
Yang/Crawfis: A Panoramic Walkthroughs System with Occlusion Culling

Submitted to Eurographics Workshop on Virtual Environment 2003
Wednesday, January 15, 2003

1

A Panoramic Walkthrough System with Occlusion Culling

Lining Yang, Roger Crawfis
Department of Computer and Information Science

The Ohio State University

Abstract:
The interactive and high quality rendering of

very complex scenes in a virtual environment is
very difficult if not impossible to achieve. This
research extends our previous EGVE paper that
presents a panoramic walkthrough system,
allowing the user to move inside the datasets on
a pre-defined track and look around interactively
in both the horizontal and vertical directions.
The interactivity is achieved by using Image-
Based Rendering ideas to pre-compute the
partial renderings for the reference viewpoints
chosen on the track and store them on the server
so that the client can retrieve and reconstruct
novel views using the appropriate information.
In this paper, we present simple and efficient
methods to partition the scene into depth layers
to avoid occlusion and dis-occlusion problems.
We also present a novel track-dependent
occlusion cullion algorithm to efficiently cull
away unnecessary information. The system is
tested using several scenes and provides real-
time walkthroughs on even the most challenging
scenes.

Keywords: Image-based Rendering, Occlusion
culling, Mesh simplification, Virtual
Walkthrough

1. Introduction:

Complex renderings such as ray-tracing,
global illumination, soft shadows and anti-
aliasing can take a long time to render even some
simple scenes. With very complex scenes such as
those appearing at POVRAY’s [20] competition
site, can take hours or even days to finish
rendering one frame. Therefore, interactivity for
this kind of virtual environment is not possible.

{yangl, crawfis}@cis.ohio-state.edu
395 Dreese Lab, 2015 Neil Ave., Columbus, OH
43210, USA

Without interactivity, the end-user has a much
more difficult time in building a mental model of
the environment. One of our primary goals was
to provide a very low-latency framework that
allows the user to stay focused on the scene,
rather than the limitations of any system. Since
interactive rates were impossible for complex
rendering of virtual scenes, this implies that the
resulting rendering or imagery needs to be pre-
computed and more readily available. We apply
Image-Based Rendering (IBR) ideas. With
reference views on a pre-defined path we store
the resulting imagery on a server, from which the
client can request and build appropriate IBR
models to reconstruct novel views.

Our goals for this project were therefore:
i. To pre-compute information such that the

resulting visualizations are accurate at many
different viewpoints.

ii. Utilize efficient image-based rendering
(IBR) techniques as a cognitive tool to move
from one accurate view to another.

iii. Allow for extremely high-resolution
imagery in the interactive IBR framework.

iv. Separate the pre-computed imagery from the
resulting viewing platform over high-speed
networks.

v. Provide a general enough framework, such
that many different rendering packages can
be integrated into it.

vi. Finally, guarantee interactive frame-rates
regardless of the data/scene complexity.

Our IBR viewer, unlike other per-pixel based

models [10][11], can utilize 2D texture hardware
to accelerate the rendering, allowing for
interactive frame rates on relatively large
displays (over 1Kx1K). Our viewer, which we
term a rail-track viewer, allows the user to move
inside the scene on user-selected paths and view
the outside scenery in any viewing direction. It is
an extension to QuickTime VR [1] or other
panoramic based models [17] that incorporate
depth information.

In our previous research [18], we discussed a
system that partitions the scene into layers and
combines the neighboring viewpoints to
reconstruct the viewpoint in between. As an
extension, this paper concentrates on

Yang/Crawfis: A Panoramic Walkthroughs System with Occlusion Culling

Submitted to Eurographics Workshop on Virtual Environment 2003
Wednesday, January 15, 2003

2

demonstrating how to divide the scene into
layers by a simple but efficient algorithm. We
also present in this paper a novel texture culling
technique to eliminate unnecessary information
introduced by using multiple layers.

Our contributions presented in this paper are:
(1) A texture streaming client/server

architecture for panoramic walkthrough
(2) View-dependent layers to better address

occlusion and dis-occlusion problems.
(3) A simple and efficient way to partition the

scene into panoramic depth layers
(4) View-dependent IBR database compression,

considering possible occlusion/dis-occlusion
along the track segments.

