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Abstract: 
The interactive and high quality rendering of 

very complex scenes in a virtual environment is 
very difficult if not impossible to achieve. This 
research extends our previous EGVE paper that 
presents a panoramic walkthrough system, 
allowing the user to move inside the datasets on 
a pre-defined track and look around interactively 
in both the horizontal and vertical directions. 
The interactivity is achieved by using Image-
Based Rendering ideas to pre-compute the 
partial renderings for the reference viewpoints 
chosen on the track and store them on the server 
so that the client can retrieve and reconstruct 
novel views using the appropriate information. 
In this paper, we present simple and efficient 
methods to partition the scene into depth layers 
to avoid occlusion and dis-occlusion problems. 
We also present a novel track-dependent 
occlusion cullion algorithm to efficiently cull 
away unnecessary information. The system is 
tested using several scenes and provides real-
time walkthroughs on even the most challenging 
scenes. 

 
Keywords: Image-based Rendering, Occlusion 
culling, Mesh simplification, Virtual 
Walkthrough 
 
1. Introduction: 

Complex renderings such as ray-tracing, 
global illumination, soft shadows and anti-
aliasing can take a long time to render even some 
simple scenes. With very complex scenes such as 
those appearing at POVRAY’s [20] competition 
site, can take hours or even days to finish 
rendering one frame.  Therefore, interactivity for 
this kind of virtual environment is not possible. 

 
{yangl, crawfis}@cis.ohio-state.edu 
395 Dreese Lab, 2015 Neil Ave., Columbus, OH 
43210, USA 

 
 
 
 
 
 
 
 

Without interactivity, the end-user has a much 
more difficult time in building a mental model of 
the environment. One of our primary goals was 
to provide a very low-latency framework that 
allows the user to stay focused on the scene, 
rather than the limitations of any system. Since 
interactive rates were impossible for complex 
rendering of virtual scenes, this implies that the 
resulting rendering or imagery needs to be pre-
computed and more readily available. We apply 
Image-Based Rendering (IBR) ideas. With 
reference views on a pre-defined path we store 
the resulting imagery on a server, from which the 
client can request and build appropriate IBR 
models to reconstruct novel views.  

Our goals for this project were therefore: 
i. To pre-compute information such that the 

resulting visualizations are accurate at many 
different viewpoints. 

ii. Utilize efficient image-based rendering 
(IBR) techniques as a cognitive tool to move 
from one accurate view to another. 

iii. Allow for extremely high-resolution 
imagery in the interactive IBR framework. 

iv. Separate the pre-computed imagery from the 
resulting viewing platform over high-speed 
networks. 

v. Provide a general enough framework, such 
that many different rendering packages can 
be integrated into it. 

vi. Finally, guarantee interactive frame-rates 
regardless of the data/scene complexity. 

 
Our IBR viewer, unlike other per-pixel based 

models [10][11], can utilize 2D texture hardware 
to accelerate the rendering, allowing for 
interactive frame rates on relatively large 
displays (over 1Kx1K). Our viewer, which we 
term a rail-track viewer, allows the user to move 
inside the scene on user-selected paths and view 
the outside scenery in any viewing direction. It is 
an extension to QuickTime VR [1] or other 
panoramic based models [17] that incorporate 
depth information. 

In our previous research [18], we discussed a 
system that partitions the scene into layers and 
combines the neighboring viewpoints to 
reconstruct the viewpoint in between. As an 
extension, this paper concentrates on 
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demonstrating how to divide the scene into 
layers by a simple but efficient algorithm. We 
also present in this paper a novel texture culling 
technique to eliminate unnecessary information 
introduced by using multiple layers.  

Our contributions presented in this paper are:  
(1) A texture streaming client/server 

architecture for panoramic walkthrough 
(2) View-dependent layers to better address 

occlusion and dis-occlusion problems.  
(3) A simple and efficient way to partition the 

scene into panoramic depth layers 
(4) View-dependent IBR database compression, 

considering possible occlusion/dis-occlusion 
along the track segments. 

