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ABSTRACT 

As simulations have migrated towards three-dimensions, new tools for examining the resulting complex 
datasets have been required. Much progress has been achieved in the area of scientific visualization towards 
this goal. However, most of the research has focused on the representation and understanding of a single 
scalar field. Some nice results have been achieved for vector or flow fields. This paper reviews several of 
these techniques, organizes them by their approach and complexity and presents some observations on their 
benefits and limitations. Several example images are used to highlight the character of these techniques. 

1  INTRODUCTION 

Computational science has advanced rapidly, generating improvements in algorithms and 
computational efficiency. This had led to the ability to simulate phenomenon at much finer scales, 
resulting in meshes with hundreds of thousands to millions of sample points. This data is comprised 
of scalar variables (such as temperature, pressure, etc.), as well as vector (velocity, magnetic flux, 
vorticity, etc.) and even tensor (stress, etc.) quantities. This data is calculated in three spatial 
dimensions, plus time dynamics. Research in scientific visualization has seen rapid progress in 
presenting both scalar three-dimensional fields, as well as vector fields in three-dimensions. This 
paper presents an overview of these advances for vector field visualization, offering a taxonomy for 
the myriad of algorithms.  

For many years, the staple for visualizing vector data consisted of three possible choices. 
First, the magnitude of the vector data could be extracted and then scalar visualization algorithms 
applied to this resulting field. This provides useful information on where the velocity is greatest, 
but provides no visual cues on the direction or turbulent nature of the flow. A second choice was to 
place a little vector icon at each grid point. For two dimensions, with enough study a reasonable 
inference into the flows direction and magnitude was possible. This algorithm suffered severely 
from excessive clutter if the magnitude of the flow varied greatly. For many grid types, especially 
uniform, it tended to highlight the grid layout of the sample points rather than the actual flow. 
These issues were only compounded in three dimensions. This type of plot is commonly called a 
vector plot, arrow plot or hedgehog plot.  

The third classical vector visualization technique simulated the release of a mass-less particle 
in the vector field. This particle was advected and a history of its path was remembered and traced 
with a curve. For 2D flows, a streamline separates the flow, such that any particle released to the 
left of the streamline will remain to the left. For steady state flows these streamlines provided a 
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good indication of the downstream movement, but only for that particular starting point for the 
particle. By seeding the computational-space, either randomly or using a rack (or line of starting 
points), the initial paths can be situated more comprehensively. However, one common drawback 
was that the particles would tend to cluster together in regions of compression. Once compressed 
sufficiently, these streamlines stayed bunched together. Thus, large areas of space were left with 
little or no indication of the flow. Another drawback of this technique was its sensitivity to the 
numerical precision in which the advection was performed. A simple Euler integration of the 
resulting ODE can provide misleading paths. Adaptive schemes, such as an adaptive Fourth-Order 
Runga-Kutta method are thus required. For known analytical functions, these algorithms are robust 
enough to provide stable results. A common error on many visualization experts was to provide a 
very robust integrator, only to have it circumvented with an inferior interpolation kernel on the 
discrete grid data. 

Time varying simulations or flow fields present additional challenges to the user and the 
visualization designer. Streamlines can be applied to a single time step, but may present misleading 
information. Instead pathlines or streaklines must be used. A streakline mimics the streak left by a 
virtual dye emitted at a single point in the flow. Pathlines keep a history of the path a particle 
makes. This particle has a specific starting point and starting time. Both pathlines and streaklines 
can fold back upon themselves. Streamlines cannot do this, and herein lies their fundamental 
power, to separate the flow into distinct parts. Pathlines and streaklines therefore require a much 
greater amount of studying to understand aspects of the flow. 

 For hedgehogs, no special care is usually taken for time -varying data. Instead, the current 
plot is replaced with a new one generated using the new vector field. This is akin to have several 
thousand weather vanes that instantaneously change direction. It is thus extremely difficult, even in 
2D, to remember the previous time’s direction for all but a hand full of arrows. If the resulting 
display is cluttered, the effect is as if a random set of cluttered lines is drawn each time. The 
technique is however useful in separating regions where the flow does not change, from those 
where it changes drastically. 