The paper is organized as follows: First we

discuss relevant background and previous work
in the IBR area. We then present an overview
which summaries our system and previous work.
We also present the way to partition the scene
into layers. Next we discuss data management
that includes an occlusion culling algorithm.
Finally we present some test results and
conclude with future work.

2. Related Work:

A lot of effort has been put into designing
more accurate IBR systems. This is because IBR
has a very important advantage over the
traditional geometry-based rendering systems in
that it has a bounded computational cost
according to the input image resolution.

QuickTime VR [1] is probably the earliest
effort of IBR research. It has the ability to allow
the user to look around horizontally and
vertically (QuickTime VR only allows 360
degrees in horizontal directions and spherical
panoramic systems [17] allow for both horizontal
and vertical directions). QuickTime VR system
is simple and very efficient because it only uses
implicit geometry relationships to reconstruct the
scene. However, it also restricts the user to sit at
the pre-defined viewpoint. It projects everything
to the same radius cylinder. Darsa et al [4]
suggests a way to introduce depth information
into the cubical panoramic system to allow for a
walkthrough. They use three blending methods
to reconstruct the views between two pre-defined
viewpoints. Cohen-Or et al [2] introduces the
idea of pre-defining a path and pre-computing
the geometry and textures for the sampled
viewpoints on the path. They use the texture
mapping hardware to reconstruct the novel views
in between. Both of these systems do not address
the occlusion and dis-occlusion problems as

described in the Layered Depth Image paper
[15]. That is, when the user moves away from
the pre-selected viewpoints, some features that
were previously occluded in the original
viewpoint can become visible. Without multiple
layers of depth [6][15], these systems require
several viewpoints to fill in the holes. A dense
sampling is needed for this purpose, which
increases the database size and puts more burden
on storage and network transmissions and
loading time. By utilizing multiple layers and
culling away unnecessary information, our
system can achieve more efficiency in this sense.

Most of the previously introduced IBR
systems concentrate on accurate renderings of
relatively low-resolution imageries. These
systems use per-pixel warping as described in
[10][11][12][15][17]. Hardware texture mapping
is not utilized and therefore the performance is
not very fast for larger image resolutions. They
are not suitable for our purpose, which is
interactive management and walkthroughs of
large datasets and complex scenes on a high-
resolution (over 1kx1k) display. Examples such
as the LumiGraph [8] and Light-field Rendering
systems [9] usually sample the viewing
parameters very densely, requiring large storage
spaces. There are some systems that utilize the
texture hardware to accelerate the rendering
performance, such as the previously mentioned
Darsa et al [4] and Cohen-Or [2]’s work. The
View Dependent Texture Mapping (VDTM) [5]
is a typical example of using 2D texture
hardware to accelerate the renderings. However,
they do not sample the viewing direction
adequately to allow for panoramic viewing. Our
system [18] on the other hand, allows the user to
move back and forth on a pre-defined track, with
full rotational viewing directions.

3. Overview:

In our previous research [18], we described a
system to interactively manage complex, time-
consuming renderings on a relatively large
display. We allow the user to move inside the
dataset on a pre-selected path and look around in
both horizontal and vertical directions. The
system consists of a two-phase pipeline as in
Figure 1. The first step allows the user to select
his/her own rendering engines to pre-render the
datasets. A depth image along with the color
image is acquired for each reference viewpoint.
The resulting geometries and imageries are then
pre-processed to a more manageable format and
stored on the disk of the server.

Yang/Crawfis: A Panoramic Walkthroughs System with Occlusion Culling

Submitted to Eurographics Workshop on Virtual Environment 2003
Wednesday, January 15, 2003

3

Pre−renderer and
Pre−processor

POVRAY
VTK
RADIANCE
AVS ...

Server−side

Caching

Pre−fetching

IBR Database

Client Display Reconstruction

Interpolation

Using Java 3D

Client−side

Caching

Pre−fetching

Network

I

II

Figure 1: System diagram – a two-phase pipeline is used. The first step uses different rendering engines to pre-render
the datasets. The resulting geometries and imageries are pre-processed to a more manageable format and stored on a
disk or the server. Whenever the client needs the data, it sends the necessary information across the network to the
server and the server retrieves the related data from the database and sends it down the network to the client. Both the
server and the client maintain their own cache for fast data access.

