
Voxels
Tech Team - Johnny Mercado, Michael Matonis, Glen Giffey, John Jackson

Pixel -> Voxel

Appearance in Games

Comanche: Maximum Overkill - 1992

Minecraft - 2011

Guncraft - 2013

CodeSpell

https://www.youtube.com/watch?v=NN5mQxX-
Zd0

https://www.youtube.com/watch?v=NN5mQxX-Zd0
https://www.youtube.com/watch?v=NN5mQxX-Zd0
https://www.youtube.com/watch?v=NN5mQxX-Zd0

Voxel Applications

Animation - https://vimeo.
com/11832919

Data Visualization

CGI

Games

https://vimeo.com/11832919
https://vimeo.com/11832919
https://vimeo.com/11832919

Voxel Structure

- A voxel represents only a single point, not a volume
- Individual voxels contain position, material, and possibly

texture data

- direct volume rendering
- extract polygon iso-surfaces (i.e. Marching Cubes)

https://en.wikipedia.org/wiki/Volume_rendering
https://en.wikipedia.org/wiki/Polygon

Some Graphics Background

● In order to generate a nice 3D shape,
we create a “mesh”

● A “mesh” is made up of triangles
● Each triangle has a set of the

following:
○ 3 Vertices
○ Normals used for lighting
○ “UV” coordinates used to apply texturing

Some Graphics Background (Cntd.)

● Each mesh will have some large
number of vertices/triangles

● Unity will render the meshes using
your computer's Graphics Processing
Unit (GPU)

● Due to the way graphics work, the
world must be divided into a set of
meshes and each mesh must be
rendered

What is a GPU?

● In order to process potentially
millions of vertices, you need A LOT
of processing power.

● CPU improvements have been
reducing over time.

● Solution: Have a large number of
cheaper/weaker chips work in
parallel on the process

● GPUs process all the vertices in
parallel

Generating Voxel Terrains

● Need an algorithm to generate the
voxel “cubes” themselves

● Need an algorithm to create a mesh
of triangles from this data

● Many possible algorithms
● We need to keep in mind the

computational complexity of
covering every voxel

○ Higher resolution means a better picture
quality, but far more computation

Pseudo-Random Noise

● Noise functions in general are a way
of getting “psuedo”-random noise.

● It appears random from the users
view, but is actually more like a pre-
prepared complex math function

● There are many different types of
noise used in software and each has
a particular purpose.

rand(int seed)

● Many people are familiar with basic
random noise functions from various

● If you displayed this as a picture it
would like TV static.

● This could be generated by
something like the following:

○ newSeed = (a*seed + c) % m;

○ Where a, c and m are just arbitrary large
numbers

Decent Noise Compile Time

● Voxels can be generated off of a
noise function to create decent
terrain.

● Without a decent function, we might
generate something like this (see
right)

● This could be pre-generated in
photoshop and loaded into our game’
s voxel engine quite easily

Smooth Noise

● Without going into too much detail,
we want a function f(x, y, z, seed) that
can give us “smooth” noise.

● Instead of entirely random, we want
the values to be change slowly
across each axis.

● Popular type to look into:
○ Perlin Noise/Simplex Noise

● Complicated math behind functions

Creating a Mesh From Data

● Once we have our functions, we need a
way to make our terrain from this data.

● Assumption: We have a noise function
that generates smooth 3D floating points
[0.0, 1.0]

● We need to filter this data to make a
mesh that will act as our terrain!

● Our Method of Choice: “Marching Cubes”
for simplicity/speed compromise

A Simple Overview of Marching Cubes

● If you try and picture the earth as a
mesh inside a sphere, you might be
able to see two volumes.
○ Everything inside the earth (the terrain)

○ Everything outside the earth (the sky)

● What if we look at our noise that way?
● We have [0.0,1.0].

○ Every p(x,y,z) > 0.5 is air (outside earth)
○ Every p(x,y,z) <= 0.5 is terrain (inside earth)

Outside Earth - P(X,Y,Z) > 0.5
BLUE

Inside Earth - P(X,Y,Z) > 0.5
BROWN

A slice of (X,Y) for our world.

A Simple Overview of Marching Cubes

● Once we understand this concept,
Marching Cubes just consists of 15
cases that could occur. A look up table!

● Steps:
○ For every “voxel” (set of 8 vertices) do:

■ Check which vertices are inside terrain
■ Look up case in table
■ Add new set of triangles to mesh

○ Output mesh to Unity!

○ Calculate normals, UVs, and other vertex
data

Example:

● Consider the different examples shown
to the right.

○ Look at each CORNERS of the cube

○ If any of the values at the corners are BELOW
0.5, mark them as ground.

○ Now, look at the EDGES of the cube

○ If the edge goes from a ground node to a sky

node (unmarked), place a vertex on that
edge

○ Combine the triangles.

● There are one or two arbitrary cases...

