to the interval width (see [Bhaniramka2004b]). The
resulting tetrahedra are then rendered using a hardware-
accelerated Projected Tetrahedra renderer [Wylie02][Weiler02].
The tetrahedra are sorted using the MPVONC algorithm
[Williams92].

One of the advantages of this technique is that actual geometry is
extracted, efficiently enough to allow for the surface to be
interactively changed. Furthermore, individual stream surface
and/or time surface renderings can be seamlessly integrated into
the volume rendering of the flow volume. Since these surfaces are
embedded in the 3D interval volume, typical problems in
integrating polygonal geometry with volume rendering are

avoided. Moreover, these surfaces can be semi-transparent, with
many nested stream-surfaces composited together in the final
rendering. The surfaces can also be easily texture-mapped,
including opacity textures, to present additional depth cues,
animation, surface reflections, and general clarity [Gorla03].

6.1 User Controlled Stream Volumes

Again, one of our primary concerns is ensuring an intuitive and
easy-to-use interface for the user specification of the flow
volumes. Interaction with traditional flow volumes was achieved
using direct manipulation of a 3D widget. The shape of the widget
was restricted to a small rectangle. Although additional shapes
could be supported, no direct user control or specification was
provided. We have developed two solutions to this problem. The
user can select from a set of predefined geometric shapes, and
then translate and scale these across the termination surface. A
continuous scalar field is then derived using these curves as
implicit basis functions. Alternatively, we can employ a
methodology similar to that used in section 5.1, where the user
directly paints on the termination surface. Here, rather than the
user painting in RGBA mode, the inflow texture is a grey-scale
image. A separate user control, allows for selecting a set of grey-
values or iso-contours in the grey-scale texture. Interval volumes
are extracted from each iso-value pair. This allows the user to
loosely paint and then refine the initial stream surface contours.

6.2 Surface Shading and Textures

The interval volumes algorithm when applied to this implicit flow
field, produces a geometric sub-volume, where the boundaries
correspond to stream surfaces. Many additional shape cues arise
from surface shading [Todd97]. In this section we examine
techniques to incorporate surface (or curve) shading to aid in the
volume visualization. Direct surface rendering is certainly
possible, but occludes the interior of the flow we are trying to
visualize, as well as portions of the stream surface which wrap
behind the front most surface.

Since the iso-value dictates the stream surface boundary, we
search the resulting tetrahedral mesh for any faces having all three
vertex values equal to the iso-value. These faces are tagged as
boundary faces and an additional surface rendering is performed

Figure 6: a) The inflow texture specified by the user. b) A particle
distribution. c) The result from the inflow texture only. d) The
result obtained by combing the inflow texture and texture b).

(a) (b)

(c) (d)

Figure 7: A stream surface inside the flow is textured using a
3D LIC texture.

during the projected tetrahedron rendering. To embed additional
surfaces within the stream volume, we simply give the interval
volume algorithm additional iso-values at which to segment the
volume. During rendering, we first render each tetrahedron. If a
face of the tetrahedron belongs to a boundary for which the user
has chosen surface shading, we then render that face. We use
back-face culling to ensure the polygonal face lies on top of the
tetrahedron (in a back-to-front rendering order). An interior iso-
value will have two adjacent tetrahedra which share a face, one of
which will be a front-face and the other a back-face. This is our
normal rendering operation.

6.2.1 Textured Stream Surface Boundaries

Explicit stream surfaces or flow volumes are easily parameterized.
One can think of these surfaces as swept surfaces resulting from
some initial curve. The linear approximation of the curve has a
specific ordering of the vertices in order to construct the
triangulated surface (see [Hultquist92]). Texture parameterization
or mapping for implicit surfaces is a difficult problem [Turk01].
The simplest texture parameterization is to use three-dimensional
textures and the vertex locations of the stream surface for the
texture coordinates. We use a 3D LIC to demonstrate non-
parametrical space texture mapping. A 3D LIC texture for the
underlying flow field is first generated. The coordinates of the
surfaces’ vertices are indexed into the 3D LIC texture. These
stream and time surfaces function similar to the clip planes in
[Rezk-Salama99]. Figure 7 shows a stream surface mapped with
an underlying 3D LIC texture.

