
Automated Reasoning 143

An Architecture for Exploring Large Design Spaces

John R. Josephson1, B. Chandrasekaran1, Mark Carroll 1, Naresh Iyer1,

Bryon Wasacz2, 3, Giorgio Rizzoni2, Qingyuan Li2, David A. Erb 4, 5

The Ohio State University, Columbus Ohio, 43210 USA
1 - Computer and Information Science Department

2 - Mechanical Engineering Department
3 Present address: Motorola SPS, Austin, TX, 78735 USA

4 – Center for Automotive Research
5 Present address: ERB Professional Services,

Upper Arlington, OH, 43221 USA

{jj|chandra|carroll|niyer}@cis.ohio-state.edu,
RA6734@email.sps.mot.com, rizzoni.1@osu.edu,

li-q@rclsgi6.eng.ohio-state.edu, dave_erb@mindspring.com

Abstract
We describe an architecture for exploring very large design
spaces, for example, spaces that arise when design
candidates are generated by combining components
systematically from component libraries. A very large
number of candidates are methodically considered and
evaluated. This architecture is especially appropriate
during the stage of conceptual design when high-level
design decisions are under consideration, multiple
evaluation criteria apply, and a designer seeks assurance
that good design possibilities have not been overlooked.
We present a filtering technique based on a dominance
criterion that can be used to select, from millions of design
candidates, a relatively small number of promising
candidates for further analysis. The dominance criterion is
lossless in that it insures that each candidate not selected
is inferior to at least one of the selected candidates. We
also describe an interactive interface in which the selected
designs are presented to the designer for analysis of
tradeoffs and further exploration. In our current
implementation, the computational load is distributed
among a large number of workstations in a client-server
computing environment. We describe the results of
experiments using the architecture to explore designs for
hybrid electric vehicles. In a recent experiment more than
two million distinct designs were evaluated.

Motivation

Design can be considered to start from a specification of
properties and behavior that an artifact is intended to

Copyright © 1998, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

satisfy. It typically ends when the designer is able to
describe a set of components and their interconnection,
and a mode of use by a user (Chandrasekaran, 1990). If an
instance of the artifact is constructed with the components
in the specified inter-component relationships, and if a
user interacts with it as described in the mode of use, then
the artifact's properties and behavior are supposed to
satisfy the given specifications.

Design, like all problem solving, can be formulated as a
search in a problem space (Nilsson, 1971; Newell, 1980).
Except in routine design tasks, the design process usually
involves considering alternative configurations of
components, alternative components, and various
parameter values. The design candidates that arise during
this process are usually evaluated using multiple criteria.
Due to time and other resource limitations, designers
usually consider only a narrow range of the possible
combinations of components and configurations.

At times, the design problem may be formulated
explicitly as a parameter optimization problem, and
well-known optimization techniques may be applied
(Wilde, 1978). Most commonly, these techniques are
variations of hill climbing. Given a design candidate, the
direction of change in which the gain in a performance
measure is largest is first ascertained, a new design
candidate is chosen in that direction, and this process is
repeated until changes in any direction result in a decrease
in the performance measure. However, this optimization
technique is not always applicable. When design
candidates are generated by changes of components and
configurations, which may be unordered, there may be no
adjacency relationship to exploit in the space of design
candidates. Moreover, hill climbing techniques, by

Proc. of the National Conf on AI (AAAI-98), AAAI Press/The MIT Press

Design and Diagnosis144

requiring that a single evaluation function be defined,
preclude explicit, local reasoning about tradeoffs among
multiple performance criteria. In general, it is hard to use
symbolic knowledge in numerical optimization schemes
and thus they are not very good for early-stage design.

In this paper we describe a kind of design-space
exploration that explicitly considers large numbers of
design candidates, sampling widely from all regions of the
design space. This exploration tells the designer how the
design candidates in the space behave with respect to the
various evaluation criteria, and helps to identify
candidates or regions with interesting properties.
Exhaustive exploration would be ideal, where all possible
design candidates are examined. However, exhaustiveness
is not essential for this kind of design exploration to be
useful. What is needed is that all regions of the design
space are sampled sufficiently to develop an understanding
of the characteristics of the design space, which may well
call for considering a very large number of design
candidates. This kind of exploration may set the stage for
a more detailed exploration of selected areas of the design
space. Thus, this kind of exploration is especially
appropriate for the conceptual design stage.

