ALU Control CSE 675.02: Introduction to Computer Architecture A 32 Result 32 32-bit ALU Zero Arithmetic / Logic Unit – ALU → Overflow Carry out B 32 Design • Our ALU should be able to perform functions: - logical and function - logical or function Presentation F - arithmetic add function - arithmetic subtract function - arithmetic slt (set-less-then) function Slides by Gojko Babić - logical nor function • ALU control lines define a function to be performed on A and B. g. babic Presentation F 2 07/19/2005

Functioning of 32-bit ALU

	ALU Control lines			
Function	Ainvert Binvert Operation			
and	0	0	00	
or	0	0	01	
add	0	0	10	
subtract	0	1	10	
slt	0	1	11	
nor	1	1	00	

3

- Result lines provide result of the chosen function applied to values of A and B $\,$
- Since this ALU operates on 32-bit operands, it is called 32-bit ALU
- Zero output indicates if all Result lines have value 0
- Overflow indicates a sign integer overflow of add and subtract functions; for unsigned integers, this overflow indicator does not provide any useful information
- Carry out indicates carry out and unsigned integer overflow g. babic Presentation F

Designing 32-bit ALU: Beginning

32-bit ALU

4

Designing 32-bit ALU: Principles

Designing Adder

• 32-bit adder is built out of 32 1-bit adders

1-bit Adder Truth Table

	Input			Output	
а	b	Carry In	Sum	Carry Out	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	

6

32-bit Adder

32-bit ALU With 3 Functions

32-bit Subtractor

32-bit Adder / Subtractor

32-bit ALU With 4 Functions

2's Complement Overflow

Other 1-bit ALUs, i.e. non-most significant bit ALUs, are not affected.

g. babic

32-bit ALU With 4 Functions and Overflow

Set Less Than (slt) Function

• slt function is defined as:

A slt B = $\begin{cases} 000 \dots 001 & \text{if } A < B, \text{ i.e. if } A - B < 0 \\ 000 \dots 000 & \text{if } A \ge B, \text{ i.e. if } A - B \ge 0 \end{cases}$

- Thus each 1-bit ALU should have an additional input (called "Less"), that will provide results for slt function. This input has value 0 for all but 1-bit ALU for the least significant bit.
- For the least significant bit Less value should be sign of A B

g.	babic	

Presentation F

14

32-bit ALU With 5 Functions

32-bit ALU with 5 Functions and Zero

32-bit ALU with 6 Functions

0

0

0

0

1

or

add

subtract

slt

nor

0

0

1

1

01

10

10

11

00

32-bit ALU Elaboration

- We have now accounted for all but one of the arithmetic and logic functions for the core MIPS instruction set. 32-bit ALU with 6 functions omits support for shift instructions.
- It would be possible to widen 1-bit ALU multiplexer to include 1-bit shift left and/or 1-bit shift right.
- Hardware designers created the circuit called a barrel shifter, which can shift from 1 to 31 bits in no more time than it takes to add two 32-bit numbers. Thus, shifting is normally done outside the ALU.
- We now consider integer multiplication (but not division).

g. babic	
----------	--

Presentation F

18

Multiplication

- Multiplication is more complicated than addition:
 accomplished via shifting and addition
- · More time and more area required
- Let's look at 3 versions based on elementary school algorithm
- Example of unsigned multiplication:

5-bit multiplicand 5-bit multiplier

 $1 10001_2 = 17_{10} \\ \times 10011_2 = 19_{10} \\ 10001 \\ 10001 \\ 00000 \\ 00000 \\ 10001 \\ 10100011_2 = 323_{10}$

But, this algorithm is very impractical to implement in hardware

19

Multiplication : Example

- The multiplication can be done with intermediate additions.
- The same example:

multiplicand	10001
multiplier	× <u>10011</u>
intermediate product	000000000
add since multiplier bit=1	10001
intermediate product	0000010001
shift multiplicand and add since multiplier bit=1	<u>10001</u>
intermediate product	0000110011
shift multiplicand and no addition since multiplier bit=0)
shift multiplicand and no addition since multiplier bit=0)
shift multiplicand and add multiplier since bit=1	<u>10001</u>
final resu	lt 0101000011