To support 2D texture mapping for our implicit stream surfaces,
we have a slightly easier problem, as opposed to generic implicit
surface mapping. We desire a parameterization where the curve
length of the initial shape or iso-contour is mapped to one texture
coordinate, and the advection time is mapped to the other texture
coordinate. The latter mapping is embedded in our implicit flow
volume representation and falls out easily. The former is more
difficult, but extracting curves from 2D images or scalar fields is
well-studied. We use a contour search algorithm, which finds a
point on the contour and then visits neighboring cells on the
contour [Itoh95]. Figure 8a shows stream surfaces mapped with
different textures. Notice the nested stream surfaces in this figure.
In figure 1c and figure 8b, both the stream surface and time front
surface are textured to convey more flow information. The flow
in figure 8b is also clipped by the time steps.

An interesting application of texture, adds streamlines to the
stream surface. Constant colored streamlines are achieved using a

1D texture, whose coordinates are mapped to the 2D iso-contour
curve length as describe above. A simple texture, which
modulates the surface color, is used to encode black stripes (a
square wave). We use a non-averaged mip-map technique that
adds more and more streamlines as we zoom into the scene. This
is constructed by halving the square wave’s frequency for each
higher mip-map level. With interpolation between the mip-map
levels enabled, the streamlines gracefully fade in and out as the
local projected stream surface area changes. Several snapshots,
taken as we zoom in on the stream surface, are shown in Figure 9.
Figure 1b shows the streamlines from a source to a sink inside the
flow. Five stream surfaces are embedded within the flow volume.

6.2.2 Texture Animation

The high-frequency texture animation used in Section 5.3
provides powerful visual cues into the flow. Animation is a
natural representation for flow fields. The dynamic texturing used
in Section 5.3 will not work with projected tetrahedron, due to the
multi-valued function at the thick vertex of the projection. The
stream surface parameterization however provides a rich avenue
for exploring animation. Animation on this surface is easily
achieved by translating the advection time texture coordinate.
More complex animations can also be achieved by cycling
through a set of predefined textures. The supplemental material
illustrates the integration of stream volumes with many different
textures animated across the embedded stream surfaces.

7. RESULTS AND COMPARISONS

In this paper, we have described two techniques of implicit flow
volume rendering. In this section, we compare the advantages and
disadvantages of these two techniques with respect to explicit
flow volumes [Max93]. Table 1 summarizes our comparison
between these three techniques.

The implicit flow is generated by pre-advecting the flow field and
storing the advection information for each voxel in the implicit

Figure 9: Streamlines using a non-averaged 1D Mip-map
texture. As we zoon in, more streamlines are automatically
added.

(a) (b)

Figure 8: The textured stream and time surfaces. a) Multiple
stream surfaces are mapped with different texture. b) Stream
and time surfaces are both textured and the flow is clipped by
the time steps.

flow. When we subsequently construct a stream volume, no
integrator is required to compute streamlines through the flow
field. Since this is a pre-computation, care can be taken to ensure
accurate streamline advection. We use an adaptive fourth-order
Runga-Kutta algorithm. The 3D texture mapping method renders
stream volumes using a dependent texture, while the interval
volume technique extracts a stream volume using a high
dimensional iso-contouring routine. Explicit flow volumes are
constructed using an advection algorithm during run-time. The 3D
texture mapping has an advantage when the inflow boundary is
changed, as it does not require any re-computation. The other two
techniques need to re-compute their flow volumes, one through
advection the other through iso-contouring, both of which can be
costly operations. In our experiments, the 3D texture mapping can
achieve roughly 10 FPS for 1283 implicit flow dataset. The
interval volume rendering offers about 3.5 FPS for the interval
volume with 346.5K tetrahedra. More performance results about
interval volume rendering can be found in [Bhaniramka04b]. All
experiments are performed on a PC with a QuadroFX 3000
graphics card and a Pentium IV 3.2 GHz processor. Although, it
should be pointed out that all of these techniques run fairly
interactive for the datasets we have tested. A true performance
comparison is not provided, due to the many parameters each
technique requires for the specification. For any given technique,
we can find a case where it would be the fastest, or the slowest.
Nevertheless, there are three key differentiating factors that we
wish to highlight among these flow volume techniques.