 
The paper is organized as follows: First we 

discuss relevant background and previous work 
in the IBR area. We then present an overview 
which summaries our system and previous work. 
We also present the way to partition the scene 
into layers. Next we discuss data management 
that includes an occlusion culling algorithm. 
Finally we present some test results and 
conclude with future work. 

 
2. Related Work: 

A lot of effort has been put into designing 
more accurate IBR systems. This is because IBR 
has a very important advantage over the 
traditional geometry-based rendering systems in 
that it has a bounded computational cost 
according to the input image resolution.  

QuickTime VR [1] is probably the earliest 
effort of IBR research. It has the ability to allow 
the user to look around horizontally and 
vertically (QuickTime VR only allows 360 
degrees in horizontal directions and spherical 
panoramic systems [17] allow for both horizontal 
and vertical directions). QuickTime VR system 
is simple and very efficient because it only uses 
implicit geometry relationships to reconstruct the 
scene. However, it also restricts the user to sit at 
the pre-defined viewpoint. It projects everything 
to the same radius cylinder. Darsa et al [4] 
suggests a way to introduce depth information 
into the cubical panoramic system to allow for a 
walkthrough. They use three blending methods 
to reconstruct the views between two pre-defined 
viewpoints. Cohen-Or et al [2] introduces the 
idea of pre-defining a path and pre-computing 
the geometry and textures for the sampled 
viewpoints on the path. They use the texture 
mapping hardware to reconstruct the novel views 
in between. Both of these systems do not address 
the occlusion and dis-occlusion problems as 

described in the Layered Depth Image paper 
[15]. That is, when the user moves away from 
the pre-selected viewpoints, some features that 
were previously occluded in the original 
viewpoint can become visible. Without multiple 
layers of depth [6][15], these systems require 
several viewpoints to fill in the holes. A dense 
sampling is needed for this purpose, which 
increases the database size and puts more burden 
on storage and network transmissions and 
loading time. By utilizing multiple layers and 
culling away unnecessary information, our 
system can achieve more efficiency in this sense.  

Most of the previously introduced IBR 
systems concentrate on accurate renderings of 
relatively low-resolution imageries. These 
systems use per-pixel warping as described in 
[10][11][12][15][17]. Hardware texture mapping 
is not utilized and therefore the performance is 
not very fast for larger image resolutions. They 
are not suitable for our purpose, which is 
interactive management and walkthroughs of 
large datasets and complex scenes on a high-
resolution (over 1kx1k) display. Examples such 
as the LumiGraph [8] and Light-field Rendering 
systems [9] usually sample the viewing 
parameters very densely, requiring large storage 
spaces. There are some systems that utilize the 
texture hardware to accelerate the rendering 
performance, such as the previously mentioned 
Darsa et al [4] and Cohen-Or [2]’s work. The 
View Dependent Texture Mapping (VDTM) [5] 
is a typical example of using 2D texture 
hardware to accelerate the renderings. However, 
they do not sample the viewing direction 
adequately to allow for panoramic viewing. Our 
system [18] on the other hand, allows the user to 
move back and forth on a pre-defined track, with 
full rotational viewing directions.  
 
3. Overview: 

In our previous research [18], we described a 
system to interactively manage complex, time-
consuming renderings on a relatively large 
display. We allow the user to move inside the 
dataset on a pre-selected path and look around in 
both horizontal and vertical directions. The 
system consists of a two-phase pipeline as in 
Figure 1. The first step allows the user to select 
his/her own rendering engines to pre-render the 
datasets. A depth image along with the color 
image is acquired for each reference viewpoint. 
The resulting geometries and imageries are then 
pre-processed to a more manageable format and 
stored on the disk of the server.  
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Figure 1: System diagram – a two-phase pipeline is used. The first step uses different rendering engines to pre-render 
the datasets. The resulting geometries and imageries are pre-processed to a more manageable format and stored on a 
disk or the server. Whenever the client needs the data, it sends the necessary information across the network to the 
server and the server retrieves the related data from the database and sends it down the network to the client. Both the 
server and the client maintain their own cache for fast data access.  
 