Because of the need to examine a very large number of
candidates, this kind of design-space exploration may
require substantial computing power. Fortunately,
conceptual design is a relatively small part of the overall
design process. Thus, allocation of substantial computing
resources for this stage of design may be justified in view
of its importance, especially as computing power is
becoming more affordable. This kind of design space
exploration has natural parallelism that can be exploited to
distribute the computational burden; in our experiments
we used a large collection of networked workstations to
provide the needed computing power.

Overview of the Architecture

The overall architecture is that of an interactive
decision-support architecture for design, as shown in
Figure 1. A component/configuration library is available
for generating design candidates. The user can specify
constraints. The Good-Design Seeker generates design
candidates by selecting components from the library and
composing them, according to configuration templates
(generic devices), to satisfy the given constraints. Several
design critics evaluate each design candidate. Each critic
assesses a candidate design from the point of view of a
particular aspect of performance. One might focus on cost,
another on convenience of use, yet a third on
diagnosability, and so on. A critic might use an evaluation
function based on the conclusions of other critics.

generic devices
devices

Function

Causal
ProcessStructure

achieve maintain prevent

state
mode

components

normal

ab normal
connections

spatial relations

components

Device Library Critics

Good-Design
Seeker

User Interface

Set of good designs

Constraints

Figure 1. Decision-support architecture for design

The total number of design candidates might be quite
large, so, for the designer to make effective use of the
information from the critics, it would be desirable to have
some form of filtering that selects a relatively small
number of designs that are worth examining further. As it
happens, we have discovered a lossless filtering criterion,
i.e., one for which there are guarantees that there is no
danger of excluding good designs. This will be described
in a following section. In initial experiments, with real
data, this filtering criterion has shown quite good
performance, as will be described.

The designer is presented with the design candidates
that survive the filtering process. Since a large number of
candidates may yet remain, it is important to develop
effective ways to aid the designer in investigating the
properties of the surviving designs. Thus, the user
interface is an important part of the architecture. We have
discovered user-interface elements that are very useful. In
particular, visualizing the set of surviving designs by way
of interactive, connected, tradeoff diagrams enables the
user to zoom in on subsets with desirable tradeoff
characteristics, and so reduce the number of designs for
further investigation to a manageable few. These will be
described in a later section.

The scope of our project includes many issues in the
design of component libraries and design critics that will
not be discussed in this paper. In this paper, we will
emphasize issues related to the exploration of large design
spaces, using multiple criteria of evaluation. Besides a
high-level conceptual description of the architecture, we
will also describe our most recent implementation of it,
which distributes the computation over a network of
workstations, using otherwise idle machines, and has
achieved explorations that consider more than two million
candidates.

Automated Reasoning 145

Good-Design Seeker

Design candidates are generated by systematically
considering the members of a set of preset configurations
or “generic devices.” For each generic device, alternative
component substitutions from a device library are
systematically considered, and for components, various
parameter values are considered chosen from a set of user-
specified landmark values.

Design candidates are checked against any constraints
that might rule them out. We have considered two sets of
user-supplied constraints: one set is applied to partially
specified designs and the other is applied to fully specified
designs. Partial designs are created on the way to creating
fully instantiated design candidates, and arise when not all
of the components in a configuration have yet been
chosen, or not all the parameter values. Sometimes partial
designs may be checked against constraints with little
computational cost. For example, if there is a constraint on
total weight, a partially specified design may be rejected as
soon its weight exceeds thelimit, thus avoiding the
substantial amount of work involved in generating and
evaluating refinements of the design. Constraints that
apply to fully specified designs are used to eliminate
candidates. Such constraints might be used to eliminate
implausible combinations or unacceptable performance.

Prior to constraint checking, designs are sent to various
design critics, and each design is annotated with the
conclusions from the critics. These conclusions can be
used by the constraints, and are the basis for design
filtering, which selects a subset of candidates to present to
the designer. Dominance filtering is an important type of
design filtering, and may be applied after generating and
evaluating all candidates, or incrementally, as candidates
are being generated and evaluated.

