
07/19/2005

Arithmetic / Logic Unit – ALU
Design

Presentation F

CSE 675.02: Introduction to Computer Architecture

Slides by Gojko Babić

g. babic Presentation F 2

ALU Control

32

32

32 Result
A

B

32-bit
ALU

• Our ALU should be able to perform functions:
– logical and function
– logical or function
– arithmetic add function
– arithmetic subtract function
– arithmetic slt (set-less-then) function
– logical nor function

• ALU control lines define a function to be performed on A and B.

32-bit ALU

Zero
Overflow
Carry out

g. babic Presentation F 3

Functioning of 32-bit ALU
ALU Control

32

32

32 Result
A

B

32-bit
ALU Zero

Overflow
Carry out

ALU Control lines

• Result lines provide result of the chosen function applied to values of
A and B

• Since this ALU operates on 32-bit operands, it is called 32-bit ALU
• Zero output indicates if all Result lines have value 0
• Overflow indicates a sign integer overflow of add and subtract functions;
for unsigned integers, this overflow indicator does not provide any useful
information

• Carry out indicates carry out and unsigned integer overflow

4

0011nor
1110slt

1010subtract
1000add
0100or
0000and

OperationBinvertAinvertFunction

g. babic 4

Designing 32-bit ALU: Beginning

a0

b0

a1

b1

a2

b2

a31

b31

Result0

Result1

Result2

Result31

1. Let us start with and function
2. Let us now add or function

0

1

0

1

0

1

0

1

Operation = 0 and
= 1 or

g. babic 5

Designing 32-bit ALU: Principles

a0

b0

a1

b1

a2

b2

a31

b31

Result0

Result1

Result2

Result31

0

1

0

1

0

1

0

1

Operation• Number of functions
are performed inter-
nally, but only one
result is chosen for
the output of ALU

• 32-bit ALU is built
out of 32 identical
1-bit ALU’s

and

or

and

or

and

or

and

or

= 0 and
= 1 or

g. babic Presentation F 6

Designing Adder

Sum

CarryIn

CarryOut

a

b

b

CarryOut

a

CarryIn

11111
10011
10101
01001
10110
01010
01100
00000

Carry
Out

SumCarry
In

ba

• 32-bit adder is built out of 32 1-bit adders

Input Output

Figure B.5.2

Figure B.5.5

1-bit Adder Truth Table1-bit Adder

From the truth
table and after
minimization, we
can have this
design for CarryOut

g. babic Presentation F 7

32-bit Adder

+

+

+

+

a0

b0

a2

b2

a1

b1

a31

b31

sum0

sum31

sum2

sum1

Cout

Cin

Cout

Cout

Cout

Cin

Cin

Cin

“0”

This is a ripple carry adder.

The key to speeding up addition
is determining carry out in the
higher order bits sooner.
Result: Carry look-ahead adder.

Carry out
g. babic Presentation F 8

b

0

2

Result

Operation

a

1

CarryIn

CarryOut

32-bit ALU With 3 Functions

1-bit ALU

CarryOut

Result31
a31

b31

Result0

CarryIn

a0

b0

Result1
a1

b1

Result2
a2

b2

Operation

ALU0

CarryIn

CarryOut

ALU1

CarryIn

CarryOut

ALU2

CarryIn

CarryOut

ALU31

CarryIn

=0

Operation = 00 and
= 01 or
= 10 add

Figure B.5.6

Figure B.5.7
+ carry out

g. babic Presentation F 9

32-bit Subtractor
“0”

a31

b31

+

+

+

+

a0

b0

a2

b2

a1

b1

Result0

Result31

Result2

Result1

Cout

Cin

Cout

Cout

Cout

Cin

Cin

Cin

CarryOut

“1”

A – B = A + (–B)

= A + B + 1

g. babic 10

32-bit Adder / Subtractor
“0”

