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ABSTRACT

The adoption of electronic health records (EHRs) and the
increased participation of hospitals and clinics in health in-
formation exchange systems have resulted in unique longi-
tudinal data that describes a patient’s clinical trajectory.
In-depth analysis of that information is important to bet-
ter understand the general course to recovery or the evolu-
tion of a particular disease. Unfortunately, modelling and
understanding the progression of a disease is still a chal-
lenging task given that most often patients take vastly dif-
ferent paths after being diagnosed with a specific disease
or condition. The different trajectories patients follow, the
individual temporal events that each patient goes through,
the uncertainties associated with clinical diagnoses, and the
irregular time intervals between clinical diagnoses present
challenges to researchers trying to analyze the common tra-
jectories of a set of N patients. This paper presents a
graph-based visualization method to interactively analyze
the longitudinal clinical trajectory of a group of patients.
The system allows users to select a specific set of events or
conditions, filter the data based on different thresholds, and
compare different cohorts while using an interactive virtual
space that expands as the user continues to analyze and ex-
plore the data. The system has been tested with a dataset
of over 89,000 patients and 8.7 million clinical events.
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1. INTRODUCTION

The rapid advancements in medical sciences and the in-
creased adoption of electronic health records (EHRs) have
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resulted in rich longitudinal data available for most patients
with valuable information about the progression of different
conditions. The course of most diseases are quite variable,
but understanding their trajectory can provide key informa-
tion about the effectiveness of treatments, insight about po-
tential prognosis, and information about the state of the pa-
tient. Unfortunately, due to the complexity and challenges
associated with the analysis of sparse longitudinal clinical
data, the EHR data is not often used within clinical set-
tings to study trajectories of similar patients. Some of the
contributing factors that have limited the amount of infor-
mation that is extracted from the longitudinal data of EHR
systems have been the vastly different paths that similar pa-
tients can follow, the irregular intervals at which particular
events occur within comparable patients, the comorbidity
of diseases many patients experience, the uncertainty asso-
ciated with clinical diagnosis and coding, and the lack of
tools to quickly analyze the information.

At the individual patient level, the lack of effective tools
to review longitudinal events and trajectories often forces
clinicians into spending a significant amount of time and
resources reviewing low-level, unrelated data points while
trying to construct a mental model of the patient. In ad-
dition, when trying to simultaneously review a cohort of N
patients with the intention of finding common patterns, the
scale of the information is so large and the incidental or
random conditions for particular patients are so strong that
often the relevant patterns and trajectories are overlooked.

Most of the existing approaches to analyze clinical trajec-
tories of patients have focused on finding the top trails fol-
lowed by a particular cohort and using that information to
develop clinical decision support systems to predict whether
a new patient will develop a condition [10]. The use of vi-
sual analytics applied to healthcare data can enable new
insights in the interpretation of complex clinical trajectories
and scenarios.

This paper presents a graph-based method to interactively
analyze the longitudinal clinical trajectory of a cohort of pa-
tients. The system reads from a database of clinical events
associated to a particular cohort of patients, estimates the
different events, and generates a single graph illustrating all
of the possible transitions. The system then allows users to
select a specific set of events or conditions, filter the data
based on different thresholds, and compare different cohorts



all while using an interactive virtual space that expands as
the user continues the data analysis and exploration. We
have implemented a system using data from over 89,000 pa-
tients and 8.7 million clinical events and have shown a usage
scenario for comparing groups of patients before and after a
clinical event.

2. BACKGROUND

In the clinical realm, existing approaches to understanding
the clinical trajectory of patients have focused on producing
a single trajectory graph for understanding a population of
patients. In many approaches researchers have attempted to
use a popular algorithm, k-means clustering, to identify the
unique groups of patients and label them according to the
group that they belong to (i.e. chronic, recovery, worsening,
etc.) [10, 15, 1].

Many of the prior approaches to understanding the tra-
jectory of a patient have focused on a specific disease with
the intention of being able to predict whether a new patient
will develop a similar diagnosis or not [8]. Moskovitch and
Shahar analyzed a dataset of diabetic patients to the goal
of identifying the most common patterns to be able to clus-
ter patients’ trajectories in a hierarchical manner with the
ultimate goal of understanding the overall population [9].
Quaglini et al. developed a framework for making clinical
decisions by involving the patient in the process of decisions
by allowing them to fine tune the model’s parameters based
on their preferences, allowing for a system that is able to
understand the patient more effectively [13]. Related to psy-
chological conditions such as post-traumatic stress disorder
(PTSD), Bryant et al. studied the different trajectories that
PTSD patients follow including recovering and worsening [4,
5].