Dominance Filtering
We say that design candidate Adominatescandidate B if
A is superior or equal to B with respect to every criterion
of evaluation and distinctly superior with respect to at least
one criterion. Dominated designs need not be considered
further - they may be filtered out. Among the designs that
survive the dominance-filtering process, none is clearly
superior to another. These designs are retained for further
analysis.

To develop an intuition about what the dominance filter
does, let us consider a geometric representation. Figure 2
illustrates the situation when there are only two evaluation
criteria C1 and C2. Larger values of C1 and C2 are more
desirable. Let M1 be a design candidate. If another design
candidate M2 falls in region R1, it can be eliminated, since
M1 would be clearly superior to M2 on both criteria. If it
falls in Region R4, M1 can be eliminated since M2 would
best M1 on both criteria. If M2 falls in Regions R2 or R3,
both M1 and M2 need to be retained for the next stage
since neither would be superior to the other with respect to
all criteria of evaluation. This 2-dimensional description
of dominance filtering generalizes to situations where
there are more than two criteria; similar behavior will
occur in the appropriate multidimensional space.

Figure 2. Illustration of dominance filtering.

Our algorithm for dominance filtering keeps a list of
retained candidates, to which new candidates are
compared. New candidates are compared serially to the
items on the list. If the new candidate is dominated by
some from the list, then there is no need to compare with
the remaining elements in the list, and the new candidate
is discarded, which contributes to efficiency. If the new
candidate dominates a candidate in the retained list, the
comparison still needs to continue with the other
candidates in the list, since the new candidate may
dominate some others as well. The final surviving set is
independent of the order in which the candidates are
generated and compared. Another probable source of
efficiency in our implementation is that if a design on the
list beats a new one, the dominator is moved to the front of
the list. The idea is that this design is more likely to beat
other new designs as well, in comparison with others on
the list, and it will probably be efficient to consider it early
when evaluating new candidates. We have not
experimentally verified that moving designs up the list this
way enhances efficiency, but it seems plausible and is
implemented at little cost.

The Size of the Surviving Set.Let f be the fraction of
the total design space that survives dominance pruning. If
f is small, then the task of the designer is much eased. She
only needs to consider a relatively small number of
designs for further analysis while retaining assurance that
the results speak about the entire design space. What kinds
of values for f might one expect? This is an empirical
question. We will describe experimental results which
show that it is reasonable to expect small values off in at
least some real-world domains.

In a given domain, the value off would, as a rule,
increase as the number of evaluation criteria increases.
That is, the probability that a design candidate is worse
than another in allN dimensions of criticism will get
smaller asN increases. However,f may become smaller as
the size of the design space increases, say by considering
parameter changes at finer resolutions. To see why, one
can generalize from Figure 2 and consider each design to
be a point inN-dimensional space,N being the number of
criteria we are considering in dominance checking. The
surviving set will be on the surface of the region of space
wherein the designs lie. As more points (designs) are
added within or near the region of designs in theN-

Design and Diagnosis146

dimensional space, the total number of designs should
increase at a faster rate than the number of designs on its
surface. We will describe some experiments that explored
how f tends to decrease as the number of designs
increases.

Adding or Removing Evaluation Crit eria. Suppose we
have a surviving set of candidates after exploration and
dominance filtering. Now suppose the problem
specification changes, and one of the criteria is no longer
relevant. Is there a simple way to construct the new
surviving set from the previous one? If A dominates B in,
say, N dimensions of criticism, of course A will still
dominate B inN-1 dimensions. Thus, the elements of the
surviving set for N dimensions will still dominate the
previously pruned candidates inN-1 dimensions as well.
Thus, the dominance algorithm simply needs to be re-run
among the members of theN-dimension surviving set to
compute theN-1 -dimension surviving set.

On the other hand, if the problem statement changes
and a new criterion is added, the solution is not so simple.
That A dominates B inN dimensions is no guarantee that
A will still dominate B in N+1 dimensions. Maybe B
happens to be better than A in the new dimension of
criticism. This means that the new surviving set cannot be
simply computed from the old surviving set. The
dominance algorithm must again consider all the elements
of the design space.

