CSE 3461: Introduction to Computer Networking and Internet Technologies

Spread Spectrum

Presentation J

Study: 9.1–9.3

11-08-2012

Spread Spectrum: Basics

- Important encoding method for wireless communications
- Analog & digital data is encoded with analog signal
- Spreads data over wide bandwidth
- Makes jamming and interception harder
- Two approaches, both in use:
 - Frequency Hopping
 - Direct Sequence
- Advantages:
 - immunity from noise and multipath distortion
 - can hide / encrypt signals
 - several users can share same higher bandwidth with little interference, e.g. in CDMA mobile telephony

Presentation J

2

Pseudorandom Numbers

- Pseudorandom numbers are generated by a deterministic algorithm
 - not actually random
 - but if algorithm good, results pass reasonable tests of randomness
- Starting from an initial seed
- Need to know algorithm and seed to predict sequence
- Hence only receiver can decode signal

Presentation J 4

FHSS - Frequency Hopping Spread Spectrum

- Signal is broadcast over seemingly random series of frequencies
- Receiver hops between frequencies in sync with transmitter
- · Eavesdroppers hear unintelligible blips
- · Jamming on one frequency affects only a few bits
- FHSS is commonly use multiple FSK (MFSK)
- Have frequency shifted every T_c seconds
- Duration of signal element is T_s seconds
- Slow and Fast FHSS
 - —Slow FHSS has $T_c \ge T_s$
 - —Fast FHSS has $T_c < T_s$
- · FHSS quite resistant to noise or jamming
 - -with fast FHSS giving better performance

Presentation J

5

- There are 2^k carrier frequencies forming 2^k channels. Here k=3.
- The spacing between carrier frequencies and the width of each channel usually corresponds to the bandwidth of the input signal.
- A spreading code dictates the sequence of channels used.

Presentation J

6

DSSS - Direct Sequence Spread Spectrum

- · Each bit is represented by multiple bits using a spreading code
- This spreads signal across a wider frequency band
- DSSS has performance similar to FHSS
- One technique with direct sequence spread spectrum is to combine the digital information stream with the spreading code bit stream using an exclusive-OR
- The combination bit stream has the data rate of the original spreading code sequence, so it has a wider bandwidth than the information stream.
- In the example on the next slide, the spreading code bit stream is clocked at four times the information rate.

Presentation J 11

Code Division Multiple Access (CDMA)

- a multiplexing technique used with spread spectrum
- given a data signal rate D
- break each bit into k chips according to a fixed chipping code specific to each user
- resulting new channel has chip data rate kD chips per second
- can have multiple channels superimposed

Presentation J 16