Perhaps the best classical technique for time -varying flows, is a continuous scalar 
representation of the vector magnitude. A pseudo-colored plot or volume rendering of the 
magnitude can show major fronts moving. This technique smoothes out subtle directional changes. 
If the flow is simply spinning with no lateral movement however, there will be no time -dynamics 
to represent this.  

New research into both steady-state vector field visualization, as well as time -varying vector 
field visualization was clearly needed.  Indeed, a wide variety of algorithms have been presented at 
the IEEE Visualization conference series and other excellent publications. This paper will attempt 
to highlight some of these algorithms for this audience. In particular, we will focus on recent 
algorithms utilizing volume rendering to represent three-dimensional vector fields globally. A 
categorization or taxonomy of the algorithms will be presented, along with many sample images. 
Interspersed will be some thoughts on the pros and cons of various algorithms and the need for still 
further research in this field. 

2  A SURVEY AND TAXONOMY 

2.1 Advection Techniques 

The first class of algorithms all use an advection algorithm similar to streamlines. For the 
most part, these algorithms are independent of the underlying grid topology of the data. High-
quality integration schemes have been developed for all of the major grid types (e.g., regular, 
curvilinear, and irregular). There are still issues with the precision employed by these algorithms. 
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For a very large number of advection steps, due to either lengthy integrations or a large number of 
different particles, these algorithms can become quite slow. However, in practice the number of 
particles is usually very small and interactive results are obtainable. 

2.1.1  Stream Surfaces 

 As mentioned in the introduction, one of the most valuable aspects of streamlines was its 
ability to separate steady-state flows. This implies that two streamlines in 2D will not cross each 
other. In three-dimensions, we are still guaranteed that two streamlines will not cross, but the added 
dimension allows for streamlines to curl around each other, and it is again very difficult to ascertain 
the overall flow in areas of substantial directional change. Hultquist [1] solved this problem, by 
stitching together several adjacent streamlines to build a stream surface. This surface can be 
thought of as the infinite set of streamlines emanating from some starting line segment or curve. 
The flow is assumed to be continuous, in that a streamline within the neighborhood of an adjacent 
streamline, can not suddenly diverge in an infinitesimally small time step. For steady-state flows, 
these surfaces can locally separate the three-dimensional flow, such that streamlines to one side of 
the surface are restricted to lie within that portion of the volume. If the starting curve for the stream 
surface is a closed curve, then the separation is into two disjoint parts, the flow bounded by the 
surface and the flow outside of the surface. This algorithm suffers from some of the same 
drawbacks as 2D streamlines. Namely, its utility is lost for unsteady flows. A further difficulty is 
that the flow direction tangential to the surface is lost. For a streamline, we have a single direction, 
but by merging many streamlines onto a continuous surface, one cannot tell whether the flow went 
straight down the surface or weaved back and forth. The algorithm is expensive in that it needs to 
handle severe distortion of the surface mesh as the flow diverges around obstacles. To 
accommodate this, Hultquist added an algorithm that would adaptively refine the mesh and even 
allow for tears in the surface.  

Van Wijk [2] proposed a simpler scheme to constructing stream surfaces for closed 
environments. They precompute a discretized volume on a regular grid. For interior point on the 
grid, they compute a backward streamline until the point intersects the boundary. The position on 
the boundary is stored for each point. By placing scalar function values on the boundary, this 
results in a scalar function defined over the regular grid. Van Wijk then takes an iso-contour 
surface of this function to construct the stream surface. The flow must enter or exit the volume 
boundaries in order for this technique to work. Artificial boundaries can be placed to rectify this. 

One solution to the lack of direction on the surface is to superimpose a texture or pattern on 
the surface. Interrante and others [3] proposed the use of the Line Integral Convolution (LIC) [4] 
algorithm to solve this problem.  

