
1

10-30-2012

Transport Protocols

Presentation H

Gojko Babić

CSE 3461: Introduction to Computer
Networking and Internet Technologies

Study: 20.1, 20.2, 20.4

2

Transport services and protocols

• provide logical communication
between app’ processes
running on different hosts

• transport protocols run in end
systems

• transport vs network layer
services:

• network layer: data transfer
between end systems

• transport layer: data transfer
between processes
— relies on, enhances, network

layer services

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

d. xuan

2

3

Transport-layer protocols

Internet transport services:
• reliable, in-order unicast

delivery (TCP)
— congestion
— flow control
— connection setup

• unreliable (“best-effort”),
unordered unicast or multicast
delivery: UDP

• services not available:
— real-time
— bandwidth guarantees
— reliable multicast

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

d. xuan

4

• Connection oriented
• Reliable communication between pairs of processes
• Across variety of reliable and unreliable networks and internets
• Source IP address + port number and destination IP address +

port number uniquely determine a TCP connection.
• Problems to resolve:

— Ordered Delivery
— Flow control
— Retransmission strategy
— Duplication detection
— Connection establishment
— Connection termination
— Crash recovery

TCP: Transmission Control Protocol

g. babic Presentation H

3

5

TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

• full duplex data:
— bi-directional data flow in

same connection
— MSS: maximum segment

size

• connection-oriented:
— handshaking (exchange of

control msgs) init’s
sender, receiver state
before data exchange

• flow controlled:
— sender will not overwhelm

receiver

• point-to-point:
— one sender, one receiver

• reliable, in-order byte
steam:
— no “message boundaries”

• pipelined:
— TCP congestion and flow

control set window size

• send & receive buffers

socket
door

TCP
send buffer

TCP
receive buffer

socket
door

segment

application
writes data

application
reads data

d. xuan

6

TCP Header

ACK = 1  Acknowledgement Number present
SYN = 1  Connection Establishment Request/Response
RST = 1  Connection Rejected
FIN = 1  Connection Termination
URG and PSH generally not used

Figure 2.3

g. babic Presentation H

4

7

• Improvement over fixed sliding window protocol
• Greater control on reliable network and more effective on

unreliable network
• Decouples flow control from acknowledgment

— May acknowledge without granting credit and vice versa
• Each octet (byte) has its sequence number
• When sending a data segment, Sequence Number is that of

first octet (byte) in segment
• ACK includes Acknowledge Number AN=i, and Window W=j
• This means all octets through Sequence Number SN=i-1 are

acknowledged, i.e. next expected octet is i
• And permission to send additional window of W=j octets, i.e.

octets through i+j-1

Credit Based Flow Control

g. babic Presentation H

8

Credit Allocation

Figure 20.1

g. babic Presentation H

5

9

Sending and Receiving Perspective

Figure 20.2

g. babic Presentation H

10

TCP seq. #’s and ACKs

Seq. #’s:
— byte stream

“number” of first
byte in segment’s
data

ACKs:
— seq # of next byte

expected from other
side

— cumulative ACK
Q: how receiver handles

out-of-order segments
A: TCP spec doesn’t say,

— up to implementer

Host A Host B

Host
sends
‘DAY’

host ACKs
receipt,

sends ‘MONTH’

host ACKs
receipt,

sends ‘WEEK’

time

d. xuan

6

11

• Receiver must acknowledge successful receipt
• Segment may be damaged in transit or segment fails to arrive
• Transmitter does not know of failure
• Time out waiting for ACK triggers re-transmission (at sender)

— Fixed timer
— Adaptive schemas

• Use cumulative acknowledgement compensates for lost ACKs.
• If ACK lost, segment is re-transmitted
• Receiver must recognize duplicates

— Receiver assumes ACK lost and ACK is duplicated
— Sender must not get confused with multiple ACKs

• Sequence number space large enough to not cycle within
maximum life of segment  Octets numbered modulo 232