Other approaches to evaluating the trajectory of patients
have looked for frequent patterns in EHR data by apply-
ing a “frequent sequence mining” algorithm to extract a set
of frequent patterns and furthermore computing the corre-
lation between each pattern and various outcome measures.
The events, subsequences, and probability measures are then
presented in a modified Sankey diagram allowing the user to
interactively analyze the mined data [11, 12].

In the visual analytic space, most existing tools are re-
stricted to presenting visualization results to a single view
at a time, limiting data comparison and forcing humans to
store information in their working memory during an anal-
ysis process [14]. Additionally, displaying data is limited by
the physical size of the screen [2].

To overcome some of the limitations and challenges dis-
cussed in Section 1 and 2, most of the previous approaches
remove the “uncommon” patients that do not follow the ma-
jority of the population. In addition, previous approaches
present a single static graph for analysis with zero ability for
an expert clinician to interact with and identify key patterns
and trends.

3. DATASET

The dataset used for this project was a subset of our larger
clinical collection that consists of over 15 million patients
and billions of clinical encounters. A dataset with 8.7 mil-
lion clinical records from 98,342 mTBI patients was used
for this study. The data was organized using various Ter-
adata/Aster services and retrieved using MapReduce. The

original dataset of 98,342 patients was further filtered to
only include patients with more than thirty days of data
and no history of moderate or severe TBI. The resulting
subsets of 89,840 patients had 5.3 million TBI-related clin-
ical encounters and 8.7 million clinical diagnoses. In this
study, a TBI-related encounter was defined as a visit to the
doctor regardless of inpatient/outpatient where the patient
was treated with one or more of the conditions that are com-
monly known to be related to concussions such as behavioral
disorder, sleep problems, cognitive deficiencies, and audiol-
ogy complaints. Note that only TBI-related encounters were
taken into consideration. The patients under consideration
had an average of 59.06 encounters.

To build our system the dataset was defined to be P =
{P1, Ps,...,P,} where P is a set containing each patient P.
Each patient P; had an associated sequence of encounters
E; € {E1, Es, ..., En} representing unique clinical appoint-
ments or hospital visits. Each encounter F; had an associ-
ated set of diagnoses represented by D € {D1, Da,...,Dy}.
The diagnoses were then used to create the force-directed
graph that is covered in Section 4.

4. APPROACH

With a vastly large clinical dataset, we sought to develop
a system that would support interactive analysis such that
users would not become lost in the data and would be en-
couraged to explore the data further. Therefore, we devel-
oped a web-based framework for interactive exploration of
clinical encounters (Figure 1), packed with features that in-
clude:

1. Bubble views: applying the ideas of VisBubbles [7],
our system extends the traditional static multiple view
into a panel-based interface. Panels do not overlap
and can be rearranged to help users perform dynamic
analysis and switch views for comparative studies.

2. Virtual working space: our system applies the idea
of “virtual screen space extension” [6] by providing a
panning navigation bar at the top of the window and
extending the current view space to a much larger con-
tinuous working space.

3. Force-directed graph visualization: in the center
of our system we display the longitudinal events such
as clinical diagnoses undergone by patients in a single
force-directed graph. The nodes encode information
about specific events (in our case a clinical diagnosis)
and the edges encode information about the frequency
of observing a transition between two events within
the clinical trajectories of the patients under consider-
ation.

The forced-directed graph can be arranged based on a
particular attribute such as the frequency of a specific
event happening and can be used to open other panels
for a deeper exploration into the data.

4. Built-in Filters: directly from the graph-based vi-
sualization representing a summary of all the patient
trajectories, the user can open a panel to filter the
data being analyzed. The user can filter based on at-
tributes that can be added to the longitudinal sequence
of events such as gender, race, age, military branch,
and many others.



5. Overview panels: the exploration panel with the
graph-based visualization supports looking at a de-
tailed overview of the data in a tabular form to enable
users to better understand the data being presented.
For example, from the graph-based visualization the
user can load to overview panel of a particular event
(e.g. concussion) and obtain information about what’s
the event that leads towards concussion the most and
the events that follow concussion the most.

6. Cohort comparison: the visualization system allows
users to open a new force-directed graph and split the
screen so side-by-side comparison of different cohorts
can be accomplished.

7. Interactive Interface: the visualization system has
been developed so the user can quickly interact with
the data, the properties of the longitudinal events, and
even select a subset of nodes (i.e. events) and open a
new (simpler) graph-based visualization of the data.
The system has been optimized to support caching of
files on the server side, thus allowing the application to
quickly load datasets that have thousands of patients
and millions of events without any kind of delays to
the end-user.