7.1 Volumetric Texture or Detail

In the traditional method, a cross section is specified by a low-
resolution polygon. The quality of the cross section and the flow
boundary is limited by user specification. Typically, the quality is
poor. Furthermore, the distribution of any optical properties
across the cross section is ill-specified. In order to allow for
changes of the optical properties across the initial smoke
generator, a subdivision of the cross section (and hence the
resulting explicit flow volume) is required. Most explicit flow
volume renderings utilize a constant color and extinction
coefficient.

For the implicit methods, the cross section is specified using a
general inflow texture. The complexity of the cross section and
the resulting flow boundary is thus determined by the resolution
of the dependent texture for the 3D texture mapping technique,
and by the underlying voxel grid of the implicit volume for the
interval volume technique, respectively. An extremely high virtual
resolution is possible with the dependent textures. No assumptions
about the underlying volume rendering model are made in our
system. In fact, an arbitrary fragment program can be used to
compute the volume rendering. This allows for volumetric straw
textures, etc.

The implicit stream volume includes flow properties at all
sampling points within the flow. This flow detail information is
stored in the implicit flow volume representation and can be used
to modify the color and opacity of the tetrahedral rendering.
Embedding exotic volumetric textures into projected tetrahedron
is an interesting future research topic.

7.2 Stream Surface Texture or Detail

One advantage of the interval volume method is that the stream
surfaces and the time surfaces are modeled during the interval
volume extraction process without extra computation cost.
Texture mapping and surface shading are then applied on these
surfaces to highlight internal features and provide a pleasing and

more informative flow visualization. Although the traditional flow
volume method did not add these surfaces, they are easily
incorporated, since the representation is a true parametric
representation. While algorithms exist to display contour surfaces
using 3D texture-mapping based volume renderers [Engel01],
applying parametric textures to these surfaces is an unsolved
problem. Initial experiments are very prone to aliasing and blur.
The 3D texture mapping technique cannot generate these texured
surfaces.

7.3 Rendering Complexity

For the rasterization and rendering, the traditional flow volume
method renders only the flow area, and the rendering performance
depends on the number of tetrahedra. This is also true for the
interval volume rendering technique. But the interval volume
method requires the iso-contouring over the entire volume for the
interval volume extraction. Furthermore, there may be many
internal teatrahedra within the implicit flow volume. This is
advantageous for multi-colored flow volumes, but is extra
computation and rasterization for constant colored flow volumes.
Both of these techniques of course, require sorting of the
tetrahedra and a special rendering algorithm. The 3D texture
mapping method is different from the above two methods in these
aspects. It rasterizes the entire volume and the rendering
performance is strictly dependent on the number of the voxels
(and the complexity of the volume shader). Volume rendering the
unstructured grids generated from the explicit flow volumes or
interval volumes techniques can be much more expensive than
volume rendering using 3D texture mapping. However, if the flow
volume area is kept small, the reduced rasterization operations can
be an advantage. An area of future research is to use the geometry
from the interval volumes to compute and slice bounding hulls of
the resulting flow volumes for the 3D slice rasterizer.

8. ACKNOWLEDGEMENTS

The authors would like to thank the reviewers for their time and
hard work. This research is supported in part by NSF grant ACR
0222903.

References:
BHANIRAMKA, P., R. WENGER, AND R. CRAWFIS, Isosurfacing In Higher

Dimensions, in Proc. of IEEE Visualization 2000, IEEE CS Press, 15-
22.

BHANIRAMKA, P., R. WENGER AND R. CRAWFIS, Isosurface Construction
in Any Dimension Using Convex Hulls, IEEE Transactions on
Visualization and Computer Graphics, Vol. 10, No. 2 (March 2004),
pp. 130-141.

BHANIRAMKA, P., C. ZHANG, D. XUE, R. CRAWFIS AND R. WENGER,
Volume Interval Segmentation and Rendering, to appear in Volume
Visualization and Graphics Symposium 2004.

BRILL, M., H. HAGEN, H.-C. RODRIAN, W. DJATSCHIN, S. KLIMENKO,
Streamball Techniques for Flow Visualization, In Proc. of IEEE
Visualization ’94, IEEE CS Press, 225-231.