Retransmission & Duplication Detection

g. babic Presentation H

12

TCP: retransmission scenarios

Host A

loss

ti
m

eo
ut

time lost ACK scenario

Host B

X

Host A

Se
q=

92
 t

im
eo

ut

time premature timeout,
cumulative ACKs

Host B

Se
q=

10
0

ti
m

eo
ut

d. xuan

7

g. babic Presentation H 13

TCP A TCP B

1. CLOSED LISTEN

2. SYN-SENT  <SEQ=100><CTL=SYN>  SYN-RECEIVED

3. ESTABLISHED  <SEQ=300><ACK=101><CTL=SYN,ACK>  SYN-RECEIVED

4. ESTABLISHED  <SEQ=101><ACK=301><CTL=ACK>  ESTABLISHED

5. ESTABLISHED  <SEQ=101><ACK=301><CTL=ACK><DATA>  ESTABLISHED

In line 2, TCP A begins by sending a SYN segment indicating that it will
use sequence numbers starting with sequence number 100. In line 3,
TCP B sends a SYN and acknowledges the SYN it received from TCP
A. Note that the acknowledgment field indicates TCP B is now
expecting to hear sequence 101, acknowledging the SYN which
occupied sequence 100.

Basic 3-Way Handshake Connection Sync.

g. babic Presentation H 14

TCP A TCP B

1. CLOSED CLOSED

2. SYN-SENT  <SEQ=100><CTL=SYN> ...

3. SYN-RECEIVED  <SEQ=300><CTL=SYN>  SYN-SENT

4. ... <SEQ=100><CTL=SYN>  SYN-RECEIVED

5. SYN-RECEIVED  <SEQ=100><ACK=301><CTL=SYN,ACK> ...

6. ESTABLISHED  <SEQ=300><ACK=101><CTL=SYN,ACK>  SYN-RECEIVED

7. ... <SEQ=101><ACK=301><CTL=ACK>  ESTABLISHED

Simultaneous initiation is only slightly more complex, as is shown
above. Each TCP cycles from CLOSED to SYN-SENT to SYN-
RECEIVED to ESTABLISHED

Simultaneous Connection Synchronization

8

g. babic Presentation H 15

TCP A TCP B
1. CLOSED LISTEN
2. SYN-SENT  <SEQ=100><CTL=SYN> ...
3. (old duplicate) ... <SEQ=90><CTL=SYN>  SYN-RECEIVED
4. SYN-SENT  <SEQ=300><ACK=91><CTL=SYN,ACK>  SYN-RECEIVED
5. SYN-SENT  <SEQ=91><CTL=RST>  LISTEN
6. ... <SEQ=100><CTL=SYN>  SYN-RECEIVED
7. SYN-SENT  <SEQ=400><ACK=101><CTL=SYN,ACK>  SYN-RECEIVED
8. ESTABLISHED  <SEQ=101><ACK=401><CTL=ACK>  ESTABLISHED

At line 3, an old duplicate SYN arrives at TCP B. TCP B cannot tell that
this is an old duplicate, so it responds normally (line 4). TCP A detects
that the ACK field is incorrect and returns a RST (reset) with its SEQ
field selected to make the segment believable. TCP B, on receiving the
RST, returns to the LISTEN state. When the original SYN finally arrives
at line 6, the synchronization proceeds normally. If the SYN at line 6
had arrived before the RST, a more complex exchange might have
occurred with RST's sent in both directions.

Recovery from Old Duplicate SYN

Connection Establishment: Windows

• Client sends a SYN segment with a sequence number; can’t have data.
• Server sends SYN+ACK segment with its sequence number and

acknowledges the receipt of SYN segment; because it contains acknowledge
it needs also to define its receive window; this segment can’t carry data.

• Client sends ACK segment acknowledging the receipt of SYN+ACK segment
from server and needs to defines its receive window; this segment may
carry data. The example doesn’t assume any data.

• What are the windows after this connection has been established?

Server first issues a passive open
and it is ready to accept connectionClient initiates connection

g. babic Presentation H 16

9

g. babic Presentation H 17

TCP A TCP B
1. ESTABLISHED ESTABLISHED
2. (Close from user)

FIN-WAIT-1  <SEQ=10000><ACK=900><CTL=FIN,ACK>  CLOSE-WAIT
3. FIN-WAIT-2  <SEQ=900><ACK=100001><CTL=ACK>  CLOSE-WAIT
4. (Close from user)

TIME-WAIT  <SEQ=30000><ACK=100001><CTL=FIN,ACK>  LAST-ACK
5. TIME-WAIT  <SEQ=10001><ACK=30001><CTL=ACK>  CLOSED
6. After 2 MSL CLOSED

A local user initiates the close. TCP A constructs a FIN segment and places it on

the outgoing segment queue. No further SENDs from the user will be accepted by

the TCP, and it enters the FIN-WAIT-1 state. RECEIVEs are allowed in this state.