In the second step, whenever the client needs
the data, it sends the necessary information
across the network to the server and the server
retrieves the related data from the database and
sends them down the network to the client. Both
the server and the client maintain their own
cache for fast data access. The client can then
reconstruct novel views when the data is ready.

0 1 2 3 4 5 6 7 8 9

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4 The Histogram of the Depth Map

Depth Bins

N
um

be
r

of
 P

ix
el

 P
er

 D
ep

th
 B

in

Figure 2: shows the histogram of the depth map
for the Nature dataset

The IBR model we use on our client side is an
extension of the QuickTime VR type of viewers,
which lets the user move on the pre-defined
track. To achieve this, we incorporated the depth
values into the IBR systems as proposed by
Darsa et al [4]. In our previous work, based on
visibility polyhedrons [13] we derived the
theories of how to combine close-by reference
views sampled on the track to reconstruct the
information for the novel viewpoints. We then
described a scheme to partition the scene into
several depth ranges, which we call slabs, by
setting the near and far clipping planes of our
pre-render. A binary opacity mask is assigned for
each pixel to enable per-pixel occlusion. The
reason we adopted depth slabs was to address
occlusion and dis-occlusion problems described
in the previous work section. This works similar
to Layered Depth Images [15]. However, we
obtained improved rendering performance, with
View Dependent Texture Mapping and 2D
texture hardware. A front to back or back to front
compositing of the slabs gives us the complete
description of one viewpoint. To move smoothly
from one viewpoint to another, we use a non-

Yang/Crawfis: A Panoramic Walkthrough System with Occlusion Culling

Submitted to Eurographics Workshop on Virtual Environment 2003
Wednesday, January 15, 2003

4

linear interpolation scheme to combine the close-
by reference viewpoints for reconstructing the
novel views. By doing this, we guarantee that at
the vantage viewpoints, our IBR renderer can
achieve accurate renderings while the in-between
views exhibit only small errors. Our previous
paper [18] provides a detailed description of the
slab representation and interpolation scheme.

Decoret et al [6] finds separating planes by
grouping the objects according to their distances.
However, it is not trivial to group the objects in a
very complicated scene. We divide the scene into
the slabs by analyzing the histogram of the depth
map of the entire scene. Figure 2 shows the
histogram of the depth map for the Nature
dataset [21]. By analyzing the figure, we can see
that most of the depth values appear in the range
of 0 – 10000 with the largest peak at about 0 –
1000. Another peak appears between 30000 –
60000. We therefore set the slab ranges to be 0 –
1000, 1000 – 10000 and 10000 – 100000
respectively. This is a crude algorithm for
selecting these partitions, but works well in
practice and is easily incorporated into the
existing renderers.

Using slabs we can better address occlusion
and dis-occlusion problems. However, it also
saves information which are never visible on the
local track segment. This will hurt the storage,
loading and rendering performance. In this
paper, a track dependent occlusion culling
algorithm is utilized to remove this unnecessary
data and improve the rendering performance.

This will be addressed in detail in the next
section.

4. Texture Removal Using Track Dependent
Occlusion Culling:

The slab representation is used to better
address the occlusion and dis-occlusion
problems. As the user moves away from the
reference viewpoint, previously occluded
information can be rendered using later slabs.
However, the problem with partitioning and pre-
rendering scenes into several slabs is that it
produces unnecessary information. Consider the
example in Figure 3. In this example, we have
three reference viewpoints on the track segment:
V1, V2 and V3. Objects O2, O3 and O4 are
occluded by Object O1 for V1 but are rendered
and stored in slab2. O2 is visible from V2 and O4
is visible from V3. Hence, when the user moves
away from V1 towards V2, the information stored
in slab2 of V1 is used to represent O2. Likewise
for O4. However in this example, O3 is not
visible from any viewpoint along the track
segments. Without occlusion culling we would
still render O3 and store the result in slab2 as part
of the texture map, which is unnecessary. This
unnecessary data affects the storage cost,
network transmission time and the rendering
performance. A conservative track dependent
occlusion-culling scheme is thus developed to
remove these occluded textures.