Independence ofcriteria. Dominance checking does
not require evaluation criteria to be independent. In
general, if the values according to two criteria are
positively correlated, we can expect that use of these
criteria will not increase the size of the surviving set as
much as two independent criteria might. However, if
values according to two criteria are negatively correlated
(as they might well be when the designer is interested in
investigating performance tradeoffs) we can expect the
size of the surviving set to be larger than it would be if the
criteria were independent.

Accuracy of Models.When we consider whether or not
A is superior or equal to B with regard to every criterion,
and superior in at least one, it is important to consider that
the models upon which critics are based will have limited
accuracy. The dominance filter can be adapted to take into
account suspected model inaccuracy. A constantε may be
introduced for each critic such that A and B are considered
to perform equally well with regard to the criterion of that
critic if, as evaluated by the critic, the performance of the
two differs by less thanε. Weakening the stringency of
filtering in this way reduces the chances that a good
design is mistakenly filtered out because of modeling
inaccuracies. On the other hand, increasingε for any
critic will typically increasef, the surviving fraction. In
choosing the value ofε for a particular critic, we express
our estimate of the accuracy of the domain model used by
that critic. Thus, choosing a value forε gives a domain
expert the opportunity to express a meta-knowledge
judgment about the accuracy of the computer-based model.

Distributed Computing
Suppose that the design space has a million candidates,
that we have five critics, and that each critic needs one

tenth of a second for evaluating a candidate (all reasonable
numbers). The total time on a serial machine for
performing exhaustive evaluation will be about 6 days.
Because of time requirements of this sort, we developed a
novel computational architecture that employs Modula-3
(Cardelli, et. al., 1990) network objects (Birrell, et. al.,
1994) to make use of the distributed computing
environments that are presently commonly available in
engineering institutions. A client-server architecture is
employed that uses idle workstation time (in our case,
often over 150 machines at a time) to allow the criticism
of candidate designs to proceed in parallel.

The Exploration Interface

Even if dominance filtering is quite effective, one would
expect hundreds if not thousands of designs to survive
after exploring a design space consisting of, say, hundreds
of thousands of design candidates. These would be designs
where none would be clearly superior to another, based on
the criteria that were used. What is a designer to make of
so many designs, and how to help her narrow the choices?
Clearly, additional knowledge is needed about choosing
among designs, knowledge that was not incorporated
during the search. If the additional knowledge were
available in the form of new critics that were not used, the
best way to proceed would be to do the search again using
the new critics. (As we noted, the surviving set is quite
sensitive to the addition of new critics.) Similarly, if the
designer knew in advance how to weight the different
criteria to form a composite evaluation, she might have
used this composite evaluation to perform some form of
optimization. However, we think that there is an important
opportunity at the conceptual-design stage to develop a
sense of the tradeoffs that arise from multiple criteria.

Our current visualization environment presents the
designer with a set of tradeoff diagrams. Each diagram is a
two-dimensional scatter plot, where the axes are a pair of
design criteria, and all the surviving designs are plotted in
that space. For example, if there are three critics with
corresponding design criteria C1, C2, and C3, up to three
plots will be generated, one each for C1-C2, C2-C3, and
C3-C1. Each design candidate will be represented in each
of these plots. The designer can select any region in any of
the plots and the design candidates that fall in the selected
region in one diagram space will be highlighted in the
other plots. The designer can thus easily observe how
design candidates that look interesting in one of the
diagrams fare with respect to other tradeoffs. Note that, in
general, candidates that are contiguous in one of the plots
will not necessarily be contiguous in the other plots.

Typically, a designer will explore the surviving designs
by identifying regions or individual candidates that appear
to have interesting properties in one diagram, selecting
them, and examining their properties in the other
diagrams. For example, the designer might note in one
diagram that a small number of designs seem to have high
evaluations in both dimensions. She might select this
region. The interface would then highlight in the other
diagrams the candidates in the selected region in the first

Automated Reasoning 147

diagram. If their performance is satisfactory with respect
to the other dimensions, she might mark that subset as
worthy of further attention. A particularly important
function of visual analysis is to see if there are regions in
the diagrams where, for a relatively small sacrifice in
performance in one dimension, a large gain is available in
the other dimension. This sort of visual analysis gives the
designer some understanding of the structure of the design
space, and locates opportunities for favorable design
tradeoffs.