8. Patient specific analysis: the framework has been
designed to support the visualization, analysis, and
comparison of the trajectory of a particular patient
against the group. The system support a “play” func-
tionality that illustrate within the graph the different
events and transitions a particular patient underwent.

Figure 1: A view of our full interface with a user in-
teracting using multiple panels. From left to right:
the main graph interface of the entire dataset, two
panels with detailed path information for nodes, a
data panel to filter the data, a settings panel to ma-
nipulate the visualization, and a cohort comparison
panel to compare the dataset before and after a first
concussion.

Our interface was developed using Javascript and HTML5,
with the aid of D3 for drawing and rendering visualizations
[3]. Ajax is used to communicate with a PHP server which
serves pre-processed data from a database in a JSON format.
The system as a whole was built in a modular fashion to
allow for future features in interactive data analysis.

We chose to to represent our dataset in a force-directed
graph because as discussed in Section 2, different approaches
have been proposed to identify and analyze the common tra-
jectory of a group of patient by showing the common paths
or by clustering the patients into separate groups, but be-
ing able to understand and visualize an entire population in
a single visualization has not received too much attention.

Figure 2: The drawing of the force-directed graph
that is rendered by our system where the node sizes
correlate to the number of times that diagnosis oc-
curred over all patient, and the path thicknesses cor-
relate to the number of times that the patients took
the path from the source node to the target node.
For example, in this graph the majority of patients
moved from Depression to PTSD as well as in re-
verse from PTSD to Depression.

To build our graph that is shown in the main panel of our
system we first determine all the unique clinical diagnosis
on our dataset, treated them as temporal events, and cre-
ated a node for each possible diagnosis, D, which resulted
in a total of 20 nodes. Then we drew a path/force with an
arrow from each node to every other node, representing a
patient moving from one diagnosis to the next within their
clinical trajectory. At each node we stored the number of
times that the diagnosis occurred in our dataset and at each
path we stored the number of times that unique transition
(i.e. Anxiety ->Depression) occurred in our dataset. In the
next section we will describe the manipulations and encod-
ings that we provided to the user to alter the graph and
make patterns and trends be identifiable, such as is shown
in Figure 2.

S. RESULTS

Our force-directed graph is able to depict millions of clini-
cal diagnoses through various node and path encodings while
providing users with various mechanisms and features to ma-
nipulate the graph and understand its complex underlying
data. In this section we will show how users are able to
interact with the graph and spawn new panels, use and ma-
nipulate the graph’s various encodings, view detailed infor-
mation at each node, filter the displayed data, and compare
patient groups and varying periods of patient timelines using
our cohort comparison tool.

Users are given the ability to move nodes around, allowing



for them to interact and identify potential groupings in the
data. This method of dragging nodes around also allows
them to transform a random force graph into something
more meaningful, such as a circular graph. For example,
shown in Figure 3 is a force-directed graph in which the
user dragged the nodes to be sorted by in a clockwise man-
ner by the size of each node and then moved one node into
the center that they were focusing on to understand the re-
lationships between the singular node and all other nodes in
the graph. In this example, the user was concentrating on
nonskull fractures (concussions) and analyzed the flow of di-
agnoses, to see what diagnoses lead to concussions and what
diagnoses to expect after a concussion. This is critical infor-
mation that a user is able to interactively extract from the
graph without needing to analyze millions of patient records.

Building off of the ability to drag and drop nodes inter-
actively, we have built a selection feature into our system
where users are able to highlight a set of nodes and choose
to open them in a new panel to further explore only a cer-
tain subset of nodes. Combining the ability to select a set
of nodes to analyze along with the ability to spawn separate
panels in a virtual workspace environment will enable users
to keep track of their analysis and be able to continuously
compare various subsets of data.
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Figure 3: In this force-directed graph, the nodes
were dragged in such a way that they are ordered
clockwise by their size in descending order and the
node for concussions (nonskull fracture) was moved
to the middle. With this technique the relationships
between all diagnoses and concussions can be thor-
oughly analyzed.

Next, to provide the user with information about the com-
plex clinical data in a simple graph, we encode information
into the nodes and paths to give an understanding of the
amount of patients flowing through each area of the graph.
First, we encode each the number of times that each diag-
nosis occurred over all patients into the size of the node,

such that larger nodes occur more often while smaller nodes
rarely occur. Second, we encode each path with the num-
ber of patients that took corresponding path between nodes,
such that thicker paths were traversed more often. Third,
we give the user the ability to manipulate the graph further
by altering the shape, color, and outline of nodes to their
own encodings, as can be seen in Figure 4. Using these en-
codings in just a simple graph provides a user with a deeper
understanding of the flow of patients between diagnoses.
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Figure 4: A force-directed graph where the user
grouped the nodes and assigned various colors,
shapes, and outlines to each.