��������
��������
��������
��������

��������
��������
��������
������������

����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

V
V V

O

O O
O2

3 4

2

1

3

1

Slab
Slab

1

2

Figure 3. Objects O2, O3 and O4 are occluded by Object O1 for V1 and therefore are rendered and stored in the slab2. O2
is visible for V2 and O4 is visible for V3. However O3 is not visible from any of the viewpoints along these track
segments.

Yang/Crawfis: A Panoramic Walkthrough System with Occlusion Culling

Submitted to Eurographics Workshop on Virtual Environment 2003
Wednesday, January 15, 2003

5

��
��
��

��
��
��

V

V
V V

1

1
23

w h

h

s s

d

d

1

12

21

13

2

(d)

(a) (b)

(c)

Tile to be tested
P Q

V3 V2 V2
V1V3

Tile

Tile

Projection

Projection

h

V1

d 21

Q

x

l’
l

V2

α β

β

Figure 4: (a) and (b) the extended projections for occluder and occludee tile respectively, with regard to three
viewpoints on the track. (c) The occlusion culling setup after conservative simplification of depth. h1 is the distance
from the viewpoint to slab1 and h2 is the largest depth of the occludee tile. (d) Geometry used to calculate d21

We call this algorithm track dependent
occlusion-culling because we need to consider
current and neighboring viewpoints for the
algorithm. How much information is occluded
depends on the sampling rate of the reference
views on the pre-selected track. Durand et al [7]
introduced an algorithm that combines multiple
viewpoints into one cell. Occlusions of the
objects are calculated for the whole cell. They
introduced the extended projection operators.
The extended projection for the occluder is the
intersection of the views within the cell, while
the extended projection for the occludee is the
union of the views within the cell. To calculate
the occlusion, we need to compare the extended
projections of the occluders and occludees. As
pointed out in our previous paper [18], the depth
slabs are down-sampled to quad-meshes and the
textures are partitioned into tiles accordingly. We
therefore perform our occlusion culling

algorithm for all the tiles in all slabs. We want to
determine whether potential tiles in the later
slabs are occluded by those in the previous slabs
for both the current and the neighboring two
viewpoints. Therefore in our algorithm, we
consider current and neighboring viewpoints as a
cell and texture tiles of the early slabs to be
occluders and texture tiles of the later slabs to be
occludees. The algorithm works as follows. For
each reference viewpoint, we first build an
occlusion map and fill the map with the opacity
values of the projected first slab texture tiles. We
treat the slab textures in a front to back order,
considering each tile in each slab to see whether
it is occluded. The occlusion is performed by
comparing the extended projections of the
occluders: texture tiles from the previous slab
and the extended projections of the occludees:
texture tiles from the later slab. Figure 4 (a) and
(b) show the extended projections of occluder

Yang/Crawfis: A Panoramic Walkthrough System with Occlusion Culling

Submitted to Eurographics Workshop on Virtual Environment 2003
Wednesday, January 15, 2003

6

tiles and occludee tiles, with regard to the current
viewpoint V1 and its neighboring viewpoints V2
and V3. If the extended projection of the
occludee falls in that of the occluder, the
occludee is occluded. In practice, we use the
opacity map of the first slab as our starting
occlusion map and then convolve (average) the
window in the occlusion map with the size of
extended projection of the occludee. If the result
is 1, the occludee tile is occluded. For easier
calculation, we make several conservative
simplifications. According to [7], for non-flat
tiles, the depth of the occluder is the maximum
depth of the tile while the depth of the occludee
is the minimum depth of the tile. For all the
occluder tiles, we chose the slab depth which is
larger than any maximum tile depth as another
conservative simplification. By taking the
minimum depth of the occludee tile and the slab
depth, we can consider them as flat tiles and
therefore we have a setup as in Figure 4 (c).

Each tile in our system has a width of w.
Considering the projections of V2 and V3, we
now need to convolve (average) an extended area
with a width of w + s1 + s2 in the opacity map to
see if the result equals 1. Considering the 2D
case, s1 can be calculated using the following
equation.

 21
2

12
1 d

h
hhs ×

−
= (1)

In which h1, h2 are the distance from the
viewpoint to slab1 and slab2 respectively. To
calculate d21, consider Figure 4 (d).