One cannot anticipate all the forms of visual analyses
that a designer might make using the tradeoff diagrams,
nor imagine all of the kinds of insights that might be
gained. In our experiments, we have found that the
designers first note certain interesting properties in one
region of one of the diagrams, think about what they
noticed, and generate explanations for what struck them as
interesting. At this point, they are able to make additional
hypotheses about relationships in other diagrams and
regions. In addition to identifying a small number of
design candidates for further analysis, designers end up
with a deeper understanding of the design space.

The number of possible tradeoff plots increases
approximately with the square of the number of criteria.
So, one must not demand that the designer consider all
plots at once, but instead let the user choose which plots to
see. Even if she never examines the results according to a
particular criterion, it has still entered into dominance
calculations. Dominance checking does not depend on the
exploration environment. It is plausible that in many fields
the number of criteria will not need to be very large.

While we are currently experimenting with tradeoff
diagrams, the issue of how to effectively present
exploration results to the designer is wide open. Certainly
users should be able to select a subset of designs and throw
them into a special Examination Set (ExamSet) for closer
inspection. We have implemented this kind of selection for
rectangular regions on tradeoff plots; users would like the
ability to use the mouse to lasso regions of arbitrary shape.
The user might want to create more than one such
ExamSet and might want to union, or intersect, or pull a
subset from any of them. The user should be able to look
at any available ExamSet through multiple, cross-updating
tradeoff plots, and other inspectors. We also envision
providing the user with a set of abstraction agents
(Abstractors) able to automatically form certain interesting
generalizations about the designs in any chosen ExamSet.
One such Abstractor should gather statistics on the design
choices that are represented in the ExamSet, and if any
choice is represented by more than 50% of the designs, it
should produce a comment of the form:

X% of the designs in <ExamSet> are designs where
<design choice>.

For example, “88% of the designs in ExamSet-1 are
designs where engine = Volkswagen #2.” or “All of the
designs in ExamSet-2 are designs where configuration =
parallel-hybrid.” This should be very useful to the
designer in understanding and exploring the implications
of the search results.

Ways of displaying and interacting with data in higher
dimensions would be worth investigating. (See, for
example, Tufte, 1983, 1990.) Automated clustering
algorithms could identify interesting properties in the
higher-dimensional spaces (Jain and Dubes, 1988).
Higher-dimensional spatial analysis algorithms might be
applied to identify outliers (Yip and F. Zhao, 1996).
Outliers tend to have interesting properties, good or bad,
or they may point to broken domain models or buggy
software. Conversely, the absence of outliers should give
the user some confidence in the fidelity of domain models
and reassure the user that no especially good design
possibilities have been overlooked.

Experimental Results

We will now describe a set of experiments that we have
conducted in a real-world domain. At this point, no
especially surprising designs have been discovered using
the architecture. However, users have reacted favorably
and remarked that designers can use tools such as this to
explore the design space on their own and not merely go
by the intuitions and gut-feelings of whatever strongly
opinionated and highly vocal people they happen to be
working with. The goal in reporting these experiments is
to show how the proposed architecture works in practice,
to describe some of what we have learned about the
technology, to demonstrate candidate generation and
filtering, and to show how the user interface works for
interactive exploration. We also wish to draw attention to
the significantly large design-space sizes the technology
can already handle.

The Domain. The domain in which we performed our
experiments was that of hybrid electric vehicles. Hybrid
electric vehicles are automobiles that use both an electrical
motor and an internal-combustion (IC) engine as power
sources. (See Wouk, 1997, for an introduction to the
problem area.) Electrical motors are attractive as power
source partially because of the potential for using the
motor as a generator during braking and thus recapturing
the kinetic energy of the vehicle. They also have good
emission properties, making them attractive for city use.
On the other hand, they have limited range because of the
limitations of current battery technology. Hybrid vehicles
use an IC engine to extend range, either to move the
vehicle when battery power is low, or to recharge the
batteries. An interesting issue in the design of hybrid
vehicles is the control policy, which is the formula that
decides when to use which source of power for movement
and when to activate the IC to charge the batteries.

The domain has a number of attractive features for
exercising our architecture. The underlying design space is
not simply generated by parametric variations; for
example, there are four distinct vehicle configurations.
There are also several criteria for evaluating performance,
and no simple way to combine them a priori into a
weighted composite objective function. Moreover, there
are well-defined mathematical models for the various
design criticisms of interest. With several alternative
components to be considered for each component choice
point within a configuration alternative, the design space

Design and Diagnosis148

grows combinatorially and rapidly. When we include
consideration of alternative control-policy parameters, the
combinatorial explosion of design alternatives is even
more dramatic. Modeling of hybrid-electric vehicles is
described in Baumann, et. al. (1988); details of the domain
models used in our experiments are available in Wasacz
(1997) and Li (1998).

The most basic components are the four vehicle
configurations, or types of vehicles: IC engine only;
Electric motor only; Parallel hybrid; Serial hybrid. Once a
commitment has been made to a particular configuration,
there is a further need to specify the set of components
required by that configuration, and parameter values
associated with the various components. This set is
different for each of the four types, although some of the
components are common to each type. First, we describe
components and parameters common to all of the vehicle
types.

Transmission, of which the available types are:
Automatic, Manual or CVT (continuously variable). For
manual transmissions there is a choice of the number of
gears (3, 4, or 5-speed) and the corresponding gear ratios.
Choice of Shift Speedsfor manual transmissions
determines various performance characteristics. Also:
Downshift Speed, which is the vehicle speed at which a
lower gear ratio is chosen for manual and automatic
transmissions.

The following components and parameters must be
specified for some vehicle types but not others:

Electric motorsin different sizes (small, medium and
large) and their respective weights,

IC enginesvaried by their sizes (small, medium or
large) and their corresponding weights, torque-speed
characteristics and fuel-efficiency maps,

Batteries, which include the number of cells in the pack
with their respective weights,

Speed reduction ratio, which refers to the gear ratio
between the electric motor and the axle and,

Control policy, which is applicable only to hybrid
vehicles and is varied in terms of four parameters, the
high and low values of vehicle velocities and high and
low values of the state of charge at which the switch is
made from primary reliance on one engine to primary
reliance on another.

The user supplies a set of plausible choices for each of
these components, and the Good-Design Seeker explores
them all. Candidates are generated by first selecting a
vehicle configuration from the four choices, then
systematically going through all relevant combinations of
component choices and parameter-value choices.
Constraints are applied at this stage, as described earlier.
The design space size can be made to grow very large by
stepping component changes through very small
increments, e.g., small changes in cutoff speeds or gear
ratios. The reader will note that we were careful in our
experiments not to artificially inflate the sizes of the
spaces to be explored by using unreasonably small steps of
variation. Once interesting regions of space are explored
during a first round of processing, finer distinctions may

be made in selected areas of the space and additional
explorations, similar to the first but at greater resolution,
may be undertaken.

Design Critics. The following design critics were
employed in the experiments we report here: Maximum
acceleration, top speed, city-driving efficiency, and
highway-driving efficiency. Maximum acceleration was
calculated as the time to reach 60 MPH. We also included
experimental city-driving and highway-driving range
critics, but did not use them in dominance checking. The
details of how the vehicles were modeled for computing
these various performance characteristics are beyond the
scope of this paper. Briefly, dynamical models of vehicle
performance in the form of differential equations were
constructed using well-understood vehicle-modeling
methods. The equations were simulated temporally, i.e.,
the values of the operating parameters were determined as
a function of time using appropriately chosen time
increments. City and highway driving models imposed
contours of desired velocities that were incorporated into
the simulations. The models were simulated using Matlab
and Simulink, widely available application packages,
especially appropriate for simulating complex systems
governed by differential equations. Of course, city and
highway efficiency are correlated, and these are somewhat
inversely correlated with both top speed and maximum
acceleration.

Dominance Filtering. So far, we have run a series of
experiments, progressively exploring larger spaces. In
Table 1, we present results for our largest run to date
(made in March 1998), and “fake” smaller runs
constructed from random sampling of the results of this
run. This insures that our investigation of dominance
filtering is not skewed by recent improvements in the
simulation models used by the critics. This experiment
used the four critics mentioned in the previous section.

Experiment Designs
Considered

Survivors Percentage
survivors

A 1,798 71 3.949
B 17,711 173 0.977
C 179,874 556 0.309
D 1,796,025 1,078 0.060

TABLE 1. Effectiveness of dominance filtering as the size
of the space increases.