2.1.2  Flow Volumes 

Stream surfaces were a nice extension of streamlines. A single surface can be rendered 
efficiently using standard graphics hardware. Multiple surfaces would most likely occlude each 
other. A single surface can have a substantial amount of occlusion, requiring a careful examination 
of the surface from many viewpoints. If we let the 
surfaces be semi-transparent, we are restricted to 
a slow ray-tracing program to handle the correct 
sorting of the geometry into visibility order. Max,  
et al. [5] thus introduced the notion of flow 
volumes. Rather than start with a single curve to 
emanate the streamlines from, they use a small 
surface patch comprised of quadrilaterals. These 
quadrilaterals are split along the diagonal to form 
a triangular surface mesh as the starting surface. 
As streamlines are advected from these grid 
points, they bound prism solids. Figure 1. is an 
example of a constructed flow volume with a 

Figure 1. Prism mesh formed from flow 
volumes 
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single quadrilateral as the initial surface. The 
flow volume algorithm also had to deal with 
adaptively starting new grid points or 
streamlines in areas where the flow diverged.  

The wireframe mesh does not aid in 
representing the flow. The authors developed 
algorithms to mimic the effect generated from 
a smoke generator placed in a wind field (or a 
dye injector placed in a liquid flow). They 
applied volume rendering algorithms to 
provide the appearance of low-albedo colored 
particles filling the volume. This required 
splitting each individual prism into tetrahedra 
and applying a special scan-conversion 
routine [5, 6] to render each tetrahedron. Care 
again had to be taken to ensure a consistent 
subdivision of the mesh into tetrahedra [7]. 
Figure 2 illustrates the technique applied to a 
simulation of the underground water transport 
beneath a one-square mile section of the 
Lawrence Livermore National Laboratory. The brown clay layer illustrates a fault (white stripe), 
while the purple blobs are iso-contour surfaces of the porosity. The blue-green volume shows the 
vector field in the water transport model. Here the water eventually spreads out into many small 
channels. The height or depth of the model has been exaggerated to aid in the understanding and 
visualization process. 

The smoke injector can be interactively moved throughout the volume. The initial surface is 
rotated automatically such that it is perpendicular to the flow at the center point. This data was 
particularly difficult in that the heterogeneous soil model required the flow to split in many places. 
The resulting flow volume therefore had to continually adapt to these divergences. During the 
rendering, the smoke can be treated as compressible or incompressible, meaning that we can model 
a fixed density of particles within each tetrahedron, or we can model a fixed number of particles 
within each tetrahedron. The former option,  allows for a constant opacity per unit volume, thus as 
the tetrahedron’s size increases (due to a diverging flow), the opacity increases and the appearance 
of the smoke gets thicker. The latter approach decreases the per unit opacity of the tetrahedron as 
the flow diverges. This opacity can also be made to vary as a function of the advection time steps. 
Using this, the authors were able to simulate puffing smoke interactively in their system. This 
feature also aided in giving an indication of the relative velocity magnitude of the flow in the flow 
volume. 

Figure 2. A volume rendered flow volume 
simulating the release of dye in an underground 
water simulation.  

Figure 3. A large flow volume interacting with a 
simulation of the flow through an aerogel material. 

Figure 4. Two flow volumes 
applied to a HEPA filter 
simulation. 
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Since this is a volumetric entity, the size of the virtual 
smoke generator can be arbitrarily large or small. Figure 3 
illustrates a simulation of the flow through a small aerogel 
substrate. The initial area is quite large, but the flow is 
constricted as it searches for a good passageway through 
this material. The small spheres represent the placement of 
molecules in the simulation. A final example shows two 
such flow volumes applied to the simulated flow through a 
HEPA filter. Figure 4 shops how the flow volume can split 
around obstacles in the flow. The tan cylinders represent 
the micro-fibers of the HEPA filter.  

For time-varying data sets, this technique suffers from 
the same problems as streamlines and stream surfaces. In a 
separate paper, Becker, et al. [8] extended this concept for 
unsteady flows. Their results were inconclusive however. 
As the flow volume changed over time, the volume would 
self intersect leading to incorrect rendering. Figure 5. 
represents a successful case. Here, a global climate simulation is being studied. The wind velocities 
in the lower hemisphere can clearly be seen as they diverge over Africa and a turbulent pattern is 
visible over the Pacific ocean. 