'21 lld −= (2)
While
 () xVQl

�

��

•−= 1 (3)
and

βtan

'
h

l = (4)

Here

 ()
2

2cos
VQ

xVQ
��

�

��

−

•−
=β (5)

A similar equation can be used to calculate s2.
If the averaged opacity value of the enlarged
window is one, we mark the tile as an empty tile
and do not store the geometry and color
information. If the value is less than one, the tile
is not occluded and we update the occlusion
map. We treat all the tiles in one slab and
continue to the next one until all the slabs are
processed. As pointed out in [3][12][19], we can
use a method similar toα -acceleration, which
lowers the opacity threshold to less than one to

cull the tiles more efficiently without degrading
the quality of the rendering results too much.

We tested our occlusion culling algorithm on
the castle [22] dataset. The scene is partitioned
into three slabs. After culling, we can reduce the
information in the second slab by 77% from 6.69
MB to 1.54 MB. The storage requirement for the
third slab is reduced by 72% from 3.09 MB to
0.92 MB. This is without the α -acceleration.
With α set to 0.9, the reduction rates are 80%
and 77% for the second and the third slab. The
reduction rates reach 82% and almost 90% when
the α value is set to 0.8. This can be shown in
Table 1. The rendering results using different α
values are shown in Figure 5. The red circles
indicate artifacts with decreasing the α
threshold. From the figure we can see that the
rendering quality doesn’t degrade too much if we
set a reasonable α value. The results show that
the track dependent occlusion culling is quite
efficient for this dataset. It can reduce the storage
requirement and decrease the network
transmission time. The pre-fetching efficiency
and rendering performance can also be improved
because with fixed amount of cache memory and
the occlusion technique, we can cache more
viewpoints along the track. Another benefit is
that it can reduce the rendering cost/overhead
that is caused by increasing the number of slabs.
More slabs can address the occlusion/dis-
occlusion problem better. Using the occlusion
culling technique, less information will be left
for later slabs after culling. Therefore, increasing
the number of slabs does not affect the rendering
speed too much.

The efficiency of the algorithm is highly
dataset-dependent. For the Nature dataset [21]
we tested, the scene is more open and therefore
our slab representation does not have too much
unnecessary information in the first place. We
can only cull about 2 percent without α -
acceleration and 10% with α -acceleration. This
is shown in Table 2. Even though for some cases
we can’t cull too much information for some
datasets, we should note one thing for our
system. The occlusion culling is performed as a
pre-processing step and therefore there won’t be
any performance penalty during the run-time.

From the results, we can see that our track-
dependent occlusion culling can help us
efficiently cull away unnecessary information
and therefore save for storage space and network
resource as well as improving performance. In
the meantime, the rendering quality is not
degraded.

Yang/Crawfis: A Panoramic Walkthrough System with Occlusion Culling

Submitted to Eurographics Workshop on Virtual Environment 2003
Wednesday, January 15, 2003

7

Slab1 Slab2 Slab3

Before After Reduction
Rate

Before After Reduction
Rate

Before After Reduction
Rate

Tiles 3228 3228 0 1556 352 77.4% 708 197 72.2%
α =1.0 Size (MB) 13.38 13.38 0 6.69 1.544 77% 3.09 0.92 70.3%

Tiles 3228 3228 0 1556 307 80.7% 708 161 77.3%
α =0.9 Size (MB) 13.38 13.38 0 6.69 1.34 80.0% 3.09 0.75 75.6%

Tiles 3228 3228 0 1556 283 81.9% 708 143 89.8%
α =0.8

Size (MB) 13.38 13.38 0 6.69 1.23 81.7% 3.09 0.647 89%

Table1. Reduction Rates for Track Dependent Occlusion Culling using different α values for Castle Dataset

Slab1 Slab2 Slab3

Before After Reduction
Rate

Before After Reduction
Rate

Before After Reduction
Rate

Tiles 1864 1864 0 408 398 2.5% 249 249 0
α =1.0 Size (MB) 7.717 7.717 0 2.057 2.01 2.3% 1.03 1.03 0

Tiles 1864 1864 0 408 382 6.4% 249 246 1.2%
α =0.9 Size (MB) 7.717 7.717 0 2.057 1.93 6.2% 1.03 1.02 1%