Note that dominance filtering appears to be quite
effective in eliminating a large fraction of the design
space. In this case, a small design space was cut by well
more than an order of magnitude, and the largest was cut
by more than three orders of magnitude. If these results
are representative of what can be expected, dominance
filtering will be a practical way to help reduce the
complexity of explicitly comparing very large numbers of
design alternatives.

In order to investigate how the surviving fraction
behaves with respect to the number of dimensions of
comparative criticism, the dominance algorithm was run
on a set of 17,711 candidates corresponding to Experiment

Automated Reasoning 149

B of Table 1 using subsets of two and three criteria each.
Table 2 summarizes the results for two criteria each, while
Table 3 does the same for three criteria. The entries in
these tables represent the numbers of surviving designs. In
Table 2, the rows and columns indicate the two criteria.
(Since the situation is symmetric, only the top half of the
table is filled.) In Table 3, the column heading indicates
which one of the four criteria is not used.

MPG
(City)

Max
Accel.

Top
Speed

MPG
(Highway)

2 24 18

MPG (City) 36 18
Max Accel. 10

TABLE 2. Effectiveness of dominance filtering for two
criteria. Number of surviving designs is shown

Not used: MPG
(Highway)

MPG
(City)

Max
Accel.

Top
Speed

103 83 35 76

TABLE 3. Effectiveness of dominance filtering for three
criteria. Number of surviving designs is shown.

The data in both tables, and the fact that 173 designs
survived with four criteria, support the hypothesis that, as
the number of criteria increases, the tendency is for the
effectiveness of dominance filtering to decrease. That is, a
larger percentage of the candidates survive. However, we
have observed that sometimes the size of the surviving set
decreases as criteria are added. This presumably occurs
because designs that were regarded as equally valued in
the original set are now regarded as differently valued
because the extra criterion allows some to dominate
others.

Scale of computation. In our largest experiment
(Experiment D in Table 1), 2,152,698 designs were
evaluated, of which 1,796,025 were fully specified. Fully
specified designs were evaluated according to four
performance criteria, which required multiple simulations
of each design. Dominance filtering reduced the number
to 1,078 best designs for human analysis. 207 workstations
were used as clients during the experiment; from zero to
159 were running at any one time. The experiment used
164 hr. 41 min. of wall-clock time, 14 hr. 54 min. of CPU
time on the server, for generation and evaluation, and
approximately 4.5 hr. of wall-clock time for dominance
filtering performed as serial post processing. We note that
our experiment used idle workstation in a university
computer science department during the last week of
classes of the term. Presumably, the wall-clock time would
have been less at any other time. Approximately half of
the computation was accomplished over the weekend.

Exploration Interface. Figure 3 shows one of the six
tradeoff diagrams from Experiment D obtained by
considering the four criteria two at a time. In each
diagram, each point that is plotted corresponds to a design
that survived the strict dominance test. The user can use

the pointing device to select subsets for further
examination, save and load such subsets and further
narrow them.

Figure 3. One of the tradeoff diagrams from Experiment D

Through the series of experiments, a striking
phenomenon was the usefulness of the visualization
interface for debugging domain models and ensuring
sufficient realism. The diagrams quickly revealed designs
with implausible performance characteristics; for example,
at one stage of model development we saw vehicles with
unreasonably high top speeds. On one occasion, it was
noticed that for several designs, the values of city driving
efficiency were higher than those for highway driving
efficiency, which is quite unreasonable. On another
occasion, stratification of points in tradeoff diagrams
alerted us that time steps for the acceleration simulations
had been set too coarsely. It is clear that visual
exploration of this sort helps to ensure model accuracy.
The tradeoff diagrams show the results of exercising the
models over an extremely broad range of combinations of
inputs. Model inaccuracies are given every opportunity to
betray their presence through anomalies that appear in
visualizations of the results.

Discussion

“Exploration” is a term that has been often used in the
design literature, but with no single meaning. For
example, for Navinchandra (1991), exploration consists of
deviating “... from the beaten path to generate
unconventional solutions to problems.” Sometimes
exploration is contrasted with search: exploration is
supposed to be examining a space without any specific
goal, while search is supposed to be examining a space for
a specific object. We use the term “exploration” in the
sense of examining a region thoroughly to develop an
understanding of it.

