CSE 3461: Introduction to Computer
Networking and Internet Technologies

Transport Protocols

Presentation H

Study: 20.1, 20.2, 20.4

10-30-2012

Gojko Babi¢

Transport services and protocols

provide /ogical communication
between app’ processes
running on different hosts
transport protocols run in end
systems
transport vs network layer
services:

data transfer
between end systems

data transfer

between processes

— relies on, enhances, network
layer services

d. xuan

application

networ!
data link
physical

network
M/
o, rl;(—|physical
PhINZ
S network
Q data link
hysical network
Q "“\{data link
physical
Q —
twork
N link
|
application
€™ anspo
networ
a2) data link
g g physical

Transport-layer protocols

Internet transport services:
< reliable, in-order unicast
delivery (TCP)
— congestion
— flow control
— connection setup
e unreliable (“best-effort”),
unordered unicast or multicast
delivery: UDP
e services not available:
— real-time

) 1) hysical
— bandwidth guarantees 5 5 B
— reliable multicast

pp
transport |

network /

data link
physical

network
data link
physical

dapplication

transport

d. xuan

TCP: Transmission Control Protocol

Connection oriented

Reliable communication between pairs of processes

Across variety of reliable and unreliable networks and internets
Source IP address + port number and destination IP address +
port number uniquely determine a TCP connection.

Problems to resolve:

— Ordered Delivery

— Flow control

— Retransmission strategy

— Duplication detection

— Connection establishment

— Connection termination

— Crash recovery

g. babic Presentation H 4

TCP: Overview RECs: 793, 1122, 1323, 2018, 2581

e point-to-point: e full duplex data:
— one sender, one receiver — bi-directional data flow in
- reliable, in-order byte same connection
Steam: —Zlilfes. maximum segment
— no “message boundaries” . .
. pipelined: e connection-oriented:
i — handshaking (exchange of
—TCP congestl_on and flow control msgs) init's
control set window size sender, receiver state
e send & receive buffers before data exchange

« flow controlled:

wet — SeNnder will not overwhelm
door receiver

socket
door ~

d. xuan 5

TCP Header

Bit: 0 4 10 16 31

Source Port Destination Port

& Sequence Number
2
= Acknowledgement Number
o1
o UlA|P|R|S|F
o Reserved [r|c|s|s|v]1 Window
offset Glklu|T|N|N
Checksum Urgent Pointer

Options + Padding

ACK =1 - Acknowledgement Number present Figure 2.3

SYN =1 - Connection Establishment Request/Response
RST =1 - Connection Rejected

FIN =1 - Connection Termination

URG and PSH generally not used

g. babic Presentation H 6

Credit Based Flow Control

Improvement over fixed sliding window protocol

Greater control on reliable network and more effective on
unreliable network

Decouples flow control from acknowledgment

— May acknowledge without granting credit and vice versa
Each octet (byte) has its sequence number

When sending a data segment, Sequence Number is that of
first octet (byte) in segment

ACK includes Acknowledge Number AN=i, and Window \W=j
This means all octets through Sequernce Number SN=i-1 are
acknowledged, i.e. next expected octet is |

And permission to send additional window of \W=] octets, i.e.
octets through i+j-1

g. babic Presentation H 7

Credit Allocation

Transport Entity A

| —————

...1000[1001

2400]2401...

A may send 1400 octets

————
[1601 [2401...

I
A shrinks its transmit window with each
transmission

| —
... 1000|1001 2001 [2401...
T 1

|
.. 1600[1601 [2001 | 2601...

T ———
A adjusts its window with each credit

I
...1600[1601 2600{ 2601...
| 1
A exhavsts its credit
..2600[2601 4000 4001...

A receives new credit

SN = 209,
S = 229,
.S‘.\'t“‘”

. _ 1400
N = 1@\\\.\\ =

Figure 20.1

g. babic

Presentation H

Transport Entity B

...1000 {1001 2400]2401....