Tiles 1864 1864 0 408 367 10% 249 242 2.9%
α =0.8

Size (MB) 7.717 7.717 0 2.057 1.87 9.1% 1.03 1.01 2%

Table 2. Reduction Rates for Track Dependent Occlusion Culling using different α values for Nature Dataset

6. Results:

We implemented the image-based framework
as a proof of concept to manage complex
renderings at high image resolutions and
interactive frame rates using only off-the-shelf
texture mapping hardware. Our system is
implemented in Java / Java3D. Almost all
renderers can be configured to pre-compute the
image layers. We use POVRAY in the results
shown here.

We tested our system on three POVRAY
datasets. One is the “Nature” dataset from the
POVRAY quarterly-competition website [21].
The scene contains trees, bushes, rocks and birds
and is quite complicated. It takes about 10-20
minutes to render one 1kx1k frame using
POVRAY on our Pentium 4 2GHZ, 2GB Dell
Precision 530 workstation. One path was chosen
for this scene with 20 sampled viewpoints along
the track. Three panoramic layers with a
resolution of 1024x4096 per layer were pre-
computed for each view sample. The total size
for the image database after pre-processing was

220MB. Without empty tile removal and track-
dependent occlusion culling it would require
over 1.2GB. Another dataset is the “Castle”
dataset from the same source [22]. This dataset is
even more complicated and takes several hours
to generate one 1024x1024 frame. We chose a
path with 10 reference viewpoints. Three
panoramic layers with a resolution of 1024x4096
per layer were pre-computed for each view
sample. We also tested a Night [22] dataset
which was obtained from the same source on the
web.

We tested our IBR walkthrough system on two
workstations. On our Sun Blade 1000 with dual
Ultra-Sparc III 750 MHZ, 1GB of memory and
an Elite 3D graphics card with 64MB of video
memory, we achieve a frame rate of 10-15
frames per second for the three datasets. With
our Dell Precision 530 workstation with Pentium
4 2GHZ, 2GB of memory and Nvidia Geforce 4
Titanium 4600 graphics card with 128MB of
video memory, we achieve a frame rate of 20-30

Yang/Crawfis: A Panoramic Walkthrough System with Occlusion Culling

Submitted to Eurographics Workshop on Virtual Environment 2003
Wednesday, January 15, 2003

8

frames per second for all datasets. Some test
results are shown in Figures 6.

7. Conclusions and Future Work:

In this paper we presented extensions to our
previous paper [18]. Compared to our previous
work, we use the occlusion culling algorithm to
make the system more efficient and present a
way to better partition the scene into layers.

With the existing data management
techniques, our database still tends to be very
large, especially with larger resolution and finer
sampling. However, this is not something that
we didn’t expect. We trade storage for rendering
efficiency and low-cost texture streaming. This
allows us to render extremely large resolution
and offers an advantage over other high-quality
IBR techniques.

Again our contributions include a texture
streaming client/server architecture for
panoramic walkthrough and using view-
dependent layers to better address occlusion and
dis-occlusion problems. A simple however
efficient way is used to partition the scene into
layers. We also use a track-dependent IBR
database compression scheme considering
possible occlusion culling along the track
segments.

We need to point out here that how we sample
the pre-defined track was not addressed in this
paper in detail. The sampling rate can be either
user defined, chosen by the database designer or
at fixed intervals. It can also be controlled by the
maximum mean squared errors allowed for the
reconstructed scenes along the track, which will
be one of the future works.

Future work also requires us to look at
appropriate tile compression techniques to
further reduce the data storage and network
transmission overheads.

8. Acknowledgements:

We would like to thank the Department of
Energy ASCI Program for generous support for
this project. Additional support was provided
through an NSF Career Award (#9876022).
Equipment was provided by the ASCI project
and by NSF grants (#9818319) and (#9986052).

