
Flow Volumes for Interactive Vector Field Visualization

Nelson Max
Barry Becker
Roger Crawfis

Lawrence Livermore National Laboratory
P.O. Box 808 / L-301

Livermore, California 94551
(max2@llnl.gov)

Abstract

Flow volumes are the volumetric equivalent of stream
lines. They provide more information about the vector field
being visualized than do stream lines or ribbons. Presented
is an efficient method for producing flow volumes, composed
of transparently rendered tetrahedra, for use in an interac-
tive system. The problems of rendering, subdivision, sort-
ing,compositing artifacts, and user interaction are dealt
with. Efficiency comes from rendering only the volume of the
smoke, using hardware texturing and compositing.

Introduction

Understanding 3D vector fields is a current challenge for
scientific visualization. When the vector field is, or can be
interpreted as, a flow velocity, objects can be traced in the
flow. For example, particles can be released and advected by
the flow to produce animated motion. Stream lines can also
be generated as the tracks left behind by the moving parti-
cles. Once the position of a moving particle has been com-
puted for each time step, it is trivial to connect successive
points by line segments.

Similarly, if two adjacent streamlines are known, they can
be connected by a sequence of triangles to give a ribbon, or
stream surface[2][9]. If the two stream lines diverge from
each other, Hultquest[3] gives a method of increasing the
number of triangles across the width of the ribbon, in order
to maintain a smooth-appearing surface that closely approxi-
mates the smooth stream surface. Again, the triangles are
rendered efficiently by the graphics hardware. Each time the
dimensionality increases, from points to lines to areas, there
is an increase in the interpretability of the visual representa-
tion, without a proportional increase in computational cost to
solve the differential equation for the flow. In this paper, we
take this progression one step further, to flow volumes.

In physical experiments, smoke is often released into a
gas flow, or dye into a liquid flow, as an aid to visualization.
The flow past a smoke or dye generator advects the tracer
substance into a flow volume, which can be rendered as a

semi-transparent volume density. We describe below
how this flow volume can be rendered efficiently using
graphics hardware. The user can interactively move and
size the generating polygon, which is automatically ori-
ented normal to the flow field. As the medium moves
through the initial polygon, it becomes colored by the
tracer. The result is an image or interactive animation
simulating the results of the familiar physical experi-
ments.

Volume Rendering

We divide the flow volume into a collection of tetra-
hedra, which are rendered by the method of Shirley and
Tuchman[10]. This method divides the projection of a
tetrahedron into up to four triangles. Figure 1 shows the
two non-degenerate cases, which require three and four
triangles respectively.

Figure 1

The vertex marked A in each projection corresponds
to a viewing ray segment through the tetrahedron,
whose lengthl can be computed from the geometry. The
smoke’s color and opacity along this ray segment can
then be computed by the density emitter model of Sabel-
la[8]. This model assumes the smoke particles absorb a
“differential opacity” fractionτ per unit length of the

B D

A

C

E D

CB

A

Roger A. Crawfis
Reprinted from "Proceedings Visualization '93", San Jose (October 1993) Nielson and Bergeron (eds.), IEEE CS Press, pp. 19-24.

light traversing the ray, and emit or reflect extra lightc per
unit length. For colored images,c will be wavelength de-
pendent, with red, green, and blue components.

One can show by integration[4][8] that the opacityα at
A is 1-e-τl, and the color added to the viewing ray iscα/τ.
The method of Shirley and Tuchman[10] is to evaluate the
color and opacity once at the “thick” vertex A. The color
and opacity are zero at the other “thin” vertices on the pro-
file. Bilinear interpolation (linear on triangles) in the hard-
ware rendering pipeline is used to interpolate the color and
opacity across the triangle, and composite each triangle
over the background. The linear interpolation of color and
opacity causes artifacts, which can reveal the separation of
the flow volume into tetrahedral cells. Maxet al.[4] used a
software renderer, and computed the necessary exponen-
tial at every pixel. They were thus able to deal easily with
arbitrary convex cells. Here, we use Shirley and Tuch-
man’s triangle method on tetrahedra. However it is possi-
ble to use the texture mapping hardware available on some
workstations to get an effective exponential per pixel. The
quantityτl is used as a texture coordinate at each vertex,
and the value 1-e-τl is put in the texture table. The shading
system on the Silicon Graphics VGX workstation can then
use this as the value in compositing each pixel, at the high
throughput rate of its parallel pipeline. This technique re-
duces polygonal artifacts with only a slight degradation of
performance (see figure 7). Since it renders the tetrahedra
more accurately fewer are needed and hence opacity
round-off will be reduced when the relative thickness in-
creases.

 As noted by Wilhelms[12] the eight bits allowed for
representing opacity can lead to problems when composit-
ing many thin volumes consecutively. Color shifting be-
came apparent when the numerical error was greater in
one color channel than another. The effects were minor
and will mostly disappear if a machine having twelve bits
per channel is used.

Volume rendering is often slow because of the huge
number of cells in a typical volume. However, in render-
ing a flow volume of smoke, only the cells in the small
flow volume need be rendered. Everything else is com-
pletely transparent, and may be skipped. This makes inter-
active use possible.

Sorting
The compositing scheme of [4] and [8] require that the

volume cells be composited in back to front order. In gen-
eral, sorting for the back to front order is a difficult prob-
lem. There are easy sorts for special cases such as
rectilinear grids, but a flow volume is not rectilinear. Max
et al. [4] propose using a general topological sort of a di-
rected graph, but this method only works if a convex data
volume is completely filled with convex cells. Will-
iams[13] proposes a generalization to non-convex data

volumes, but it is not guaranteed to be correct in all cas-
es.Both these methods can return with failure if a depth or-
der cycle exists.

In the current interactive system, we avoid sorting by
assuming the color of the smoke is uniform, a reasonable
assumption for the visual effect we desire. We now explain
why we can do this. Consider a pixel, with initial back-
ground intensityF0 which is covered in back to front order
by cell projections of opacityαi=(1−e−τl) and colorCαi =
c αi/τ. Although the hardware is based on the opacityαi
we will use the transparency ti = 1-αi=e-τl for ease in the
derivation. The compositing step to update the frame buff-
er valueF is then

Fi = ti Fi-1 + (1-ti)C

We will prove by induction that

The initial step, fori=1, follows from the first compos-
iting step, in formula(1). The induction step then assumes
(2) is true for i-1, and derives it fori, using formula (1):

The product is independent of the order of
thfactorsti since multiplication is commutative, and we
can thus composite the cells in any order without sorting.
Nielson[7] has made a similar observation. This order in-
dependence also means that the depth order of the smoke
trails in the fluid volume is ambiguous in a still frame.
However, with the ability to rotate the scene in real time,
the full 3D configuration is revealed.

In rendering an image, we first scan convert the opaque
polygons in the environment into the z buffer. Then, when
scan converting the triangles from the projections of the
tetrahedra, we use the hardware feature which compares
the triangle z with the z buffer to determine whether to
composite a pixel, but does not update the z buffer. Thus
unsorted smoke can still be hidden by opaque objects.

(1)

Fi tj
j 1=

i

∏

= F0 1 tj
j 1=

i

∏–

C+ (2)

Fi tiFi 1– 1 ti–() C+=

ti= tj
j 1=

i

∏

F0 1 tj
j 1=

i

∏–

C+ 1 ti–() C+

ti tj
j 1=

i 1–

∏

F0 ti ti tj 1 ti–+
j 1=

i 1–

∏–

+ C=

tj
j 1=

i

∏

F0 1 tj
j 1=

i

∏–

C+=

tj
j 1=

i

∏

Adaptive Subdivision into Tetrahedra
Some volume cells may have non-planar faces. These

faces may become self-intersecting polygons when pro-
jected onto the picture plane and hence cause problems in
the volume compositing scheme. While such problem
cells may be rare in projecting a fixed curvilinear grid,
they will be more common in flow volumes, since small
scale variation in the velocity field can easily distort the
faces. Therefore, we have chosen to decompose the vol-
ume into tetrahedra. A method for doing this consistently
is the topic of this section.