0

1

0

1

0

1

0

1

a31

b31

+

+

+

+

a0

b0

a2

b2

a1

b1

Result0

Result31

Result2

Result1

Cout

Cin

Cout

Cout

Cout

Cin

Cin

Cin

CarryOut

binvert

Binvert = 0 addition
= 1 subtraction

0

1

g. babic Presentation F 11

32-bit ALU With 4 Functions

101subtract
100add
010or

000and

Operation
(2 lines)

Binvert
(1 line)

Function
Control lines

1-bit ALU

Carry Out

a31

ALU0 R esult0
a0

R esult1
a1

R esult2
a2

Operation

b31

b0

b1

b2

R esult31

Binvert

CarryIn

CarryIn

CarryOut

ALU1
CarryIn

CarryOut

ALU2
CarryIn

CarryOut

ALU31
CarryIn

0

2

Result

Operation

a

1

CarryIn

CarryO ut

0

1

Binvert

b

Figure B.5.8

0

1 g. babic Presentation F 12

2’s Complement Overflow

0

3

R e s u l t

O p e r a t i o n

a

1

C a r r y I n

0

1

B in v e r t

b 2

L e s s

O v e r f lo w
d e t e c t i o n

O v e r f l o w

+

Carry Out

1-bit ALU for the most significant bit

Other 1-bit ALUs, i.e. non-most significant bit ALUs, are not affected.

2’s complement overflow happens:
• if sum of two positive numbers
results in a negative number

• if sum of two negative numbers
results in a positive number

g. babic Presentation F
Carry Out

a31

ALU0 R esult0
a0

R esult1
a1

R esult2
a2

Operation

b31

b0

b1

b2

R esult31

Overflow

Binvert

CarryIn

CarryIn

CarryOut

ALU1
CarryIn

CarryOut

ALU2
CarryIn

CarryOut

ALU31
CarryIn

32-bit ALU With 4 Functions and Overflow

101subtract
100add
010or

000and

Operation
(2 lines)

Binvert
(1 line)

Function
Control lines

Missing: slt & nor functions and Zero output

Add correction for CarryOut g. babic Presentation F 14

• slt function is defined as:
000 … 001 if A < B, i.e. if A – B < 0

A slt B =
000 … 000 if A ≥ B, i.e. if A – B ≥ 0

• Thus each 1-bit ALU should have an additional input (called
“Less”), that will provide results for slt function. This input has
value 0 for all but 1-bit ALU for the least significant bit.

• For the least significant bit Less value should be sign of A – B

Set Less Than (slt) Function

0

3

Result

Operation

a

1

CarryIn

CarryOut

0

1

Binvert

b 2

Less

32-bit ALU With 5 Functions

1-bit ALU for non-
most significant
bits

Carry Out

Set
a31

0

ALU0 R esult0
a0

R esult1
a1

0

R esult2
a2

0

Operation

b31

b0

b1

b2

R esult31

Overflow

Binvert

CarryIn

Less

CarryIn

CarryOut

ALU1
Less

CarryIn

CarryOut

ALU2
Less

CarryIn

CarryOut

ALU31
Less

CarryIn

Operation = 3 and Binvert =1 for slt function

0

3

Result

Operation

a

1

CarryIn

0

1

Binvert

b 2

Less

Set

Overflow
detection Overflow

Carry Out

1-bit ALU for the
most significant
bits

+

Add correction for CarryOut g. babic Presentation F

Set
a31

0

Result0a0

Result1a1

0

Result2a2

0

Operation

b31

b0

b1

b2

Result31

Overflow

Bnegate

Zero

ALU0
Less

CarryIn

CarryOut

ALU1
Less

CarryIn

CarryOut

ALU2
Less

CarryIn

CarryOut

ALU31
Less

CarryIn

32-bit ALU with 5 Functions and Zero

111slt
101subtract
100add
010or

000and

Operation
(2 lines)

Binvert
(1 line)

Function
Control lines

Carry Out

Binvert

Add correction for CarryOut

g. babic 17

32-bit ALU with 6 Functions
A nor B = A and B

Figure B.5.10 (Top)

Carry Out

0011nor
1110slt
1010subtract
1000add
0100or
0000and

OperationBinvertAinvertFunction

Figure B.5.12
+ Carry Out + Binvert

Binvert

Add correction for CarryOut

g. babic Presentation F 18

• We have now accounted for all but one of the arithmetic and
logic functions for the core MIPS instruction set. 32-bit ALU
with 6 functions omits support for shift instructions.