References:
[1] S. E. Chen, “QuickTime VR – An Image-Based
Approach to Virtual Environment Navigation,” Proc.
SIGGRAPH ’95, pp. 29-38, 1995
[2] D. Cohen-Or, Y. Mann and S. Fleishman, “Deep
Compression for Streaming Texture Intensive
Animations,” Proc SIGGRAPH ’99, pp. 261-268

[3] J. Danskin and P. Hanrahan, “Fast Algorithms for
Volume Raytracing,” Proc. 1992 Workshop Volume
Visualization, pp. 91-98, 1992
[4] L. Darsa, B. Costa, and A. Varshney, “Navigating
static environments using image-space simplification
and morphing,” 1997 Symposium on Interactive 3D
Graphics, pp. 25-34, 1997
[5] P. Debevee, Y. Yu and G. Borshukov, “Efficient
View-Dependent Image-Based Rendering with
Projective Texture Mapping,” In 9th Eurographics
Rendering Workshop, Vienna, Austria, June 1998
[6] X. Decoret, G. Schaufler, F. Sillion, J. Dorsey,
“Multilayered imposters for accelerated rendering,”
Proc. Eurographics ’99, pp. 145-156, 1999
[7] Frédo Durand, George Drettakis, Joëlle Thollot,
Claude Puech, “Conservative visibility preprocessing
using extended projections”, Proc Siggraph ‘00, pp
239 - 248
[8] S. Gortler, R. Grzeszczuk, R. Szeliski, and M.
Cohen, “The Lumigraph,” Proc SIGGRAPH ’96, pp.
43-54, 1996
[9] M. Levoy and P. Hanrahan, “Light Field
Rendering,” Proc. SIGGRAPH ’96, 1996.
[10] W. Mark, L. McMillan, and G. Bishop, “Post-
Rendering 3D Warping,” 1997 Symposium on
Interactive 3D Graphics, pp. 7-16, 1997
[11] L. McMillan and G. Bishop, “Plenoptic
Modeling: An Image-Based Rendering System,” Proc.
SIGGRAPH ’95, pp. 39-46, 1995
[12] K. Mueller, N. Shareef, J. Huang, and R. Crawfis,
"High-quality splatting on rectilinear grids with
efficient culling of occluded voxels," IEEE
Transactions on Visualization and Computer
Graphics, vol. 5, no. 2, pp. 116-134, 1999.
[13] F. P. Preparata, M. I. Shamos, “Computational
Geometry, An Introduction,” Chapter 1, Springer-
Verlag New York Inc, 1985
[14] P. Rademacher and G. Bishop, “Multiple-Center-
of-Projection Images,” Proc. SIGGRAPH ’98, pp.
199-206, 1998
[15] J. Shade, S. Gortler, Li-Wei He, and R. Szeliski,
“Layered Depth Images,” Proc. SIGGRAPH ’98, pp
231-242, 1998
[16] Heung-Yeung Shum, Li-Wei He, “Rendering
With Concentric Mosaics,” Proc. SIGGRAPH ’99, pp.
299-306, 1999
[17] R. Szeliski and H. Y. Shum, “Creating Full View
Panoramic image Mosaics and Texture-Mapped
Models,” Proc. SIGGRAPH ’97, pp 251-258, 1997
[18] L. Yang and R. Crawfis, “Rail-Track Viewer, an
Image Based Virtual Walkthrough System”, to appear
in 2002 Eurographics Workshop on Virtual
Environment, Barcelona, Spain, May, 2002
[19] H. Zhang, D. Manocha, T. Hudson, K. E. Hoff,
“Visibility culling using hierarchical occlusion maps”,
Proc. SIGGRAPH ’97, pp 77-88, 1997
[20] http://www.povray.org
[21] http://www.irtc.org/stills/1998-06-30.html
[22] http://www.irtc.org/stills/1999-02-28.html

http://www.povray.org/
http://www.irtc.org/stills/1998-06-30.html
http://www.irtc.org/stills/1999-02-28.html

Yang/Crawfis: A Panoramic Walkthrough System with Occlusion Culling

Submitted to Eurographics Workshop on Virtual Environment 2003
Wednesday, January 15, 2003

9

Figure 5. Shows the rendering images with track dependent occlusion culling with α values equal to 1, 0.9 and 0.8
respectively. Notice the artifacts indicated by the red circle when decreasing theα threshold.

Figure 6: Rendering results for Nature, Castle and Night datasets.

	2. Related Work:
	8. Acknowledgements:
	References:

