

Wireless Sensor Networks, Mobile Ad Hoc Networks (MANETs), Internet of Things

Bell's Law

Roughly every decade a new, lower priced computer class forms based on a new programming platform, network, and interface resulting in new usage and the establishment of a new industry.

G. Bell, "Bell's Law for the Birth and Death of Computer Classes", Communications of the ACM, January 2008, Vol. 51, No. 1, pp. 86–94.

Bell's Law

Gen	Early Success	Moniker	Key Product	Кеу Арр	Human Interface
1	1955	Mainframes	Fortran	Tabulation	
2	1965	Symbolic Computing	Cobol	Accounting	Batch Mode
3	1975	Minicomputers	VAX 11/780	Scientific Computing	
4	1985	PC	IBM PC	Word Processing	Interactive
5	1995	Web Computing	Netscape	eCommerce	
6	2005	Smartphone Computing	iPhone	App Store	Touch
7	2015	???	???	???	???

Edge Devices: Things, Motes

health monitors

software defined radio

Edge Device Software Platforms*

eMote (.NET MF)

mbed OS

* ignoring gateway/cloud support platforms

IoT and WSN

• To a first approximation:

WSN = IoT Devices + Mesh Network

Motivation:

- Number of devices per person growing sharply
- Number of interconnected devices growing too
- Moore's Law economic implication

 \Rightarrow rethink management and security

Why Mesh Edge Devices ?

• To increase available wireless capacity

To increase lifetime of power constrained devices

• To compute in (edge) network, as opposed to at base station or in cloud

Understanding Wireless Capacity Constraints

With communication centralized via a Base Station, capacity for *n* devices is split *n* ways, i.e., O(1/*n*) scaling

Standard solutions:

- 1. Increase number of Base Stations
- 2. Create hierarchy of Base Stations
- 3. Cooperation
- 4. Multi-hop mesh of devices

* capacity is the maximum achievable rate, over all node locations, all traffic patterns, and all protocols

Hierarchical Scaling

• Cellular infrastructure

• Wireless sensor networks

• O(1) scaling in two tier hierarchies, if the number of base stations grows faster than $O(\sqrt{n})$

IoT and WSN: What's similar

Both are:

- Embedded/wearable: on us, in vehicles, in spaces
- Diverse radio and compute devices
- Typically updated in the field

- Downmarket from Smartphones
- Upmarket from passive RFID
- Christensen's theory predicts that the radical change will come from downmarket platforms

Christensen's Law

C. M. Christensen, *The Innovator's Dilemma: When New Technologies Cause Great Firms to Fail*, Harvard Business Press; May 1, 1997, 225 pages.

IoT and WSN: Do they Differ?

- At different points in the Gartner Hype Cycle
- Several IoT device platforms assume wall power unlike WSN device platforms which operate on battery/energy harvesting
 - even if IoT devices communicate wirelessly, they tend to use high(er) power radios
- WSNs typically don't use TCP/IP networks; several don't depend on IP (v4 or v6) naming
 - several IoT platforms focus on application layer network protocols assuming the network is TCP/IP

Gartner Hype Cycle 2015

What we will Study

- Applications space
- Hardware and software platforms
 - Mote (programming labs in eMote MF on .NOW motes)
 - Smartphones platforms supporting low power operation
- Wireless capacity, transmission and link basics
 Scalability theory, energy efficiency, metrics
- MAC, TimeSync, Routing, Wireless Reprogramming
- Robustness and Security at scale
 - Data driven machine learning

Mobile Ad hoc Networks (MANETs)

- Peer to peer networks offer lesser rigidity than in the internet
- Let's now add mobility to the equation
 - MANETs are untethered peer to peer networks
 - An OLD area... over the last 20 years, billions spent on MANET R&D, yielding many protocols (DSR, AODV, DSDV, OLSR) and radio platforms
- Edge devices not only sense, but are in control and actuation loop

Infrastructure-free Mobile Networks Struggling with Scaling

State of art

Scaling Walls

AODV, Dymo, NDN, etc. can scale in simulation to many 1000 nodes

The surprise

After spending several B\$, largest infrastructure-free MANET fielded by DoD is not quite 100 nodes !

E.g.: Overhead vs Capacity

What will we Study

- Scaling walls
- Network architecture for scalable, heterogenous MANETs
- Application specific network patterns (ASNPs)
 Scalability of ASNPs

Andreesen's Postulate

Software is Eating the World

While much of this thesis is reinventing software services (cf. Uber), it applies to reinventing devices !

- \Rightarrow Increased programmability, even at lower layers
- \Rightarrow Software Defined Networking (SDN) for wireless
- \Rightarrow Network Virtualization for wireless

How the Edge Wireless SDN Differs

Capacity limits & mobility prevent ongoing global state snapshots as basic "waist"

neighborhood waist

Separating data plane from control plane in desirable in wireline networks with data traveling at many Gbps

- not so for wireless SDN !
 - wireless links are much slower than wireless links
 - \Rightarrow data plane latency is not a primary consideration
 - conversely, substantial growth in compute resources
 - \Rightarrow hop by hop application specific packet recomputation feasible

What we will Study

• What does virtualization and software defined networking mean for IoT/WSN/MANETs ?

• How social network concepts apply ?

Physical layer programmability and security

 NI SDR platform

Grading Plan

Class participation 15% (incl. presentations)

• Class assignments 25%

• Project 60%

Projects

- eMote implementation
 - network pattern routing, wireless reprogramming,
- eMote security OS support implementation
 Symmetric or Asymmetric
- SDR experiments at PHY layer
 - Channel reciprocity, Configuration space programmability
- Smartphone and hybrid smartphone-mote hacking design
 - Power reduction, energy efficiency
 - Close to the metal OS

Projects

- Robustness method design and analysis
 - Synthetic data generation of sensor data
 - Spurious data rejection techniques
- Machine Learning and Sensing Design
 - Human-Animal classifiers
 - Dreese thermal data model
 - STEM education experiments with motes
- Scalable MANET protocol design
 - Coexistence of ASNPs (local designs for stability and scalability)
- SDR motes?
- Related interests that you have (discuss these with me)

Book References

- Wireless Sensor Networks for Healthcare Applications. By Terrance J. Dishongh, Michael McGrath, Artech House 2010.
- Wireless Sensor Networks: Deployments and Design Frameworks. By Elena Gaura, Michael Allen, Lewis Girod, et al. Springer 2010.
- Wireless Sensor Networks: A Networking Perspective. Edited by Jun Zheng and Abbas Jamalipour. Wiley/IEEE, 2009
- Wireless Sensor Networks: Technology, Protocols, and Applications. By Kazem Sohraby, Daniel Minoli, Taieb F. Znati. Wiley Interscience, 2009
- Wireless Sensor Networks : An Information Processing Approach. By Feng Zhao and Leonidas Guibas
- Principles of Embedded Networked Systems Design. By William Kaiser and Greg Pottie
- Wireless Communications & Networks, 2nd Edition. By William Stallings. ISBN: 0131918354