• It would be possible to widen 1-bit ALU multiplexer to
include 1-bit shift left and/or 1-bit shift right.

• Hardware designers created the circuit called a barrel
shifter, which can shift from 1 to 31 bits in no more time than
it takes to add two 32-bit numbers. Thus, shifting is normally
done outside the ALU.

• We now consider integer multiplication (but not division).

32-bit ALU Elaboration

g. babic Presentation F 19

• Multiplication is more complicated than addition:
– accomplished via shifting and addition

• More time and more area required
• Let's look at 3 versions based on elementary school

algorithm
• Example of unsigned multiplication:

5-bit multiplicand 100012 = 1710
5-bit multiplier × 100112 = 1910

10001
10001

00000
00000

10001 .
1010000112 = 32310

• But, this algorithm is very impractical to implement in hardware

Multiplication

g. babic Presentation F 20

• The multiplication can be done with intermediate additions.
• The same example:

multiplicand 10001
multiplier × 10011

intermediate product 0000000000
add since multiplier bit=1 10001
intermediate product 0000010001
shift multiplicand and add since multiplier bit=1 10001
intermediate product 0000110011
shift multiplicand and no addition since multiplier bit=0
shift multiplicand and no addition since multiplier bit=0
shift multiplicand and add multiplier since bit=1 10001

final result 0101000011

Multiplication : Example

g. babic Presentation F 21

Multiplication Hardware: 1st Version

64-bit ALU

Control test

Multiplier

Shift right

Product

Write

Multip licand

Shift left

64 bits

64 bits

32 bits

Done

1. Test
Multiplier0

1a. Add multiplicand to product and
place the result in Product register

2. Shift the Multiplicand register left 1 bit

3. Shift the Multiplier register right 1 bit

32nd repetition?

Start

Multiplier0 = 0Multiplier0 = 1

No: < 32 repetitions

Yes: 32 repetitions

Figure 3.5
Figure 3.6

g. babic Presentation F 22

M ultip lier

Sh ift right

W rite

32 bits

64 bits

32 bits

Shift right

Multiplicand

32-bit A LU

Product Control tes t

Done

1. Test
Multiplier0

1a. Add multiplicand to the left half of
the product and place the result in
the left half of the Product register

2. Shift the Product register right 1 bit

3. Shift the Multiplier register right 1 bit

32nd repetition?

Start

Multiplier0 = 0Multiplier0 = 1

No: < 32 repetitions

Yes: 32 repetitions

Multiplication Hardware: 2nd Version

g. babic Presentation F 23

C o n tr o l

t e s tW r i te

3 2 b i ts

6 4 b it s

S h if t r ig h t
P r o d u c t

M u lt ip l ic a n d

3 2 - b it A L U

Done

1. Test
Product0

1a. Add multiplicand to the left half of
the product and place the result in
the left half of the Product register

2. Shift the Product register right 1 bit

32nd repetition?

Start

Product0 = 0Product0 = 1

No: < 32 repetitions

Yes: 32 repetitions

Multiplication Hardware: 3rd Version

Figure 3.7

g. babic Presentation F 24

• A simple algorithm:
– Convert to positive integer any of operands (if needed)

and remember original signs
– Perform multiplication of unsigned numbers using the

existing algorithm and hardware
– Negate product if original signs disagree

• This algorithm is not simple to implement in hardware, since
it has to:
– account in advance about signs,
– if needed, convert from negative to positive numbers,
– if needed, convert back to negative integer at the end

• Fast multiplication algorithms.