All segments preceding and including FIN will be retransmitted until

acknowledged. When the other TCP has both acknowledged the FIN and sent a

FIN of its own, the first TCP can ACK this FIN. Note that a TCP receiving a FIN

will ACK but not send its own FIN until its user has CLOSED the connection also.

Normal Close Sequence

g. babic Presentation H 18

TCP A TCP B
1. ESTABLISHED ESTABLISHED
2. (Close from user)

FIN-WAIT-1  <SEQ=100><ACK=300><CTL=FIN,ACK> ... (Close from user)
 <SEQ=300><ACK=100><CTL=FIN,ACK>  FIN-WAIT-1
... <SEQ=100><ACK=300><CTL=FIN,ACK> 

3. CLOSING  <SEQ=101><ACK=301><CTL=ACK> ...
<-- <SEQ=301><ACK=101><CTL=ACK>  CLOSING
... <SEQ=101><ACK=301><CTL=ACK> 

4. TIME-WAIT TIME-WAIT
(2 MSL) (2 MSL)
CLOSED CLOSED

A simultaneous CLOSE by users at both ends of a connection causes
FIN segments to be exchanged. When all segments preceding the FINs
have been processed and acknowledged, each TCP can ACK the FIN it
has received. Both will, upon receiving these ACKs, delete the
connection.

Simultaneous Close Sequence

10

19

UDP: User Datagram Protocol (RFC 768)

• “no frills,” “bare bones”
Internet transport protocol

• “best effort” service, UDP
segments may be:
— lost
— delivered out of order to

app
• connectionless:

— no handshaking between
UDP sender, receiver

— each UDP segment
handled independently of
others

Why is there a UDP?
• no connection establishment

(which can add delay)
• simple: no connection state

at sender, receiver
• small segment header
• no congestion control: UDP

can blast away as fast as
desired

d. xuan

20

UDP: User Datagram (more)

• often used for streaming
multimedia apps
— loss tolerant
— rate sensitive

• other UDP uses (why?):
— DNS
— SNMP

• reliable transfer over UDP:
add reliability at application
layer
— application-specific error

recover!

source port # dest port #

32 bits

Application
data
(message)

UDP segment format

length checksum
Length, in

bytes of UDP
segment,
including

header

d. xuan

11

21

• Let us consider Unix command: ftp bsdi.com, by which a user
wants to start some file transfer with the host named bsdi.com.

1. The application (ftp client) calls an appropriate function to
convert a host name (bsdi.com) into 32-bit IP address. This
function is called resolver, and conversion is done using DNS
(Domain Name System).

2. The FTP client now asks its TCP to establish connection with
that IP address and (usually well known) port number.

3. TCP sends a connection request segment (SYN) to remote
host by sending IP datagram to its IP address.

4. If the destination host is on an another network, the IP
routing function sends the IP datagram (containing SYN) to a
locally attached next-hop router, in a MAC frame with the
router’s MAC address as its destination address. All
subsequent IP datagrams for this TCP connection are send
and received from this router.

Example: TCP/IP in Action

g. babic Presentation H

22

5. If the destination host is on the same LAN, the sending host
must find its MAC address. It is ARP’s (Address Resolution
Protocol) function to perform this task.

6. ARP sends an MAC frame caled an ARP request by broadcast.
The ARP request contains the IP address of the destination
host and it is the request “if you are the owner of this IP
address, please respond to me with your MAC address”.

7. The destination host’s ARP layer receives this broadcast,
recognizes that the sender is asking an ARP replay. This
replay contains the IP address and the corresponding MAC
address. Note that all other hosts in the LAN ignore the ARP
request.

8. The ARP replay is received and the IP datagram that forced
ARP request-replay sequence can now be sent.

9. The IP datagram (with SYN) is sent to the destination host.

Example: TCP/IP in Action (continued)

g. babic Presentation H