———————
B is prepared to receive 1400 octets,
beginning with 1001

| —

[2601...

| E——
B acknowledges 3 segments (600 octets), but is only
prepared to receive 200 additional octets beyond the
original budget (i.e., B will accept octets 1601
through 2600)

]
...1e00f1e01 2001

[2601...
_—
...2600] 2601 2000[4001....

——————— 1
B acknowledges S segments (1000 octets) and
restores the original amount of credit

Sending and

Receiving Perspective

O
Data octets so far acknowledged A

Data octets already transmitted

ctets not yet

‘knowledged
Window of actets

that may be transmitted

P - >
L1 A X
- e
Initial Sequene Last octet Lastoctet Window shrinks from Window expands
Number (ISN) acknowledged transmitted grailing edge as from leading edge
(AN = 1) segments are sent as credits are received
(a) Send sequence space
Octets not yet
ata el to = 2ok acknowledged
< Data octets so far acknowledged »e > Window of octets
- Data octets already received e that may be accepted >
I LR
L4 A X
— —
Initial Sequene Last octet Lastoctet Window shrinks from Window expands
Number (ISN) acknowledged received trailing edge as from leading edge
UN=-1) segments are received as credits are sent

Figure 20.2

(b) Receive sequence space

g. babic Presentation H 9
7
TCP seq. #’s and ACKSs
Seq. #'s:
— byte stream @ Host A
“number” of first Host s
byte in segment’s sends 92 ACKszg
' ' » datg = .
data bAY = host ACK
0s S
ACKs: oK receipt,
— seq # of next byte sata = WE= sends 'WEEK'
expected from other seae T
side
— cumulative ACK host ACKs
. receipt,
Q: how receiver handles sends '"MONTH: +ACK=g3
out-of-order segments " data < "MON T
A: TCP spec doesn't say,
— up to implementer time

d. xuan

10

Retransmission & Duplication Detection

Receiver must acknowledge successful receipt

Segment may be damaged in transit or segment fails to arrive
Transmitter does not know of failure

Time out waiting for ACK triggers re-transmission (at sender)

— Fixed timer

— Adaptive schemas

Use cumulative acknowledgement compensates for lost ACKs.
If ACK lost, segment is re-transmitted

Receiver must recognize duplicates

— Receiver assumes ACK lost and ACK is duplicated

— Sender must not get confused with multiple ACKs

Sequence number space large enough to not cycle within
maximum life of segment - Octets numbered modulo 232

g. babic Presentation H 1"

TCP: retransmission scenarios

L[;l) Host A Host B@ @HOST A Host B@

Seg= Seq=g
‘ =92 g bytes datg *1-_ Seq 2, 8 Vtes datq
T_S =100 2 by,
5 0 5 E €S dat,
Q \44\0 =
Q P\G (VN Q
£ Eao A
ey IX ; :-)- P‘g‘l}\o\(\a\’l
0SS S n
l E‘ L Se
SSq:g Q =92 8
2 b
'8 bytes datg n Yies dat
A0
400 o«
AC =A0 N
i . time .
fime " ost ACK scenario premature fimeout,

cumulative ACKs

d. xuan
12

Basic 3-Way Handshake Connection Sync.

TCPA TCPB
1. CLOSED LISTEN
2. SYN-SENT > <SEQ=100><CTL=SYN> -> SYN-RECEIVED

3. ESTABLISHED €« <SEQ=300><ACK=101><CTL=SYN,ACK> & SYN-RECEIVED
4. ESTABLISHED - <SEQ=101><ACK=301><CTL=ACK> -> ESTABLISHED

5. ESTABLISHED - <SEQ=101><ACK=301><CTL=ACK><DATA> - ESTABLISHED

In line 2, TCP A begins by sending a SYN segment indicating that it will
use sequence numbers starting with sequence number 100. In line 3,
TCP B sends a SYN and acknowledges the SYN it received from TCP
A. Note that the acknowledgment field indicates TCP B is now
expecting to hear sequence 101, acknowledging the SYN which
occupied sequence 100.

