Arithmetic / Logic Unit - ALU Design

Presentation F

Slides by Gojko Babić

07/19/2005

32-bit ALU

- Our ALU should be able to perform functions:
- logical and function
- logical or function
- arithmetic add function
- arithmetic subtract function
- arithmetic slt (set-less-then) function
- logical nor function
- ALU control lines define a function to be performed on A and B.
g. babic

Presentation F

Functioning of 32-bit ALU

	ALU Control lines		
Function	Ainvert	Binvert	Operation
and	0	0	00
or	0	0	01
add	0	0	10
subtract	0	1	10
slt	0	1	11
nor	1	1	00

- Result lines provide result of the chosen function applied to values of A and B
- Since this ALU operates on 32-bit operands, it is called 32-bit ALU
- Zero output indicates if all Result lines have value 0
- Overflow indicates a sign integer overflow of add and subtract functions; for unsigned integers, this overflow indicator does not provide any useful information
- Carry out indicates carry out and unsigned integer overflow

Designing 32-bit ALU: Beginning

Designing 32-bit ALU: Principles

Designing Adder

- 32-bit adder is built out of 32 1-bit adders

From the truth
table and after minimization, we can have this design for CarryOut

1-bit Adder Truth Table

Input			Output	
a	b	Carry In	Sum	Carry Out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

6

32-bit Adder

32-bit ALU With 3 Functions

32-bit Adder / Subtractor

2's Complement Overflow

1-bit ALU for the most significant bit

Other 1-bit ALUs, i.e. non-most significant bit ALUs, are not affected.

32-bit ALU With 4 Functions and Overflow

Set Less Than (slt) Function

- slt function is defined as:

$$
A \text { slt } B=\left\{\begin{array}{c}
000 \ldots 001 \text { if } A<B \text {, i.e. if } A-B<0 \\
000 \ldots 000 \text { if } A \geq B \text {, i.e. if } A-B \geq 0
\end{array}\right.
$$

- Thus each 1-bit ALU should have an additional input (called "Less"), that will provide results for slt function. This input has value 0 for all but 1-bit ALU for the least significant bit.
- For the least significant bit Less value should be sign of $A-B$

Operation = $\mathbf{3}$ and Binvert $=1$ for slt function Add correction for CarryOut

32-bit ALU with 5 Functions and Zero

32-bit ALU with 6 Functions

Figure B.5.10 (Top)

Function	Ainvert	Binvert	Operation
and	0	0	00
or	0	0	01
add	0	0	10
subtract	0	1	10
slt	0	1	11
nor	1	1	00

Figure B.5.12

+ Carry Out

32-bit ALU Elaboration

- We have now accounted for all but one of the arithmetic and logic functions for the core MIPS instruction set. 32-bit ALU with 6 functions omits support for shift instructions.
- It would be possible to widen 1-bit ALU multiplexer to include 1-bit shift left and/or 1-bit shift right.
- Hardware designers created the circuit called a barrel shifter, which can shift from 1 to 31 bits in no more time than it takes to add two 32-bit numbers. Thus, shifting is normally done outside the ALU.
- We now consider integer multiplication (but not division).

Multiplication

- Multiplication is more complicated than addition:
- accomplished via shifting and addition
- More time and more area required
- Let's look at 3 versions based on elementary school algorithm
- Example of unsigned multiplication:

5-bit multiplicand	$10001_{2}=17_{10}$
5-bit multiplier	$\times \underline{10011_{2}}=19_{10}$
	10001
	10001
	00000
	00000
	10001
	$101000011_{2}=323{ }_{10}$

- But, this algorithm is very impractical to implement in hardware

Multiplication : Example

- The multiplication can be done with intermediate additions.
- The same example:

> multiplicand multiplier
intermediate product add since multiplier bit=1 intermediate product shift multiplicand and add since multiplier bit=1 intermediate product shift multiplicand and no addition since multiplier bit=0 shift multiplicand and no addition since multiplier bit=0 shift multiplicand and add multiplier since bit=1
final result
10001
0101000011