Let S0 be the initial polygon generating the flow vol-
ume, and letSn be the surface into whichS0 is carried by
the flow, aftern time steps. We maintain an approximation
of Sn into triangles, which are subdivided adaptively, if
they become too large or too curved. To construct the layer
of volume cells betweenSn andSn+1, we use a collection
of prisms, with the triangles onSn as a base. Each prism is
then subdivided into three tetrahedra.

Figure 2

The subdivision of a prism is specified by choosing one
of the two possible diagonals on each of its three quadri-
lateral faces. For example, the choice of three diagonals
CD, BD, and BF for the prism ABCDEF shown in Figure
2 implies that it is subdivided into the three tetrahedra AB-
CD, BCDF, and BDEF. In order to specify the diagonal
choices in a way which is consistent across the common
quadrilateral faces between adjacent prisms, we use a di-
rection on each edge of the subdivision ofSn, indicated by
an arrow on Figure 2. For example, the edge AB onSn is
listed with A as its first vertex, so the point D onSn+1 cor-
responding to A on Sn is the first vertex of the diagonal,
and B is the second vertex. Of the eight possible choices of
direction for the three sides of triangle ABC, six of them,
which have a vertex like B with two arrows pointing to-
wards it, define good subdivisions of the prism. The other
two, with all the arrows going around in a clockwise or
couterclockwise cycle, do not. Therefore, we must consis-
tently orient the edges of the triangulation of Sn so that no
triangle is bounded by a cycle of directed edges. Since ev-
ery triangulation of a planar region can be built up by add-

D

E

B C

A

F

ing one-by-one triangles with at least one free side, one
can always build up consistent edge orientations by choos-
ing the orientation of the free edge of each triangle appro-
priately. Instead of using this method, we maintain the
edge orientation incrementally. We start with a trivial ori-
entation of the sides for a triangulation of the initial poly-
gon S0, and then maintain consistency as we subdivide
adaptively.

The subdivision ofSn is initially copied from the subdi-
vision of Sn-1. If an edge is too long, or too poor an ap-
proximation to the correct curved edge, we subdivide it
into two edges, with orientations consistent with the parent
edge. Once all edges have been subdivided, we loop over
all triangles, subdividing them consistently. Figure 3, with
several representative cases, shows that the directions of
the new edges in the subdivision can be chosen to avoid
cycles.

Figure 3

In the center case, when exactly two edges have been
subdivided, one of two possible diagonals to a quadrilater-
al must be chosen, and the shorter one is used.

The curvature subdivision is based on advecting edge
midpoints. Suppose, as in Figure 3, D is the midpoint of
edge AB. Aftern time steps, A, B, and D have moved to
points An, Bn and Dn. The edge AnBn is subdivided if the
angle between the vectors Dn-An and Bn-Dn becomes too
large. On the surfaceSn, we must still use the actual mid-
point of the edge AnBn, in order to assure consistency with
the flow volume betweenSn-1 andSn, But onSn+1, we can
use the advected midpoint Dn+1.

The actual midpoints of the triangle edges on the subdi-
vision of the initial flat polygon are used on surfaceS0. Ev-
ery time a new subdivision edge is created onSn, we must
estimate its midpoint. For edges like AD in Figure 3,
which arise from subdividing a longer edge AB, we qua-
dratically interpolate the midpoint using a parabola
through An, Dn, and Bn. For triangle-crossing edges like
DC, linear interpolation is used to find the actual midpoint
of DnCn.

Figure 4 shows a wire-frame image of curvature-based
adaptive tetrahedral subdivision, applied to a divergent
flow. The subdivision of the surfacesSn remains good as
these surfaces grow and bend, so the flow volume stays ac-
curate. This volume subdivision also effectively subdi-
vides the stream surface ribbons formed from the edges of
the generating polygon. Subdivision improves the accura-

C
B

A

C
B

A

C
B

A

D D D

E E

F

cy of the flow volume by increasing the number of tetrahe-
dra, but makes interaction slow while turned on.