In the second step, whenever the client needs 
the data, it sends the necessary information 
across the network to the server and the server 
retrieves the related data from the database and 
sends them down the network to the client. Both 
the server and the client maintain their own 
cache for fast data access. The client can then 
reconstruct novel views when the data is ready. 
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Figure 2: shows the histogram of the depth map 
for the Nature dataset 

The IBR model we use on our client side is an 
extension of the QuickTime VR type of viewers, 
which lets the user move on the pre-defined 
track. To achieve this, we incorporated the depth 
values into the IBR systems as proposed by 
Darsa et al [4]. In our previous work, based on 
visibility polyhedrons [13] we derived the 
theories of how to combine close-by reference 
views sampled on the track to reconstruct the 
information for the novel viewpoints. We then 
described a scheme to partition the scene into 
several depth ranges, which we call slabs, by 
setting the near and far clipping planes of our 
pre-render. A binary opacity mask is assigned for 
each pixel to enable per-pixel occlusion. The 
reason we adopted depth slabs was to address 
occlusion and dis-occlusion problems described 
in the previous work section. This works similar 
to Layered Depth Images [15]. However, we 
obtained improved rendering performance, with 
View Dependent Texture Mapping and 2D 
texture hardware. A front to back or back to front 
compositing of the slabs gives us the complete 
description of one viewpoint. To move smoothly 
from one viewpoint to another, we use a non-



Yang/Crawfis: A Panoramic Walkthrough System with Occlusion Culling 

Submitted to Eurographics Workshop on Virtual Environment 2003 
Wednesday, January 15, 2003 

4

linear interpolation scheme to combine the close-
by reference viewpoints for reconstructing the 
novel views. By doing this, we guarantee that at 
the vantage viewpoints, our IBR renderer can 
achieve accurate renderings while the in-between 
views exhibit only small errors. Our previous 
paper [18] provides a detailed description of the 
slab representation and interpolation scheme. 

Decoret et al [6] finds separating planes by 
grouping the objects according to their distances. 
However, it is not trivial to group the objects in a 
very complicated scene. We divide the scene into 
the slabs by analyzing the histogram of the depth 
map of the entire scene. Figure 2 shows the 
histogram of the depth map for the Nature 
dataset [21]. By analyzing the figure, we can see 
that most of the depth values appear in the range 
of 0 – 10000 with the largest peak at about 0 – 
1000. Another peak appears between 30000 – 
60000. We therefore set the slab ranges to be 0 – 
1000, 1000 – 10000 and 10000 – 100000 
respectively. This is a crude algorithm for 
selecting these partitions, but works well in 
practice and is easily incorporated into the 
existing renderers.  

Using slabs we can better address occlusion 
and dis-occlusion problems. However, it also 
saves information which are never visible on the 
local track segment. This will hurt the storage, 
loading and rendering performance. In this 
paper, a track dependent occlusion culling 
algorithm is utilized to remove this unnecessary 
data and improve the rendering performance. 

This will be addressed in detail in the next 
section.  