In this paper, we have suggested that large-scale
exploration can make a significant contribution at the

Design and Diagnosis150

stage of conceptual design. We have presented a software
architecture for large-scale exploration. The architecture is
comprised of: a Good-Design Seeker, which systematically
generates and evaluates large numbers of candidate
designs using multiple criteria, filters that pass only
superior designs, and a visualization environment that
enables designers to investigate tradeoffs among the
superior designs and select subsets for further analysis.
The Good-Design Seeker may use component substitution
and exhaustive methods similar in spirit to drug discovery
by “combinatorial chemistry” (Economist 1998). Filtering
based on dominance is practical to implement and
promises to reduce the number of alternatives to be
considered from vast to manageable; it has been
remarkably effective in a small number of relatively
realistic experiments in one domain. The visualization
environment presents the user with the results of multi-
criterial evaluation, without forcing the evaluation to a
single criterion. Tradeoffs are displayed and the user is
able to bring human evaluation and judgment to bear in
choosing designs for further investigation.

Additionally, we have demonstrated at least one way to
make the demanding computations practical: distribute the
criticism of designs over a network of workstations
(potentially as large a pool as there are friendly hosts on
the Internet). We conjecture that very large-scale
exploration of the space of design alternatives has been so
computationally demanding that even the possibility of it
has remained outside the thought processes of design
practice, even within the computer-supported design
community. We believe that computing technology today
has advanced to where such large-scale explorations are
practical for many design domains. We have presented
experimental results that lend strong early encouragement
to claims of practicality.

Acknowledgments

This material is based upon work supported by The Office
of Naval Research under Grant No. N00014-96-1-0701.
The support of ONR and the DARPA RaDEO program are
gratefully acknowledged. Standard disclaimers apply.

References

Baumann, B., Rizzoni, G., Washington, G.: 1998, Society
of Automotive Engineers Technical paper 981061, SAE
Special Publication 1356, Electronic Engine Controls
1998: Sensors, Actuators, and Development Tools.

Birrell, A., Nelson, G., Owicki, S., and Wobber, E.:1994,
Network Objects, DEC Systems Research Center.

Cardelli, L., Donahue, J., Glassman, L., Jordan, M.,
Kalsow, B., and Nelson, G.: 1990, Modula-3 Report
(revised), Nov 89, including a final update insert, Twelve
Changes to Modula-3 dated Dec 1990, DEC Systems
Research Center.

Chandrasekaran, B.: 1990, Design Problem Solving: A
task analysis,AI Magazine, 11(4), 59-71.

Economist 1998, Combinatorial Chemistry,The
Economist, March 14th 1998.

Jain, A., Dubes, R.: 1988,Algorithms for clustering data,
Prentice Hall, Englewood Cliffs, NJ.

Li, Qingyuan: (1998) “Development And Refinement of a
Hybrid Electric Vehicle Simulator and Its Application in
Design Space Exploration,” M.S. Thesis, Department of
Mechanical Engineering, the Ohio State University.

Navinchandra, D.: 1991Exploration and Innovation in
Design: Towards a Computational Model,
Springer-Verlag, New York.

Newell, A.: 1980, Reasoning, Problem Solving and
Decision Process: The problem space as a fundamental
category, inAttention and Performance VIII, R. Nickerson
(ed.), Lawrence Erlbaum, Hillsdale, NJ

Nilsson, N.: 1971,Problem- Solving Methods in Artificial
Intelligence, McGraw Hill, New York.

Tufte, E.: 1983, The Visual Display of Quantitative
Information, Graphics Press, Cheshire, Conn.

Tufte, E.: 1990,Envisioning Information, Graphics Press,
Cheshire, Conn.

Wasacz, B.: 1997, Development and Application of A
Hybrid Electric Vehicle Simulator, MS thesis, Department
of Mechanical Engineering, The Ohio State University

Wilde, D. J.: 1978,Globally Optimal Design, Wiley, New
York.

Wouk, V.: 1997, Hybrid Electric Vehicles,Scientific
American, October 1997, 70-74.

Yip, K. and Zhao, F.: 1996, Spatial aggregation: theory
and applications, Journal of Artificial Intelligence
Research, 5:1-26.