CABRAL, B., AND LEEDOM, C. 1993. Imaging vector fields using line
integral convolution. In Proceedings of SIGGRAPH ’93, ACM
SIGGRAPH, 263.270.

CRAWFIS, R., AND MAX, N. 1993. Texture splats for 3d vector and scalar
visualization. In Proceedings Visualization '93, IEEE CS Press,
261.266.

ENGEL, K., M. KRAUS, T. ERTL, High-quality pre-integrated volume
rendering using hardware-accelerated pixel shading, Proceedings of
the ACM SIGGRAPH/EUROGRAPHICS Workshop On Graphics
Hardware, pp. 9-16, 2001, Los Angeles, California

FUJISHIRO, I., Y. MAEDA, AND H. SATO, Interval volume: a solid
fitting technique for volumetric data display and analysis, in IEEE
Visualization ‘95, Atlanta, GA, 1995.

GORLA, G. V. INTERRANTE, G. SHAPIRO, Texture synthesis for 3D Shape
Representation, IEEE Transactions on Visualization and Computer
Graphics, Vol. 9, No. 4 (Oct-Dec. 2003), pp. 217-242.

HANRAHAN, P., P. HAEBERLI, Direct WYSIWYG painting and Texturing
on 3D Shapes, Computer Graphics (SIGGRAPH 90), Vol 24, pp. 215-
223.

HULTQUIST, J. 1992. Constructing stream surfaces in steady 3d vector
fields. In Proc. IEEE Visualization ’92, IEEE CS Press, 171-178.

ITOH, T., K. KOYAMADA, Automatic isosurface propagation using an
extrema graph and sorted boundary cells, IEEE Transactions on
Visualization and Computer Graphics, Vol. 1, No. 4 (Dec. 1995), pp.
319-327.

KNISS, J., KINDLMANN., G., AND HANSEN., C. 2001. Interactive Volume
Rendering Using Multi-Dimensional Transfer Functions and Direct
Manipulation Widgets. In Proc. IEEE Visualization ’01, IEEE CS
Press, 241-248.

LI, G.-S., BORDOLOI, U., AND SHEN, H.-W., 2003. Chameleon: An
Interactive Texture Based Rendering Framework for Visualizing
Three-Dimensional Vector Fields. In Proc. IEEE Visualization ’03,
IEEE CS Press, 241-248.

LARAMEE, R., JOBARD, B., AND HAUSER, H., 2003. Image Space Based
Visualization of Unsteady Flow on Surfaces. In Proc. IEEE
Visualization ’03, IEEE CS Press, 131-138.

MAHROUS, K., J. BENNETT, G. SCHEUERMANN, B. HAMANN, K. JOY,
Topological Segmentation in Three-Dimensional Vector Fields, IEEE
Transactions on Visualization and Computer Graphics, Vol. 10, No. 2
(March 2004), pp. 198-205.

MAX, N., BECKER, B., AND CRAWFIS, R., 1993. Flow Volumes For
Interactive Vector Field Visualization, In Proc. of IEEE Visualization
’93, IEEE CS Press, 19-24.

MUELLER, K., MOELLER, T., AND CRAWFIS, R. 1999. Splatting without the
Blur. In Proc of IEEE Visualization ’99, IEEE CS Press, 363-370.

NIELSON, G., J. SUNG, Interval Volume Tetrahedrization, In Proc. of IEEE
Visualization ’97. IEEE CS Press, 221-228.

REZK-SALAMA, C., HASTREITER, P., TEITZEL, C., AND ERTL, T., 1999.
Interactive Exploration of Volume Line Integral Convolution Based on
3D-Texture Mapping. In Proc. of IEEE Visualization ’99. IEEE CS
Press, 233-240.

SCHROEDER, W. J., C. R. VOLPE, W. E. LORENSEN, 1991. The Stream
Polygon: A Technique for 3D Vector Field Visualization. In Proc.
IEEE Visualization ’91, IEEE CS Press, 126-132.

SHEN, H.-W., JOHNSON, C., AND MA, K.-L. 1996. Visualizing Vector
Fields Using Line Integral Convolution and Dye Advection. 1996
Symposium on Volume Visualization, IEEE Computer Society and
ACM SIGGRAPH, California.