g. babic Presentation H 13

Simultaneous Connection Synchronization

TCPA TCPB
1. CLOSED CLOSED
2. SYN-SENT 2> <SEQ=100><CTL=SYN>

3. SYN-RECEIVED €« <SEQ=300><CTL=SYN> <« SYN-SENT
4. ... <SEQ=100><CTL=SYN> > SYN-RECEIVED

5. SYN-RECEIVED 2> <SEQ=100><ACK=301><CTL=SYN,ACK> ...
6. ESTABLISHED € <SEQ=300><ACK=101><CTL=SYN,ACK> ¢« SYN-RECEIVED

7. ... <SEQ=101><ACK=301><CTL=ACK> > ESTABLISHED

Simultaneous initiation is only slightly more complex, as is shown
above. Each TCP cycles from CLOSED to SYN-SENT to SYN-
RECEIVED to ESTABLISHED

g. babic Presentation H 14

Recovery from Old Duplicate SYN

TCPA TCPB
1. CLOSED LISTEN
2. SYN-SENT = <SEQ=100><CTL=SYN>
3. (old duplicate) <SEQ=90><CTL=SYN> > SYN-RECEIVED
4. SYN-SENT € <SEQ=300><ACK=91><CTL=SYN,ACK> <& SYN-RECEIVED
5. SYN-SENT = <SEQ=91><CTL=RST> > LISTEN
6. ... <SEQ=100><CTL=SYN> > SYN-RECEIVED
7. SYN-SENT € <SEQ=400><ACK=101><CTL=SYN,ACK> & SYN-RECEIVED
8. ESTABLISHED - <SEQ=101><ACK=401><CTL=ACK> - ESTABLISHED

At line 3, an old duplicate SYN arrives at TCP B. TCP B cannot tell that
this is an old duplicate, so it responds normally (line 4). TCP A detects
that the ACK field is incorrect and returns a RST (reset) with its SEQ
field selected to make the segment believable. TCP B, on receiving the
RST, returns to the LISTEN state. When the original SYN finally arrives
at line 6, the synchronization proceeds normally. If the SYN at line 6
had arrived before the RST, a more complex exchange might have

occurred with RST's sent in both directions.
g. babic Presentation H 15

Connection Establishment: Windows

sy . .
o 2 SN, Server first issues a passive open
Client initiates connection ~—___anditis ready to accept connection
0,
5‘(“, [‘,\g‘\s
WO
pC!
A
Ack No, ;230N=101!
1’ W:"so

e Client sends a SYN segment with a sequence number; can't have data.

e Server sends SYN+ACK segment with its sequence number and
acknowledges the receipt of SYN segment; because it contains acknowledge
it needs also to define its receive window; this segment can’t carry data.

e Client sends ACK segment acknowledging the receipt of SYN+ACK segment
from server and needs to defines its receive window; this segment may
carry data. The example doesn’t assume any data.

e What are the windows after this connection has been established?

g. babic Presentation H 16

Normal Close Sequence

TCPA TCPB
1. ESTABLISHED ESTABLISHED
2. (Close from user)

3.

FIN-WAIT-1 = <SEQ=10000><ACK=900><CTL=FIN,ACK> > CLOSE-WAIT
FIN-WAIT-2 € <SEQ=900><ACK=100001><CTL=ACK> & CLOSE-WAIT

4. (Close from user)

TIME-WAIT € <SEQ=30000><ACK=100001><CTL=FIN,ACK> €& LAST-ACK

5 TIME-WAIT - <SEQ=10001><ACK=30001><CTL=ACK> - CLOSED
6. After 2 MSL CLOSED

Alocal user initiates the close. TCP A constructs a FIN segment and places it on

t
t

he outgoing segment queue. No further SENDs from the user will be accepted by
he TCP, and it enters the FIN-WAIT-1 state. RECEIVEs are allowed in this state.

