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ALU Control

32

32

32 Result
A

B

32-bit
ALU

• Our ALU should be able to perform functions:
– logical and function
– logical or function
– arithmetic add function
– arithmetic subtract function
– arithmetic slt (set-less-then) function
– logical nor function

• ALU control lines define a function to be performed on A and B.

32-bit ALU

Zero
Overflow
Carry out
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Functioning of 32-bit ALU
ALU Control
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32-bit
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Overflow
Carry out

ALU Control lines

• Result lines provide result of the chosen function applied to values of 
A and B

• Since this ALU operates on 32-bit operands, it is called 32-bit ALU
• Zero output indicates if all Result lines have value 0
• Overflow indicates a sign integer overflow of add and subtract functions; 
for unsigned integers, this overflow indicator does not provide any useful 
information 

• Carry out indicates carry out and unsigned integer overflow
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Designing 32-bit ALU: Beginning
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Designing 32-bit ALU: Principles
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Operation• Number of functions 
are performed inter-
nally,  but only one
result is chosen for
the output of ALU

• 32-bit ALU is built 
out of 32 identical 
1-bit ALU’s
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Designing Adder
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• 32-bit adder is built out of 32 1-bit adders

Input       Output     

Figure B.5.2

Figure B.5.5

1-bit Adder Truth Table1-bit Adder

From the truth
table and after 
minimization, we
can have this
design for CarryOut
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32-bit Adder
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This is a ripple carry adder.

The key to speeding up addition
is determining carry out in the 
higher order bits sooner.
Result: Carry look-ahead adder.

Carry out
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32-bit ALU With 3 Functions
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32-bit Subtractor
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= A + B + 1
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32-bit Adder / Subtractor
“0”

0

1

0

1

0

1

0

1

a31

b31

+

+

+

+

a0

b0

a2

b2

a1

b1

Result0

Result31

Result2

Result1

Cout

Cin

Cout

Cout

Cout

Cin

Cin

Cin

CarryOut

binvert

Binvert = 0 addition
= 1 subtraction

0

1

g. babic Presentation F 11

32-bit ALU With 4 Functions
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2’s Complement Overflow

0

3

R e s u l t

O p e r a t i o n

a

1

C a r r y I n

0

1

B in v e r t

b 2

L e s s

O v e r f lo w
d e t e c t i o n

O v e r f l o w

+

Carry Out

1-bit ALU for the most significant bit

Other 1-bit ALUs, i.e. non-most significant bit ALUs, are not affected.

2’s complement overflow happens:
• if sum of two positive numbers
results in a negative number

• if sum of two negative numbers
results in a positive number
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Carry Out
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32-bit ALU With 4 Functions and Overflow
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• slt function is defined as:
000 … 001   if A < B, i.e. if A – B < 0

A slt B = 
000 … 000 if A ≥ B, i.e. if A – B ≥ 0

• Thus each 1-bit ALU should have an additional input (called 
“Less”), that will provide results for slt function. This input has 
value 0 for all but 1-bit ALU for the least significant bit.

• For the least significant bit Less value should be sign of A – B
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32-bit ALU with 6 Functions
A nor B = A and B

Figure B.5.10 (Top)

Carry Out
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Figure B.5.12
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• We have now accounted for all but one of the arithmetic and 
logic functions for the core MIPS instruction set. 32-bit ALU 
with 6 functions omits support for shift instructions.

• It would be possible to widen 1-bit ALU multiplexer to 
include 1-bit shift left and/or 1-bit shift right.

• Hardware designers created the circuit called a barrel 
shifter, which can shift from 1 to 31 bits in no more time than 
it takes to add two 32-bit numbers. Thus, shifting is normally 
done outside the ALU.

• We now consider integer multiplication (but not division).

32-bit ALU Elaboration
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• Multiplication is more complicated than addition:
– accomplished via shifting and addition

• More time and more area required
• Let's look at 3 versions based on elementary school 

algorithm
• Example of unsigned multiplication:

5-bit multiplicand         100012 = 1710
5-bit multiplier      × 100112 = 1910

10001
10001

00000
00000

10001       .
1010000112 = 32310

• But, this algorithm is very impractical to implement in hardware

Multiplication
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• The multiplication can be done with intermediate additions.
• The same example:

multiplicand  10001 
multiplier  × 10011

intermediate product                                          0000000000
add since multiplier bit=1                                    10001
intermediate product                                          0000010001
shift multiplicand and add since multiplier bit=1             10001 
intermediate product                                          0000110011
shift multiplicand and no addition since multiplier bit=0
shift multiplicand and no addition since multiplier bit=0
shift multiplicand and add multiplier since bit=1             10001    

final result             0101000011

Multiplication : Example
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Multiplication Hardware: 1st Version

64-bit ALU

Control test

Multiplier

Shift right

Product

Write

Multip licand

Shift left

64 bits
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32 bits

Done

1. Test
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1a. Add multiplicand to product and
place the result in Product register

2. Shift the Multiplicand register left 1 bit

3. Shift the Multiplier register right 1 bit

32nd repetition?