 
4. Texture Removal Using Track Dependent 
Occlusion Culling: 

The slab representation is used to better 
address the occlusion and dis-occlusion 
problems. As the user moves away from the 
reference viewpoint, previously occluded 
information can be rendered using later slabs. 
However, the problem with partitioning and pre-
rendering scenes into several slabs is that it 
produces unnecessary information. Consider the 
example in Figure 3. In this example, we have 
three reference viewpoints on the track segment: 
V1, V2 and V3. Objects O2, O3 and O4 are 
occluded by Object O1 for V1 but are rendered 
and stored in slab2. O2 is visible from V2 and O4 
is visible from V3. Hence, when the user moves 
away from V1 towards V2, the information stored 
in slab2 of V1 is used to represent O2. Likewise 
for O4. However in this example, O3 is not 
visible from any viewpoint along the track 
segments. Without occlusion culling we would 
still render O3 and store the result in slab2 as part 
of the texture map, which is unnecessary. This 
unnecessary data affects the storage cost, 
network transmission time and the rendering 
performance. A conservative track dependent 
occlusion-culling scheme is thus developed to 
remove these occluded textures.  
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Figure 3. Objects O2, O3 and O4 are occluded by Object O1 for V1 and therefore are rendered and stored in the slab2. O2 
is visible for V2 and O4 is visible for V3. However O3 is not visible from any of the viewpoints along these track 
segments. 
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Figure 4: (a) and (b) the extended projections for occluder and occludee tile respectively, with regard to three 
viewpoints on the track. (c) The occlusion culling setup after conservative simplification of depth. h1 is the distance 
from the viewpoint to slab1 and h2 is the largest depth of the occludee tile. (d) Geometry used to calculate d21 
  

We call this algorithm track dependent 
occlusion-culling because we need to consider 
current and neighboring viewpoints for the 
algorithm. How much information is occluded 
depends on the sampling rate of the reference 
views on the pre-selected track. Durand et al [7] 
introduced an algorithm that combines multiple 
viewpoints into one cell. Occlusions of the 
objects are calculated for the whole cell. They 
introduced the extended projection operators. 
The extended projection for the occluder is the 
intersection of the views within the cell, while 
the extended projection for the occludee is the 
union of the views within the cell. To calculate 
the occlusion, we need to compare the extended 
projections of the occluders and occludees. As 
pointed out in our previous paper [18], the depth 
slabs are down-sampled to quad-meshes and the 
textures are partitioned into tiles accordingly. We 
therefore perform our occlusion culling 

algorithm for all the tiles in all slabs. We want to 
determine whether potential tiles in the later 
slabs are occluded by those in the previous slabs 
for both the current and the neighboring two 
viewpoints. Therefore in our algorithm, we 
consider current and neighboring viewpoints as a 
cell and texture tiles of the early slabs to be 
occluders and texture tiles of the later slabs to be 
occludees. The algorithm works as follows. For 
each reference viewpoint, we first build an 
occlusion map and fill the map with the opacity 
values of the projected first slab texture tiles. We 
treat the slab textures in a front to back order, 
considering each tile in each slab to see whether 
it is occluded. The occlusion is performed by 
comparing the extended projections of the 
occluders: texture tiles from the previous slab 
and the extended projections of the occludees: 
texture tiles from the later slab. Figure 4 (a) and 
(b) show the extended projections of occluder 
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tiles and occludee tiles, with regard to the current 
viewpoint V1 and its neighboring viewpoints V2 
and V3. If the extended projection of the 
occludee falls in that of the occluder, the 
occludee is occluded. In practice, we use the 
opacity map of the first slab as our starting 
occlusion map and then convolve (average) the 
window in the occlusion map with the size of 
extended projection of the occludee. If the result 
is 1, the occludee tile is occluded. For easier 
calculation, we make several conservative 
simplifications. According to [7], for non-flat 
tiles, the depth of the occluder is the maximum 
depth of the tile while the depth of the occludee 
is the minimum depth of the tile. For all the 
occluder tiles, we chose the slab depth which is 
larger than any maximum tile depth as another 
conservative simplification. By taking the 
minimum depth of the occludee tile and the slab 
depth, we can consider them as flat tiles and 
therefore we have a setup as in Figure 4 (c). 

Each tile in our system has a width of w. 
Considering the projections of V2 and V3, we 
now need to convolve (average) an extended area 
with a width of w + s1 + s2 in the opacity map to 
see if the result equals 1. Considering the 2D 
case, s1 can be calculated using the following 
equation. 