Multiplication Hardware: 1st Version

Multiplication Hardware: 2nd Version

Multiplication Hardware: 3rd Version

Multiplication of Signed Integers

- A simple algorithm:
 - Convert to positive integer any of operands (if needed) and remember original signs
 - Perform multiplication of unsigned numbers using the existing algorithm and hardware
 - Negate product if original signs disagree
- This algorithm is not simple to implement in hardware, since it has to:
 - account in advance about signs,
 - if needed, convert from negative to positive numbers,
 - if needed, convert back to negative integer at the end
- Fast multiplication algorithms.

g. babic

Presentation F

Real Numbers

Conversion from real binary to real decimal					
$-1101.1011_2 = -13.6875_{10}$					
since: $1101_{2}^{2} = 2^{3} + 2^{2} + 2^{0} = 13_{10}$ and					
$0.1011_2 = 2^{-1} + 2^{-3} + 2^{-3}$	$2^{-4} = 0.5 + 0.125 + 0.0625 = 0.6875_{10}$				
Conversion from real deci	mal to real binary:				
+927.45 ₁₀ = + 1110011111.	01 1100 1100 1100				
927/2 = 463 + ½ ← LSB	0.45 × 2 = 0.9				
$463/2 = 231 + \frac{1}{2}$	$0.9 \times 2 = 1.8$				
$231/2 = 155 + \frac{1}{2}$	0.8 × 2 = 1.6				
155/2 = 57 + ½	$0.6 \times 2 = 1.2$				
$57/2 = 28 + \frac{1}{2}$	$0.2 \times 2 = 0.4$				
28/2 = 14 + 0	$0.4 \times 2 = 0.8$				
14/2 = 7 + 0	$0.8 \times 2 = 1.6$				
$7/2 = 3 + \frac{1}{2}$	$0.6 \times 2 = 1.2$				
$3/2 = 1 + \frac{1}{2}$	$0.2 \times 2 = 0.4$				
$1/2 = 0 + \frac{1}{2}$	0.4 × 2 = 0.8				
g. babic	Presentation F	25			

Floating Point Number Formats

- The term floating point number refers to representation of real binary numbers in computers.
- IEEE 754 standard defines standards for floating point representations
- Single precision:

• Double precision:

63 62		52 5	1	32
s	Е		Fraction	
<u>31</u>				0
Fraction				

g. babic

Presentation F

Converting to Floating Point

1. Normalize binary real number i.e. put it into the normalized form:

(-1)^s × 1.Fraction * 2^{Exp}

 $-1101.1011_2 = (-1)^1 \times 1.1011011 \times 2^3$

+1110011111.011100 = (-1)⁰ × 1.110011111011100 * 2⁹

2. Load fields of single or double precision format with values from normalized form, but with the adjustment for E field.

 $E = Exp + 127_{10} = Exp + 01111111_2$ for single precision $E = Exp + 1023_{10} = Exp + 0111111111_2$ for double precision

E is called a biased exponent.

g. babic

27

Floating Point: Example 1

• Find single and double precision of -13.6875_{10} Normalized form: $(-1)^1 \times 1.1011011 \times 2^3$

Presentation F

26

Floating Point: Example 2

 Find sing 	le and double precision of +927.45 ₁₀	
Normaliz	red form: (-1) ⁰ × 1.110011111011100 * 2 ⁹	
E = 10	$01_2 + 01111111_2 = 10001000_2$	
truncat	ion $10 1000 1100 1100 1100 100 100 100 100 $	<u>) </u> 11
– double	e precision	<u>.</u> †
E = 10 1011	$101_2 + 0111111111_2 = 10000001000$ 0000001000 11001111101110011001	
100	<u>011001100110011001100110011001</u> 1001100.	
truncation	<u> 1001100110011001100110011001 </u>	
rounding	<u> 10011001100110011001100110011001</u>	

Converting to Floating Point: Conclusion

- Rules for biased exponents in single precision apply only for real exponents in the range [-126,127], thus we can have biased exponents only in the range [1,254].
- The number 0.0 is represented as S=0, E=0 and Fraction=0. The infinite number is represented with E=255. There are some additional rules that are outside our scope.
- Find the largest (non-infinite) real binary number (by magnitude) which can be represented in a single precision.

- Floating point overflow

- Find the smallest (non-zero) real binary number (by magnitude) which can be represented in a single precision.
 - Floating point underflow

29	g. babic	Presentation F	30

Floating Point Addition

Arithmetic Unit for Floating Point Addition

32-bit ALU with 6 Functions