All segments preceding and including FIN will be retransmitted until
acknowledged. When the other TCP has both acknowledged the FIN and sent a
FIN of its own, the first TCP can ACK this FIN. Note that a TCP receiving a FIN
will ACK but not send its own FIN until its user has CLOSED the connection also.

g. babic Presentation H 17

Simultaneous Close Sequence

TCPA TCPB
1. ESTABLISHED ESTABLISHED
2. (Close from user)
FIN-WAIT-1 2 <SEQ=100><ACK=300><CTL=FIN,ACK> ... (Close from user)
€ <SEQ=300><ACK=100><CTL=FIN,ACK> <« FIN-WAIT-1
... <SEQ=100><ACK=300><CTL=FIN,ACK> >
3. CLOSING - <SEQ=101><ACK=301><CTL=ACK>

<-- <SEQ=301><ACK=101><CTL=ACK> <« CLOSING
<SEQ=101><ACK=301><CTL=ACK> =
4. TIME-WAIT TIME-WAIT
(2 MSL) (2 MSL)
CLOSED CLOSED

A simultaneous CLOSE by users at both ends of a connection causes
FIN segments to be exchanged. When all segments preceding the FINs
have been processed and acknowledged, each TCP can ACK the FIN it
has received. Both will, upon receiving these ACKs, delete the
connection.

g. babic Presentation H 18

UDP: User Datagram Protocol (RFC 768)

“no frills,” “bare bones”
Internet transport protocol

“best effort” service, UDP
segments may be:

— lost

— delivered out of order to
app

connectionless:

— no handshaking between
UDP sender, receiver
— each UDP segment

handled independently of
others

. Xuan

Why is there a UDP?

no connection establishment
(which can add delay)
simple: no connection state
at sender, receiver

small segment header

no congestion control: UDP

can blast away as fast as
desired

19

UDP: User Datagram (more)

often used for streaming
multimedia apps

— loss tolerant Length, in |Source port #| dest port #
— rate sensitive bytes of UDP~ length checksum
other UDP uses (why?): Slsgmjm;
—DNS header
— SNMP
reliable transfer over UDP: Application
add reliability at application data
layer (message)
— application-specific error

recover!

d. xuan

«— 32 bits

UDP segment format

20

10

Example: TCP/IP in Action

Let us consider Unix command: ftp bsdi.com, by which a user
wants to start some file transfer with the host named bsdi.com.

The application (ftp client) calls an appropriate function to
convert a host name (bsdi.com) into 32-bit IP address. This
function is called resolver, and conversion is done using DNS
(Domain Name System).

The FTP client now asks its TCP to establish connection with
that IP address and (usually well known) port number.

TCP sends a connection request segment (SYN) to remote
host by sending IP datagram to its IP address.

If the destination host is on an another network, the IP
routing function sends the IP datagram (containing SYN) to a
locally attached next-hop router, in a MAC frame with the
router’s MAC address as its destination address. All
subsequent IP datagrams for this TCP connection are send

and received from this router.
g. babic Presentation H 21

Example: TCP/IP in Action (continued)

If the destination host is on the same LAN, the sending host
must find its MAC address. It is ARP’s (Address Resolution
Protocol) function to perform this task.

ARP sends an MAC frame caled an ARP request by broadcast.
The ARP request contains the IP address of the destination
host and it is the request “if you are the owner of this IP
address, please respond to me with your MAC address”.

The destination host’s ARP layer receives this broadcast,
recognizes that the sender is asking an ARP replay. This
replay contains the IP address and the corresponding MAC
address. Note that all other hosts in the LAN ignore the ARP
request.

The ARP replay is received and the IP datagram that forced
ARP request-replay sequence can now be sent.

The IP datagram (with SYN) is sent to the destination host

g. babic Presentation H 22

11