The User Interface
Having a powerful visualization tool is of little value

without a scheme for smoothly interacting with it. We
present here some ideas which give the user maximum
control over the smoke trail. Flow volume interaction is
done by manipulating a 3D cursor, and an editing window
containing various control widgets for color, transparency,
time step size and count, and other characteristics of the
flow volume.

The cursor consists of a jack manipulator customized
from SGI’s Inventor package. It is attached to a polygon
which is always perpendicular to the vector field. There
are six scale knobs, 2 for each major axis through the poly-
gon, that when selected, will scale the size of the cursor.
Then sided polygon, which is used as the initial condition
for smoke advection, is scaled along with the cursor.
When the user clicks on the cursor (but not on a scale
knob) three orthogonal translation axes appear. Using the
mouse to move the cursor in either direction along one of
these axis allows for easy translation in 3D. The Shift and
Alt keys may be used to constrain cursor motion to the
nearest axis or plane, respectively. The cursor may move
anywhere within the domain of the vector field. If a user
tries to move beyond those limits the cursor is constrained
to the border. For faster interaction the user may choose to
have no smoke drawn while the cursor is moving. Even if
no smoke is advected, the central polygon is constantly ro-
tating so that its normal remains oriented perpendicular to
the direction of the flow. When the mouse button is re-
leased the translation axes are removed and a new smoke
trail is drawn. Computing and rendering the flow volume
is fast enough for smoke to be drawn continuously while
the cursor is moving or the scene is rotating.

The smoke puff option simulates an intermittent smoke
generator, by making the opacity depend on a time varying
functino of the step indexn. The puffs blow along in real
time, as long as no other parameters change, bunching up
where the current is slower. Interaction slows if the num-
ber of steps is too high.

Active along with the cursor is an editing window con-
taining sliders for controlling the length of the time step,
the number of time steps used, and the smoke’s transpar-
ency. A color wheel is used to control the smoke color.
Toggle buttons for specifying transparency texture map-
ping, compressible/incompressible flows, puff or growing
smoke animation, and wire-frame drawing are available.
For compressible flows, we make the differential opacityτ
inversely proportional to the volume of the tetrahedron.
The Inventor Scene Viewer already provides menu options
for various drawing styles such as dithered or blended
transparency, picking styles, and facilities for customized

lighting. All operations of translation, rotation and zoom-
ing are handled by a variety of convenient viewers provid-
ed by the Scene Viewer.

The IRIS Inventor Toolkit, a Silicon Graphics C++ en-
vironment, was of immense help for speedy prototyping.

Results
Flow volumes offer a more powerful visualization tool

than streamlines or ribbons. Its effectiveness is shown by
the way it can reveal phenomena the other two methods
cannot. If compressible flow is specified, changes in pres-
sure can show up as varied opacity. Vector magnitude
changes speed or slow puffs of smoke when that animation
option in selected. Diverging or converging flows, turbu-
lence, spiraling, shearing, and splitting as flow moves over
solid obstacles, are difficult to represent with a single
streamline, but easy for volumes. Scaling of the initial
polygon allows you to get all of these benefits whether
your focus is global or very local. All these features can be
seen at the same interactive rates as lines or ribbons be-
cause of the use of hardware and a simple rendering algo-
rithm.

For a typical flow volume consisting of 1000 tetrahe-
dra, rendering takes about .4 seconds, transforming and
rendering .5 seconds, and recomputing then rendering1
second. Times were approximated on a Silicon Graphics
Indigo 2 workstation with extreme graphics.

In Figure 5 we see an example of a hurricane visualized
using the system. In it we can see that the wind is moving
slowly until the perimeter of the hurricane is reached.
Then the velocity increases and the tetrahedra become
long and thin. By animating puffs of smoke, varying ve-
locities are more clearly visualized. Figure 6 shows the re-
sult of making a flow compressible. In this figure opacity
corresponds to density of smoke particles. The effect of
adding texture mapping to reduce artifacts can be seen by
comparing figure 7a which is drawn without texturing to
figure 7b which uses texturing to produce the correct ex-
ponential at each pixel.