 21
2

12
1 d

h
hhs ×

−
=   (1) 

In which h1, h2 are the distance from the 
viewpoint to slab1 and slab2 respectively. To 
calculate d21, consider Figure 4 (d).  
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A similar equation can be used to calculate s2. 
If the averaged opacity value of the enlarged 
window is one, we mark the tile as an empty tile 
and do not store the geometry and color 
information. If the value is less than one, the tile 
is not occluded and we update the occlusion 
map. We treat all the tiles in one slab and 
continue to the next one until all the slabs are 
processed. As pointed out in [3][12][19], we can 
use a method similar toα -acceleration, which 
lowers the opacity threshold to less than one to 

cull the tiles more efficiently without degrading 
the quality of the rendering results too much. 

We tested our occlusion culling algorithm on 
the castle [22] dataset. The scene is partitioned 
into three slabs. After culling, we can reduce the 
information in the second slab by 77% from 6.69 
MB to 1.54 MB. The storage requirement for the 
third slab is reduced by 72% from 3.09 MB to 
0.92 MB. This is without the α -acceleration. 
With α  set to 0.9, the reduction rates are 80% 
and 77% for the second and the third slab. The 
reduction rates reach 82% and almost 90% when 
the α value is set to 0.8. This can be shown in 
Table 1. The rendering results using different α  
values are shown in Figure 5. The red circles 
indicate artifacts with decreasing the α  
threshold. From the figure we can see that the 
rendering quality doesn’t degrade too much if we 
set a reasonable α value. The results show that 
the track dependent occlusion culling is quite 
efficient for this dataset. It can reduce the storage 
requirement and decrease the network 
transmission time. The pre-fetching efficiency 
and rendering performance can also be improved 
because with fixed amount of cache memory and 
the occlusion technique, we can cache more 
viewpoints along the track. Another benefit is 
that it can reduce the rendering cost/overhead 
that is caused by increasing the number of slabs. 
More slabs can address the occlusion/dis-
occlusion problem better. Using the occlusion 
culling technique, less information will be left 
for later slabs after culling. Therefore, increasing 
the number of slabs does not affect the rendering 
speed too much.  

The efficiency of the algorithm is highly 
dataset-dependent. For the Nature dataset [21] 
we tested, the scene is more open and therefore 
our slab representation does not have too much 
unnecessary information in the first place. We 
can only cull about 2 percent without α -
acceleration and 10% with α -acceleration. This 
is shown in Table 2. Even though for some cases 
we can’t cull too much information for some 
datasets, we should note one thing for our 
system. The occlusion culling is performed as a 
pre-processing step and therefore there won’t be 
any performance penalty during the run-time.  

From the results, we can see that our track-
dependent occlusion culling can help us 
efficiently cull away unnecessary information 
and therefore save for storage space and network 
resource as well as improving performance. In 
the meantime, the rendering quality is not 
degraded. 
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Slab1 Slab2 Slab3  

Before After Reduction 
Rate 

Before After Reduction 
Rate 

Before After Reduction 
Rate 

Tiles 3228 3228 0 1556 352 77.4% 708 197 72.2%  
α =1.0 Size (MB) 13.38 13.38 0 6.69 1.544 77% 3.09 0.92 70.3% 

Tiles 3228 3228 0 1556 307 80.7% 708 161 77.3%  
α =0.9 Size (MB) 13.38 13.38 0 6.69 1.34 80.0% 3.09 0.75 75.6% 

Tiles 3228 3228 0 1556 283 81.9% 708 143 89.8%  
α =0.8

 
Size (MB) 13.38 13.38 0 6.69 1.23 81.7% 3.09 0.647 89% 

Table1. Reduction Rates for Track Dependent Occlusion Culling using different α values for Castle Dataset 
 

Slab1 Slab2 Slab3  

Before After Reduction 
Rate 

Before After Reduction 
Rate 

Before After Reduction 
Rate 

Tiles 1864 1864 0 408 398 2.5% 249 249 0  
α =1.0 Size (MB) 7.717 7.717 0 2.057 2.01 2.3% 1.03 1.03 0 

Tiles 1864 1864 0 408 382 6.4% 249 246 1.2%  
α =0.9 Size (MB) 7.717 7.717 0 2.057 1.93 6.2% 1.03 1.02 1% 