Multiplication Hardware: $1^{\text {st }}$ Version
Multiplication Hardware: $2^{\text {nd }}$ Version

Figure 3.5
g. babic

Presentation F

Figure 3.6
resento
21

g. babic

Presentation F

Multiplication Hardware: $3^{\text {rd }}$ Version

Figure 3.7

Multiplication of Signed Integers

- A simple algorithm:
- Convert to positive integer any of operands (if needed) and remember original signs
- Perform multiplication of unsigned numbers using the existing algorithm and hardware
- Negate product if original signs disagree
- This algorithm is not simple to implement in hardware, since it has to:
- account in advance about signs,
- if needed, convert from negative to positive numbers,
- if needed, convert back to negative integer at the end
- Fast multiplication algorithms.

Real Numbers

```
- Conversion from real binary to real decimal
    - 1101.1011 = - 13.6875 
    since: 1101, = 23+2'+20}=1\mp@subsup{3}{10}{}\mathrm{ and
            0.1011 2 = 2-1 + 2-3 + 2-4 = 0.5 + 0.125 + 0.0625 = 0.6875 (0
- Conversion from real decimal to real binary:
    +927.45 
    927/2 = 463 + 1/2 < LSB 0.45 < 2 = 0.9
    463/2=231+1/2 0.9 < 2 = 1.8
    231/2=155+1/2 0.8 人 2 = 1.6
    155/2=57+1/2 0.6 
    57/2=28+1/2 0.2 < 2 = 0.4
    28/2 = 14+0 0.4 < 2 = 0.8
    14/2=7+0 0.8 人 2 = 1.6
    712 = 3 + 1/2 0.6 < 2 = 1.2
    3/2 = 1+1/2 0.2 }\times2=0.
    1/2=0+1/2 0.4 < 2 = 0.8
```


Floating Point Number Formats

- The term floating point number refers to representation of real binary numbers in computers.
- IEEE 754 standard defines standards for floating point representations
- Single precision:

3130		
s E Fraction	0	

- Double precision:

g. babic

Presentation F

Converting to Floating Point

1. Normalize binary real number i.e. put it into the normalized form:
$(-1)^{\mathrm{s}} \times 1$. Fraction * 2^{Exp}
$-1101.1011_{2}=(-1)^{1} \times 1.1011011 * 2^{3}$
$+1110011111.01 \overline{1100}=(-1)^{0} \times 1.11001111101 \overline{1100} * 2^{9}$
2. Load fields of single or double precision format with values from normalized form, but with the adjustment for E field.
$E=\operatorname{Exp}+127_{10}=\operatorname{Exp}+01111111_{2}$ for single precision
$\mathrm{E}=\operatorname{Exp}+1023_{10}=\operatorname{Exp}+01111111111_{2}$ for double precision

- E is called a biased exponent.

Floating Point: Example 2

- Find single and double precision of $+927.45_{10}$

Normalized form: $(-1)^{0} \times 1.11001111101 \overline{1100} * 2^{9}$

- single precision
$E=1001_{2}+01111111_{2}=10001000_{2}$
|0|10001000|11001111101110011001100|1100...
truncation $\underline{0|10001000| 11001111101110011001100 \mid}$
rounding $\quad 0|10001000| 11001111101110011001101 \mid$
- double precision
$E=1001_{2}+01111111111_{2}=10000001000$
|0|100000001000|11001111101110011001|
10011001100110011001100110011001|1001100...
truncation
|10011001100110011001100110011001| rounding
g. babic

Converting to Floating Point: Conclusion

- Rules for biased exponents in single precision apply only for real exponents in the range [-126,127], thus we can have biased exponents only in the range [1,254].
- The number 0.0 is represented as $\mathrm{S}=0, \mathrm{E}=0$ and Fraction=0. The infinite number is represented with $\mathrm{E}=255$. There are some additional rules that are outside our scope.
- Find the largest (non-infinite) real binary number (by magnitude) which can be represented in a single precision.
- Floating point overflow
- Find the smallest (non-zero) real binary number (by magnitude) which can be represented in a single precision.
- Floating point underflow
g. babic

Presentation F
30

Floating Point Addition