Multiplication of Signed Integers

g. babic Presentation F 25

• Conversion from real binary to real decimal
– 1101.10112 = – 13.687510
since: 11012 = 23 + 22 + 20 = 1310 and

0.10112 = 2-1 + 2-3 + 2-4 = 0.5 + 0.125 + 0.0625 = 0.687510
• Conversion from real decimal to real binary:

+927.4510 = + 1110011111.01 1100 1100 1100 …..
927/2 = 463 + ½ LSB 0.45 × 2 = 0.9
463/2 = 231 + ½ 0.9 × 2 = 1.8
231/2 = 155 + ½ 0.8 × 2 = 1.6
155/2 = 57 + ½ 0.6 × 2 = 1.2
57/2 = 28 + ½ 0.2 × 2 = 0.4
28/2 = 14 + 0 0.4 × 2 = 0.8
14/2 = 7 + 0 0.8 × 2 = 1.6
7/2 = 3 + ½ 0.6 × 2 = 1.2
3/2 = 1 + ½ 0.2 × 2 = 0.4
1/2 = 0 + ½ 0.4 × 2 = 0.8 ……

Real Numbers

g. babic Presentation F 26

• The term floating point number refers to representation of real
binary numbers in computers.

• IEEE 754 standard defines standards for floating point
representations

• Single precision:

Floating Point Number Formats

31 30 23 22 0
s E Fraction

• Double precision:

63 62 52 51 32
s E Fraction

31 0
Fraction

g. babic Presentation F 27

1. Normalize binary real number i.e. put it into the normalized
form:

(-1)s × 1.Fraction * 2Exp

-1101.10112 = (-1)1 × 1.1011011 * 23

+1110011111.011100 = (-1)0 × 1.110011111011100 * 29

2. Load fields of single or double precision format with values
from normalized form, but with the adjustment for E field.

E = Exp + 12710 = Exp + 011111112 for single precision
E = Exp + 102310 = Exp + 011111111112 for double precision

• E is called a biased exponent.

Converting to Floating Point

g. babic Presentation F 28

• Find single and double precision of –13.687510
Normalized form: (-1)1 × 1.1011011 × 23

– single precision:
E = 112 + 011111112 = 100000102
|1|10000010|10110110000000000000000|

– double precision
E = 112 + 011111111112 = 100000000102
|1|10000000010|10110110000000000000|
|00000000000000000000000000000000|

Floating Point: Example 1

g. babic Presentation F 29

• Find single and double precision of +927.4510

Normalized form: (-1)0 × 1.110011111011100 * 29

– single precision
E = 10012 + 011111112 = 100010002
|0|10001000|11001111101110011001100|1100...
truncation |0|10001000|11001111101110011001100|
rounding |0|10001000|11001111101110011001101|

– double precision
E = 10012 + 011111111112 = 10000001000

|0|10000001000|11001111101110011001|
|10011001100110011001100110011001|1001100…

truncation |10011001100110011001100110011001|
rounding |10011001100110011001100110011010|

Floating Point: Example 2

g. babic Presentation F 30

• Rules for biased exponents in single precision apply only for
real exponents in the range [-126,127], thus we can have
biased exponents only in the range [1,254].

• The number 0.0 is represented as S=0, E=0 and Fraction=0.
The infinite number is represented with E=255. There are
some additional rules that are outside our scope.

• Find the largest (non-infinite) real binary number (by
magnitude) which can be represented in a single precision.
– Floating point overflow

• Find the smallest (non-zero) real binary number (by
magnitude) which can be represented in a single precision.
– Floating point underflow

Converting to Floating Point: Conclusion

g. babic Presentation F 31

Floating Point Addition

Figure 3.16

g. babic Presentation F 32

Arithmetic Unit for Floating Point Addition

Figure 3.17

g. babic 33

32-bit ALU with 6 Functions

1

0

2

2

1

1

0

3

1

0