Tiles 1864 1864 0 408 367 10% 249 242 2.9%  
α =0.8

 
Size (MB) 7.717 7.717 0 2.057 1.87 9.1% 1.03 1.01 2% 

Table 2. Reduction Rates for Track Dependent Occlusion Culling using different α values for Nature Dataset 
 
6. Results:  

We implemented the image-based framework 
as a proof of concept to manage complex 
renderings at high image resolutions and 
interactive frame rates using only off-the-shelf 
texture mapping hardware. Our system is 
implemented in Java / Java3D. Almost all 
renderers can be configured to pre-compute the 
image layers. We use POVRAY in the results 
shown here.  

We tested our system on three POVRAY 
datasets. One is the “Nature” dataset from the 
POVRAY quarterly-competition website [21]. 
The scene contains trees, bushes, rocks and birds 
and is quite complicated. It takes about 10-20 
minutes to render one 1kx1k frame using 
POVRAY on our Pentium 4 2GHZ, 2GB Dell 
Precision 530 workstation. One path was chosen 
for this scene with 20 sampled viewpoints along 
the track. Three panoramic layers with a 
resolution of 1024x4096 per layer were pre-
computed for each view sample. The total size 
for the image database after pre-processing was 

220MB. Without empty tile removal and track-
dependent occlusion culling it would require 
over 1.2GB. Another dataset is the “Castle” 
dataset from the same source [22]. This dataset is 
even more complicated and takes several hours 
to generate one 1024x1024 frame. We chose a 
path with 10 reference viewpoints. Three 
panoramic layers with a resolution of 1024x4096 
per layer were pre-computed for each view 
sample. We also tested a Night [22] dataset 
which was obtained from the same source on the 
web. 

We tested our IBR walkthrough system on two 
workstations. On our Sun Blade 1000 with dual 
Ultra-Sparc III 750 MHZ, 1GB of memory and 
an Elite 3D graphics card with 64MB of video 
memory, we achieve a frame rate of 10-15 
frames per second for the three datasets. With 
our Dell Precision 530 workstation with Pentium 
4 2GHZ, 2GB of memory and Nvidia Geforce 4 
Titanium 4600 graphics card with 128MB of 
video memory, we achieve a frame rate of 20-30 
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frames per second for all datasets. Some test 
results are shown in Figures 6.  

 
7. Conclusions and Future Work:  

In this paper we presented extensions to our 
previous paper [18]. Compared to our previous 
work, we use the occlusion culling algorithm to 
make the system more efficient and present a 
way to better partition the scene into layers.  

With the existing data management 
techniques, our database still tends to be very 
large, especially with larger resolution and finer 
sampling. However, this is not something that 
we didn’t expect. We trade storage for rendering 
efficiency and low-cost texture streaming. This 
allows us to render extremely large resolution 
and offers an advantage over other high-quality 
IBR techniques.  

Again our contributions include a texture 
streaming client/server architecture for 
panoramic walkthrough and using view-
dependent layers to better address occlusion and 
dis-occlusion problems. A simple however 
efficient way is used to partition the scene into 
layers. We also use a track-dependent IBR 
database compression scheme considering 
possible occlusion culling along the track 
segments. 

We need to point out here that how we sample 
the pre-defined track was not addressed in this 
paper in detail. The sampling rate can be either 
user defined, chosen by the database designer or 
at fixed intervals. It can also be controlled by the 
maximum mean squared errors allowed for the 
reconstructed scenes along the track, which will 
be one of the future works. 

Future work also requires us to look at 
appropriate tile compression techniques to 
further reduce the data storage and network 
transmission overheads.  
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Figure 5. Shows the rendering images with track dependent occlusion culling with α values equal to 1, 0.9 and 0.8 
respectively. Notice the artifacts indicated by the red circle when decreasing theα threshold. 
 

      
 

  
Figure 6: Rendering results for Nature, Castle and Night datasets. 
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