Start

Multiplier0 = 0Multiplier0 = 1

No: < 32 repetitions

Yes: 32 repetitions

Figure 3.5
Figure 3.6
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Multiplication Hardware: 2nd Version
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Multiplication Hardware: 3rd Version

Figure 3.7
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• A simple algorithm:
– Convert to positive integer any of operands (if needed) 

and remember original signs
– Perform multiplication of unsigned numbers using the 

existing algorithm and hardware 
– Negate product if original signs disagree

• This algorithm is not simple to implement in hardware, since 
it has to:
– account in advance about signs,
– if needed, convert from negative to positive numbers,
– if needed, convert back to negative integer at the end

• Fast multiplication algorithms.

Multiplication of Signed Integers 
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• Conversion from real binary to real decimal
– 1101.10112 = – 13.687510
since:  11012 = 23 + 22 + 20 = 1310 and 

0.10112 = 2-1 + 2-3 + 2-4 = 0.5 + 0.125 + 0.0625 = 0.687510
• Conversion from real decimal to real binary:

+927.4510 = + 1110011111.01 1100 1100 1100 …..
927/2 = 463 + ½ LSB      0.45 × 2 = 0.9  
463/2 = 231 + ½                   0.9 × 2  = 1.8
231/2 = 155 + ½                   0.8 × 2  = 1.6
155/2 = 57 + ½                     0.6 × 2  = 1.2
57/2 = 28 + ½                     0.2 × 2  = 0.4
28/2 = 14 + 0                      0.4 × 2  = 0.8
14/2 = 7 + 0                        0.8 × 2  = 1.6
7/2 = 3 + ½                       0.6 × 2  = 1.2
3/2 = 1 + ½                       0.2 × 2  = 0.4
1/2 = 0 + ½                       0.4 × 2  = 0.8  ……

Real Numbers 
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• The term floating point number refers to representation of real 
binary numbers in computers.

• IEEE 754 standard defines standards for floating point  
representations

• Single precision:

Floating Point Number Formats 

31 30               23  22                                      0
s            E Fraction

• Double precision:

63 62                     52  51                                32
s            E                        Fraction

31                                                              0
Fraction
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1.  Normalize binary real number i.e. put it into the  normalized 
form:

(-1)s × 1.Fraction * 2Exp

-1101.10112 = (-1)1 × 1.1011011 * 23

+1110011111.011100 = (-1)0 × 1.110011111011100 * 29

2.  Load fields of single or double precision format with values
from normalized form, but with the adjustment for E field.

E = Exp + 12710 = Exp + 011111112 for single precision
E = Exp + 102310 = Exp + 011111111112 for double precision

• E is called a biased exponent.

Converting to Floating Point
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• Find single and double precision of  –13.687510
Normalized form: (-1)1 × 1.1011011 × 23

– single precision: 
E = 112 + 011111112 = 100000102
|1|10000010|10110110000000000000000|

– double precision
E = 112 + 011111111112 = 100000000102
|1|10000000010|10110110000000000000|
|00000000000000000000000000000000|

Floating Point: Example 1 
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• Find single and double precision of +927.4510

Normalized form: (-1)0 × 1.110011111011100 * 29

– single precision
E = 10012 + 011111112 = 100010002
|0|10001000|11001111101110011001100|1100...
truncation     |0|10001000|11001111101110011001100|
rounding       |0|10001000|11001111101110011001101|

– double precision
E = 10012 + 011111111112 = 10000001000

|0|10000001000|11001111101110011001|
|10011001100110011001100110011001|1001100…

truncation    |10011001100110011001100110011001|
rounding      |10011001100110011001100110011010|

Floating Point: Example 2 
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• Rules for biased exponents in single precision apply only for 
real exponents in the range [-126,127], thus we can have 
biased exponents only in the range [1,254]. 

• The number 0.0 is represented as S=0, E=0 and Fraction=0. 
The infinite number is represented with E=255. There are 
some additional rules that are outside our scope.

• Find the largest (non-infinite) real binary number (by 
magnitude) which can be represented in a single precision.
– Floating point overflow

• Find the smallest (non-zero) real binary number (by 
magnitude) which can be represented in a single precision.
– Floating point underflow

Converting to Floating Point: Conclusion 

g. babic Presentation F 31

Floating Point  Addition 

Figure 3.16
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Arithmetic Unit for Floating Point Addition

Figure 3.17
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32-bit ALU with 6 Functions
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