2.1.3  Stream-balls 

An interesting alternative to stream surfaces and flow volumes are the Stream-Balls proposed 
by Brill [9]. Their concept is similar to van Wijk’s implicit stream surfaces, however, they build a 
scalar function as a potential field from the advected particles or streamlines. Using blobby’s [10] 
or meta-balls [11], they devise a potential field by placing a Guassian function at each advected 
position for a particle. By summing over all of the time steps for a particle, as well as summing 
over many different particles, an analytical function is determined. Sampling this function over a 
regular grid and taking an iso-contour of the scalar function produces surfaces that mimic a stream 
surface. In areas of high divergence, this surface gracefully splits apart. Hence, it looses the nice 
property of separation inherent in stream surfaces. The surface will also break apart in areas of high 
velocity. This helps to indicate the magnitude of the velocity, which is lost in the stream surfaces. 

2.1.4  Better Streamlines 

Several research efforts have attempted to make classical streamlines more useful for three 
dimensional flows. Zöckler, Stalling, and Hege applied the curve illumination model of Banks [12] 
to produce Illuminated Streamlines [13, 14]. The addition of diffuse and specular highlights to 
these curves greatly aids in the depth perception and illusion of three-dimensionality. To alleviate 
the problem with streamlines bunching together, leaving large voids of unexplored space, several 
authors have examined techniques to place streamlines, or streamline fragments, such that in 2D a 
rather uniform density of curves to empty space is achieved.  Turk and Banks [15] developed an 
algorithm to compute and update the density of streamlines within arbitrary regions of the image 
plane. New streamlines were started in areas of low density. These were computed for the forward 
flow, as well as the backward flow until they reached an area of high density. These algorithms 
border into our next classification, that of producing global textures. Little thought has been given 
into extending these techniques to three-dimensions. We will not go into many of these, as our 
focus is on techniques using volume rendering for three-dimensional flows. 

2.2 Texture Generation Techniques 

This class of techniques attempts to provide a pattern across the entire domain of the problem 
that provides good visual cues about the direction of the flow. These can be viewed as extensions 
of arrow plots. Many of the techniques can be combined with color to represent the magnitude of 
the flow. Additional techniques for showing magnitude have also been researched and these will be 

Figure 5. Time varying wind fields 
used in the construction of an 
unsteady flow volume.  
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highlighted below as well. A major 
problem with most of these 
techniques their lack of usefulness 
for representing 3D flows in their 
entirety. Thus, many of the 
techniques are applied in 2D, on a 
2D surface within the 3D flow, or 
on slice planes through the 3D 
flow.  

2.2.1 Spot Noise 

Jarke van Wijk extended some 
earlier research on flow 
visualization [16] to arrive at the 
concept of Spot Noise [17]. Perhaps 
the best way to think about spot 
noise for flow field representation 
is to imagine little drops of ink 
falling on a piece of paper. The 
location of where the ink hits has a 
uniform distribution, but the paper 
is tilted, such that the ink runs in 
the direction of the vector field associated with that point. After many thousands of tiny drops, a 
pattern is developed that represents the flow field. Van Wijk presented a spectral approach to 
achieving this as well. The algorithm produces nice results, although for high curvature or vorticity, 
the spots tend to blur out the flow structure.  

2.2.2 Line Integral Convolution 

Line Integral Convolution, or LIC [18], has been perhaps the most visible of the recent flow 
visualization algorithms. The algorithm takes a scalar field and a vector field in as input, and 
outputs another scalar field. By providing a white noise image as the scalar field, an output image 
is generated that correlates this noise function along the direction of the input vector field. It 
operates on a discrete grid by rasterizing a line segment (or streamline) centered at each point and 
oriented in the direction of the flow, and then integrating (or summing up) the values in the 
corresponding noise function for those pixels rasterized. Moving to a neighboring point along this 
rasterized line produces a set of discrete pixels very similar to the current set. Thus, a similar 
integral value is obtained. On the contrary, selecting a neighboring pixel not in the rasterized set 
produces a different set of random values and a different integral value.  
 