Vector fields from electro-magnetics, waveguide simu-
lation, air flow through aerogel material, and a simulated
tornado have all been successfully visualized. Each have
unique properties which can be explored using this tool.

Acknowledgments
This work was performed under the auspices of the

U.S. Department of Energy by Lawrence Livermore Na-
tional Laboratory under contract number W-7405-ENG-
48, with specific support from an internal “LDRD” re-
search grant. We wish to thank Leonore Max, and the
IEEE computer Society reviewers for comments which
improved the paper.

References
[1] Crawfis, R. and Max, N. (1992) “Direct Volume Visualiza-

tion of Three-Dimensional Vector Fields”, Proceedings of
the 1992 Workshop on Volume Visualization, Kaufman and
Lorensen (eds), ACM SIGGRAPH, NY pp 55 - 60

[2] Hellman, J. and Hesselink, L.(1991) “Visualizing Vector
Field Topology in Fluid Flows.” IEEE CG&A, Vol 11, No.
3, May, pp36-46

[3] Hultquist, J., (1992) “Constructing Stream Surfaces in
Steady 3D Vector Fields”, Proceedings of Visualization ‘92,
IEEE Computer Society Press, Los Alamitos, CA pp 171-
178

[4] Max N., Hanrahan P., and Crawfis R. (1990) “Area and Vol-
ume Coherence for Efficient Visualization of 3D Scalar
Functions”, Computer Graphics Vol. 24 No. 5, pp 27-33

[5] Max, N., and Crawfis, R., (1992) “Visualizing Wind Veloci-
ties by Advecting Cloud Textures” Proceedings of Visual-
ization ’92, IEEE Computer Society Press, Los Alamitos
CA, pp 179 - 184

[6] Max, N., (1993) “Sorting for Polyhedron Compositing”, in
“Focus on Scientific Visualization” Hagen H., Müller H.
and Nielson G. (eds) Springer Verlag, Berlin, pp 259-268

[7] Nielson, G. N., (1993) “The Volume Rendering Equations”,
TR-93-013, Dept. of Computer Science, Arizona State Uni-
versity, Tempe

[8] Sabella, P., (1988) “A Rendering Algorithm for Visualizing
3D Scalar Fields”, Computer Graphics Vol. 22 No. 4 (Sig-
graph ’88 Proceedings) pp 51 - 55

[9] Shirley, P. and Neeman, H.(1989) “Volume Visualization at
the Center for Supercomputing Research and Develop-
ment”, Proceedings of the Chapel Hill Workshop on Vol-
ume Visualization, Department of Computer Science,
University of North Carolina, Chapel Hill, NC, pp 17 - 20

[10] Shirley, P. and Tuchman, A.(1990) “A Polygonal Approach
to Direct Volume Rendering”, Computer Graphics, Vol. 24
No.5, pp 63-70

[11] Westover, L., (1989) “Interactive Volume Rendering”, Pro-
ceedings of the Chapel Hill Workshop on Volume Visualiza-
tion, Department of Computer Science, University of North
Carolina, Chapel Hill, NC, pp 9 - 16

[12] Wilhelms, J. and Van Gelder, A.(1991) “A Coherent Projec-
tion Approach for Direct Volume Rendering”, Computer
Graphics, Vol. 25, No. 4 (Siggraph ‘91 Proceedings) pp.
275-284.

[13] Williams, P. (1992) “Visibility Ordering Meshed Polyhedra”
ACM Transactions on Graphics, Vol. 11, No. 2, pp 103-126

Figure 6a. A flow volume in an incompressible
medium.

Figure 6b. The same flow volume, but now we are
assuming the medium is compressible.

Figure 7a. Smoke without hardware texture
mapping.
Figure 7a. Smoke without hardware texture map-
ping.

Figure 7b. Smoke with hardware texture map-
ping.

Figure 5. Visualization of a hurricane in global
wind data.

Figure 4. Curvature based adaptive subdivision
applied to a divergent flow.