0.99

0.9 0.8

0.9

1.0

0.85 0.79

0.9

0.5

0.66 0.74

0.62

0.45

0.6 0.7

0.5

0.49
0.54 0.6

0.53

0.51

0.48 0.49

0.45

0.55

0.53 0.501

0.52

0.49

0.44 0.39

0.46

Are We Done?

● The issue is that the largest mesh in
Unity can only be ~65000 vertices in
size.

● If we have millions of vertices in our
generated terrain, how do display it?

● We can separate the world into
smaller sectors called “chunks”

● Each chunk is an extremely large
mesh that together make up the
environment

Other Technical Considerations

● There are more details to implementing
a clean, efficient and realistic looking
voxel engine. Those interested should
look into the following:

○ Linear Interpolation of Marching Cubes
○ Triplanar Texturing/Shaders
○ LOD System
○ Occlusion Culling
○ GPU Computation

How Do We Store an “Infinite” World?

● Games like minecraft have large scale
worlds that can’t be entirely explored
without cheats

● With finite storage space how can we
store an infinite world?

● Given the same seed, we can generate
the same chunk

● Delete chunks far from the player and
restore when they come back

How Do We Store an “Infinite” World?

● Storage only requires:
○ The seed to generate
○ Player positioning
○ Player modifications to the terrain

● The world can be so large that the
player could never truly explore it all

● Cheats to increase character speed or
modify the terrain quickly could
overload the hard drive

Terrain Generation Techniques

● Heightmaps
○ Relatively low memory usage

○ Fast Implementation

○ Efficient physics

● Voxels
○ Computationally slow

○ Expensive Algorithms

○ Slows with higher LOD

Computational Expenses

● Perlin Noise
○ Computing initial data points in 3D space

● Marching Cubes
○ Creating new vertices

● Mesh Creation
○ Mesh size limitations

● Triplanar Texturing (3 texture lookups)

Scalability

● Balance Size, Detail, and Performance
for game

● Less mesh = less computation
● Resolution (perlin noise density)

○ Marching cubes with massive number of
vertices

● Lower Level of Detail

Level Of Detail (LOD)

● Multiple pre-constructed meshes
● Switch out meshes as distance

changes
● Lower detail takes less time to

render

http://www.youtube.com/watch?v=BqMARwb5eS4

Modeled Expenses

● Unity terrain where player can’t easily
see end of world

○ 2048*2048*2048 = 8.5 billion

● 1 billion takes 6.32 minutes
● Multiple Levels of Detail
● Threading not considered

Computational Improvements

● Occlusion Culling
○ Unity has it for pre-constructed meshes

(Umbra)
○ Unreal Engine has support built in

● GPU utilization
○ Divide up computations into thousands

of small portions

● Threading
○ Math computations

The Restrictions of Yesteryear

● The size of the information and complexity of the
processing of Voxels prevented global use

○ However, advancements in parallel processing &

availability of GPU’s helped to bring Voxels into more
widespread use

○ Voxlap, an early voxel engine made in 2000, supported

about 268 million voxels in a scene (w/ some lag
reported)

○ Modern simulators take advantage of billions of voxels
per scene and able to still hold up in real-time tests

The Voxel Engines of Tomorrow

● The Atomontage Engine, which is currently under
development, simulates the world with atom-based
representation through the use of voxels

● Features elements such as destructible environments &
objects, fluid simulation, and soft voxel bodies

● Fluidity in the nature of the voxels(a voxel can go from
simulating a rigid structure to a soft body in real-time)

● Artificial Intelligence at the core overseeing the optimal
rendering performance is being achieved at every tick

● Voxelizer able to convert most polygonal models into voxels

Atomontage

http://www.youtube.com/watch?v=jItvtnc5hLw
http://www.youtube.com/watch?v=J62z_7JaYMw
http://www.youtube.com/watch?v=VYfBrNOi9VM

Applications in Medicine & Modeling

● Voxels use is vastly wide-spread in modelling
and is expected to continue to grow in the field
of medicine

● Brain Scans
○ Voxels are currently being used in several scanning

technologies such as fMRI, MRI, and PET.

○ However, issues exist with the use of voxels in

scanning such as the resolution of changes are
equivalent to the size of the voxel being used

Voxel Use in Brain modelling

http://www.youtube.com/watch?v=xj8fWbaKbh0

Applications in Physics & Simulation

● Voxels, due to the 3 dimension properties, allow for better simulation of
many more features of the real world and are starting to become more
widely spread for these purposes

● Light
○ The use of voxels in simulation have shown a greater quality and computationally cheaper

way of displaying emitted light, shading, and transparency/opacity in a more realistic
sense.

● Fluidity
○ The use of voxels has also spread to cinematography as it widely used to simulate items

such as fire and smoke as well as liquid itself for CGI

Simulation Modelling for Fluids

https://vimeo.com/5242989

http://www.youtube.com/watch?v=pV8ikUpAf4E
http://www.youtube.com/watch?v=x-IADtCesIA
https://vimeo.com/5242989
https://vimeo.com/5242989

Questions?