Along with the encodings, users are able to hover their
mouse over a node and/or a path to be presented with the
raw data that is encoding into that aspect of the graph (Fig-
ure 5 Left). Furthermore, by clicking on a node users are
presented with a new panel that contains an area chart, data,
and inbound and outbound paths. The area chart displays
the number of diagnoses over time, the data reiterates the
information from the tooltip, and the inbound/outbound
paths display a table with each path into and out of the
node with their corresponding count and frequency, along
with giving the user the ability to sort the table in ascend-
ing and decreasing order. This panel of information can be
seen in Figures 5 Middle and 5 Right.

In addition to the various interactive methods of manip-
ulating the graph, we allow users to filter the dataset and
visualization that the graph is shown. As seen in Figures 5
Left and 5 Right, users are able to filter the data to only
include certain ages, branches, genders, or encounters; while
they are also able to modify the graph to only draw lines
within a certain range of thicknesses and nodes within a
certain range of sizes. These filtering methods allow for an
exploration of only viewing paths that are relevant and min-
imize the amount of noise in the graph.

We present a usage scenario in the clinical realm where
clinicians that are interested in comparing groups of patients
and understanding the history of a patient before and after
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Figure 5: (Left) When a user mouses over a node or a path, they are presented with detailed information in
a tooltip about the number of times the specific node/path had occurred, the number of patients that took

that route, and the average occurrences per patient.

(Middle) In this panel the information for a node has been displayed in tabs: a chart, raw data, and in-
bound/outbound paths. The selected tab, chart, displays an area chart of how many times the diagnosis

occurred over time.

(Right) In this panel the user had selected the “Outbound Paths” tab which displays all of the paths from
the selected node to every other node and the count and percentage of each path occurring. In addition,
each column in the table of outbound paths is sortable in ascending and descending order.

an event. This comparison aids clinicians in identifying the
susceptibility of a condition as well as the path to expect a
patient to follow after the event, giving the clinician the abil-
ity to enact preventive care. With this our system is able to
display this information using a Cohort Comparison panel
which shows two force-directed graphs side by side for easy
comparison, as shown in Figure 7. In this cohort compari-
son panel, the two graphs are aligned such that the nodes
are in identical positions to make the visual analytic process
of identifying the differences in graphs easier as the human
brain has a hard time comparing two completely different
images. Using this technique, users will be able to identify
that a node in one graph is larger than another or that a cer-
tain group of patients follows through a different path flow
than the other based on the line thicknesses. With the data
panel that was previously explained, shown in Figure 5 Left,
users are able to manipulate the data that is used for each
individual graph allowing for comparisons such as: male vs
female, army vs navy, 20-30 vs 40-50, as well as many other
combinations which will aid in the process of identifying the
differences in patients and the varying effects.

As clinicians not only interested in the differences in pa-
tient groups, but also the changes that occur in patients
before and after an event, such as a concussion, we provide
users with the ability to display graphs based on a period of
a timeline for a patient. In the previous Figure 7 the user
had chosen to split the patients’ timeline at the point of the
first concussion (nonskull fracture) such that the left graph
included the data prior to the concussion and the right graph
included the data after the concussion. With that, the user
also chose to only include the 60 days before the concussion
while including the full 365 days after the concussion. The
user is now able to see the difference in the type of diagnoses
that patients commonly underwent pre and post concussion

through the various node sizes as well as the difference in di-
agnosis flows through analyzing the thicknesses of the paths.

6. CONCLUSION

In this paper we have presented our graph-based method
for interactively analyzing the longitudinal clinical trajec-
tory of a cohort of patients. With this system a user is
able to effectively filter their dataset based on age, gender,
branch, etc., manipulate the visualization through various
encodings and dragging maneuvers, compare different co-
horts and the before and after effects of an event; all the
while using an interactive, virtual space compared to the
standard static views that have been commonly developed.
We have shown the initial effectiveness of our method on a
clinical dataset of over 89,000 patients and 8.7 million clin-
ical events through the generated graphs. In the future we
look forward to developing our system further followed by a
user study evaluating the insights gained by users. Some of
our planned features include providing users with the abil-
ity to “play” a patient through the graph, where the nodes
would highlight in the order of the diagnoses that the patient
underwent, providing a means to subtract graphs to analyze
the difference, and other methods of clinical exploration in
a virtual space.
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