While LIC is effective in visualizing 2D vector fields, it is quite computationally expensive. 
Stalling and Hege proposed an extension to speed up the process [19]. Their work is based on two 
key observations.  First, a streamline starting from any point in the domain actually passes through 
many pixels. For those pixels, only one rasterized streamline is sufficient to produce the 
convolution results and thus redundant numerical integrations can be avoided. The second 
observation is that adjacent pixels along the same streamline use very similar sets of pixel values 
for the convolution. Therefore, the LIC value computed for one pixel can be reused by its 
neighbors with small modifications, accelerating the convolutions. By reducing the number of 
streamlines computed and speeding up the LIC convolution, Stalling and Hege's new method can 
gain a great saving in computing the LIC. 

Some work has been directed towards trying to make LIC useful in three-dimensions. Shen et 
al. [20] proposed to introduce dye advection into LIC computation. In their method the "smearing" 
nature of LIC is used to simulate the dye advection. The visualization produced by their method 
can include both regular LIC textures and 3D particle traces. To improve the interactivity, they also 

Figure 6. A 2D Line Integral Convolution texture applied to the 
surface of the space shuttle. This surface is actually a slice 
plane in the curvilinear grid. 
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proposed an efficient algorithm to locate the 
"dyed" regions so that a fast update of the LIC 
result is possible. This feature allows the user 
to dynamically inject dye at different 
locations. Recently, Rezk-Salama proposed a 
volume rendering algorithm towards trying to 
make LIC useful in three-dimensions. A 
volume rendering algorithm that utilizes 3D 
texture mapping memory is explored to 
quickly adjust slice planes and opacity settings 
[21]. This provides some clues, but the user is 
still left to build a three-dimensional model of 
the flow.  

2.2.3 Volume Rendering with embedded 
Texture 

For three-dimensional flows, some 
research has been directed towards integrating 
texture or icons into a volume rendering of the flow, or directing volume rendering the flow with an 
anisotropic texture. Crawfis and Max [22, 23] developed a 3D raster resampling technique where 
the volume rendering was built up in sheets oriented parallel to the image plane. These sheets were 
composited [24] in a back-to-front order. The authors modified the volume integral to include the 
rendering of a tiny cylinder within a small neighborhood. To accomplish this, they took a regular 
grid sampling on the current sheet. An image reconstruction operator or splat [25] is placed over 
each grid point. A stochastic heuristic is then used to determine whether this splat should include a 
cylinder. If so, the cylinder is randomly offset from the center and the volume integral is added for 
each pixel under the splat and the cylinder. The authors applied this to a time-varying wind field. 
For each time step, a new rendering was produced and the final frames animated in a movie loop. 
Due to the stochastic placement of the vector icons, the resulting animation produced the illusion of 
coherent flow, rather than that of individual icons rotating about a fixed center. 

A further refinement of this concept was to embed the vector icons directly into the splat 
footprint [26]. Here, small billboard images are overlapped and composited together to build up the 
final image. By placing a small icon within the billboard image, and orienting the image such that it 
lies both perpendicular to the viewing ray, and parallel to the projected vector direction at the 
splat’s center point , a volume rendered image is produced. A discrete set of such billboard images 
were designed with the vector icons where reduced in size. This allowed for some indication of the 
vector direction into the screen. When the flow was parallel to the screen, the largest icon was 
chosen. For flows parallel to the viewer’s line of sight, the icons reduced to a small dot. Figure 7 
illustrates this technique applied to the global climate simulation. The white density clouds 
represent the percent cloudiness in the climate model. The colored vector icons represent the wind 
velocity direction. For this particular image, the authors used color to represent the altitude of the 
vector icons. The technique can easily merge the rendering of a scalar field with that of a vector 
field. The flow is still rather difficult to understand due to the sparse and discrete representation of 
the vector icons . To alleviate this, the authors devised a set of textures in which the icons moved 
across the texture, fading in and fading out. By cycling through these textures at rendering time, the 
illusion of motion is achieved.  

Figure 7. Volume rendering with embedded vector 
icons. The white clouds represent percent 
cloudiness and the colored icons represent wind 
velocity directions in this global climate simulation. 
The icons are colored according to altitude. 



R. Crawfis, H. Shen, N. Max 
 

 64-89th International Symposium on Flow Visualization, Heriot-Watt University, Edinburgh, 2000
Editors G M Carlomagno and I Grant.  

The same authors developed 
several more techniques to represent 
flow fields using an anisotropic or 
textured volume rendering. The Line 
Bundles techniques [27, 28] rely on the 
graphics hardware to create texture by 
rendering and compositing many semi-
transparent line segments. Using a 
splatting analogy, each data point is 
rendered with pre-computed sets of 
rendered line segments. The colors of 
these line segments are slightly 
perturbed to provide a colored pattern. 
As these line bundles are composited 
together in a back-to-front order, an 
anisotropic volume rendering results. 
Figure 8. illustrates this technique 
applied to the aerogel simulation. The 
colors represent the velocity magnitude, 
with magenta representing high 
velocity, while yellow and then 
transparent represent low velocities. 
This technique allows one to view the 
velocity magnitude, much like a normal 
volume rendering. However, the directionality is clearly evident in the volume rendering. Figure 9. 
shows another example with more opaque line bundles. Here, a test data set is rendered with colors 
again representing the vector magnitude. Blue represents lower velocities than red. The 
illumination model for curves of Banks [12] is used in the rendering, providing a better sense of 
curvature.  

2.3 Topology Techniques 

Topological techniques can be quite effective in capturing the global features of a flow field. 
Helman and Hesslink [29] proposed to analyze the vector field topology based on critical point 
classification, which has been widely used to analyze solution trajectories of ordinary differential 

equations. Critical points are points that have zero 
vector magnitude. In two dimensional flow fields, 
they can be found analytically by solving a 
simultaneous bilinear equation. For three dimensional 
field data, numerical method such as Newton-
Raphson can be used to locate the critical points. To 
classify the critical points, the eigenvalues and 
eigenvectors of their corresponding Jacobian matrices 
can be computed.  Based on the signs of eigenvalues, 
the critical point can be classified as Repelling Focus, 
Saddle Point, Repelling Node, Attracting Focus, 
Center, or Attracting Node. To understand the flow 
field, a topology skeleton can be created by tracing 
streamlines starting from the neighboring region of 
the critical point, and following the direction of 
eigenvectors.   

Vector topology analysis is an effective tool that 
can be used to understand the flow field. However, 
some practical issues can affect the effectiveness of 

Figure 8. The flow velocity through the simulated aerogel 
is represented with the Line Bundles techniques. The 
colors represent the velocity magnitude. 

Figure 9. The Line Bundles technique using 
a better illumination model for curves. 
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this approach. First, precise streamlines connecting critical points are difficult to compute using 
numerical integration method. This is because critical points usually exist in regions with high 
gradients and discontinuity and most of the numerical me thods are not capable of producing 
accurate results in those regions. The second problem is that flow topology based on the critical 
point theory does not  necessarily exhaust interesting flow phenomena in the field. Sometimes, 
scientists want to know flow directions in regions surrounding certain objects where no critical 
points may exist.  

3 CONCLUSIONS  

This paper has given an overview of many of the techniques available for the visualization of 
three-dimensional vector fields. A characterization into advection, texture, and topology techniques 
has been introduced to serve as a discussion for analyzing the task of understanding flow fields. 
Advection techniques can work quite well for 2D or 3D steady-state flows using streamlines for 2D 
and flow volumes for 3D. These techniques are particularly beneficial when the task is to 
understand the downstream behavior of the flow, that is, to understand where some contaminants or 
pollution will eventually end up. For time -varying flows, this question can still be answered, 
provided the techniques are stable enough to handle the flow folding back upon itself. In general, 
the analysis of 3D time-varying flows is very difficult with these techniques. The texture-based 
techniques provide a comprehensive pattern of the flow direction, so important features are not 
missed. This works extremely well in 2D and can support time-varying flows with little additional 
effort. For three-dimensions, the patterns are too dense to provide a view of the entire field. The 
region of the flow to be represented is usually limited to those areas containing high velocity 
values. While some nice results have been obtained with the results presented here, much more 
research is needed before truly useful tools are widely adopted. In particular, even though many of 
the tools can handle time -varying data, the analysis of time is usually limited to a serial process. 
This forces the user to remember the previous time-step in the texture models. 
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