SHEN, H.-W., LI, G.-S., BORDOLOI, U. 2004. Interactive Visualization of
Three-Dimensional Vector Fields with Flexible Appearance Control,
IEEE Transactions on Visualization and Computer Graphics, Vol. 10,
No. 4 (July 2004), pp. 434-445.

TELEA, A. J. VAN WIJK. 2003. 3D IBFV: Hardware-Accelerated 3D Flow
Visualization In Proceedings. IEEE Visualization ’03, IEEE CS Press,
225-232.

THEISEL, H., WEINKAUF, T., HEGE, H.-C., AND SEIDEL, H.-P. 2003. Saddle
Connectors – An Approach to Visualize the Topological Skeleton of
Complex 3D Vector Fields. In Proceedings IEEE Visualization ’03,
IEEE CS Press, 225-232.

TODD, J., F. NORMAN, J. KOENDERINK, A. KAPPERS, Effects of Texture,
Illumination, and Surface Reflectance on Stereoscopic Shape
Perception, Perception, 26, pp. 807-822, 1997.

TURK, G., Texture Synthesis on Surfaces, Computer Graphics Proceedings
(SIGGRAPH 2001), pp. 347-354.

VAN WIJK, J.J.., 1993. Implicit Stream Surfaces. In Proc. of IEEE
Visualization’93. IEEE CS Press, 245-252.

VAN WIJK, J. J., 2001. Image based flow visualization. Computer
Graphics (Proc. SIGGRAPH ’01), ACM Press, 263-279.

WESTERMANN, R., AND ERTL, T. 1998. Efficiently Using Graphics
Hardware in Volume Rendering Applications. In Proc. of SIGGRAPH
’ 98, ACM Press, 169-177.

WESTERMANN, R., JOHNSON, C., AND ERTL, T. 2000. A Level-Set
Method for Flow Visualization. In Proc. of IEEE Visualization 2000,
IEEE CS Press, 147-154.

WEILER, M., M. KRAUS, T. ERTL, Hardware-Based View-Independent Cell
Projection, in Symposium on Volume Visualization, 2002, Boston,
MA., pp. 13-22.

WILLIAMS, P. Visibility Ordering of Meshed Polyhedra, in ACM
Transactions on Graphics, 11 (4), 103-126, April 1992.

WYLIE, B., K. MORELAND, L. A. FISK, AND P. CROSSNO, Tetrahedral
projection using Vertex Shaders, in Symposium on Volume
Visualization, 2002, Boston, MA., pp. 7-12.

ZÖCKLER, M., STALLING, D., AND HEGE, H.-C. 1996. Interactive
visualization of 3d-vector fields using illuminated stream lines. In
Proc. of Visualization ’96, IEEE CS Press, 107-114.

Implicit Stream Volume

Traditional Flow Volume
3D texture mapping Interval volume rendering

Requires pre-processing No Yes Yes

Advection Advection during the volume construction Pre-advection Pre-advection

Flow volume construction Through advection Using dependent textures Using high dimensional iso-contouring routine

Representation Explicit Implicit Explicit (reconstructed from the implicit flow volume)

Initial Starting Location Anywhere User-defined Termination surfaces (pre-computed) User-defined Termination surfaces (pre-computed)

Stream surface / time surface Easily added No Yes

Rasterization / rendering range Render only the flow area Rasterize the entire volume Iso-contouring the entire volume, render only the flow area

Requires recomputation Yes No Yes

Non-regular grids Easily supported Requires voxelization Easily supported

Cross section specification Polygon Per-pixel mask function Mask function on the termination surface(s)

Cross section quality Limited by user specification, typically poor Resolution of the dependent texture Dependent on voxelization

Boundary quality Dependent on polygon Dependent on dependent texture Dependent on voxelization

Details / correctness Without mesh refinement, misses details in flow. More accurate More accurate

Rendering performance Dependent on the number of tetrahedra Dependent on voxel grid size Dependent on the number of tetrahedra

Volume size Arbitrarily large volume Limited by the texture memory of the display card Arbitrarily large volume, limited by system memory

Source, sink critical points Fine Requires critical point detection Requires critical point detection

Table 1: Comparison of the flow volume visualization techniques.

