CSE 3461: Introduction to Computer Networking and Internet Technologies

Packet Switching

Presentation G

Study: 10.5, 10.6, 12.1, 12.2, 13.1, 13.2, 18.3, 18.4

Gojko Babić

10-09-2012

The Network Core

- mesh of interconnected routers
- <u>the</u> fundamental question: how is data transferred through net?
 - —circuit switching: dedicated circuit per call: telephone net
 - —packet-switching: data sent thru net in discrete "chunks"

d. xuan 2

Network Layer Functions

- transport packet from sending to receiving hosts
- network layer protocols in every host, router

three important functions:

- path determination: route taken by packets from source to dest. Routing algorithms
- switching: move packets from router's input to appropriate router output
- call setup: some network architectures require router call setup along path before data flows

d. xuan

Network Core: Packet Switching

each end-end data stream divided into *packets*

- user A, B packets share network resources
- each packet uses full link bandwidth
- resources used as needed.

resource contention:

- aggregate resource demand can exceed amount available
- congestion: packets queue, wait for link use
- store and forward: packets move one hop at a time
 - transmit over link
 - wait turn at next link

Packet Switching: Basic Operation

- Data transmitted in small packets
 - Typically 1000 octets (bytes)
 - Longer messages split into series of packets
 - Each packet contains a portion of user data plus some control information
- Control information
 - Routing (addressing) information
- Packets are received, stored briefly (buffered) and past on to the next node
 - Store and forward
- Packets sent one at a time through any network link

Transmission delay:

- C=link bandwidth (bps)
- m=packet length (bits)
- time to send bits into link = m/C

Propagation delay:

- d = length of physical link
- s = propagation speed in medium (~2x10⁸ m/sec)
- propagation delay = d/s

Note: s and C are very different quantities!

d. xuan

Packet Switching: Advantages

- Line efficiency
 - Single node to node link can be shared by many packets over time
 - Packets queued and transmitted as fast as possible
- · Data rate conversion
 - Each station connects to the local node at its own speed
 - Nodes buffer data if required to equalize rates
- Packets are accepted even when network is busy
 - Delivery may slow down
 - Priorities can be used
- Packets handled in two ways:
 - Datagram
 - Virtual-circuit

g. babic Presentation G 10

Datagram and Virtual-Circuit

- Datagram approach:
 - Each packet treated independently
 - Packets can take any practical route
 - Packets may arrive out of order
 - Packets may go missing
 - Up to receiver to re-order packets and recover from missing packets
- Virtual-Circuit approach
 - Preplanned route established before any packets sent
 - Call request and call accept packets establish connection (handshake)
 - Once connection established, each packet contains a virtual circuit identifier instead of destination address
 - No routing decisions required for each packet
 - Clear request to drop circuit

g. babic Presentation G

Virtual Circuits: Signaling Protocols · used to setup, maintain & teardown VC used in ATM, frame-relay, X.25 not used in today's Internet application application 6. Receive da Data flow begins transport transport Call connected 3. Accept network network data link<mark>i</mark> nitiate call 2. incoming data link physical physical d. xuan 13

Virtual Circuits vs. Datagram

- Virtual circuits
 - Network can provide sequencing and error control
 - Packets are forwarded more quickly
 - No routing decisions to make
 - Less reliable
 - Loss of a node looses all circuits through that node
- Datagram
 - No call setup phase
 - Better if few packets
 - More flexible
 - Routing can be used to avoid congested parts of the network

X.25 Protocol

- Almost universal on virtual-circuit packet switched networks and packet switching in ISDN
- Defines three layers:
 - Physical
 - Link: Link Access Protocol Balance LAPB (Subset of HDLC)
 - Packet: Virtual Circuit Service
- Virtual Circuit Service: Logical connection between two stations
- Specific route established through network for each connection
 - Internal virtual circuit
- Typically one to one relationship between external and internal virtual circuits
- Considerable overhead
- Not appropriate for modern digital systems with high reliability

babic Presentation G 2

X.25 Packets

- Call control packets:
 - Call Request packet includes: packet type indicator, destination and source address, and virtual circuit number
 - Call Accept packet includes: packet type indicator, and virtual circuit number
- Multiplexing of virtual circuits (data packets) at layer 3
- Layer 3 data packets include flow and error control
 - Data packet have send sequence numbers and receive sequence numbers similar as in data link layer, plus virtual circuit number, instead of destination address

IP Network: Design Issues

- Routing is based on the destination address:
 - End systems and routers maintain routing tables that indicate next router to which datagram should be sent
 - Static routing
 - Dynamic routing: Flexible response to congestion and errors
 - Source routing: Source specifies (in *Options* field) route as sequential list of routers to be followed
 - Route recording and time-stamping (in Options field) by routes
- **Datagram lifetime**
- Fragmentation and re-assembly
- Error control
- Flow control

g. babic Presentation G 25

IP Addressing: Introduction

- IP address: 32-bit identifier for host, router interface
- *interface:* connection between host, router and physical link
 - router's typically have multiple interfaces
 - host may have multiple interfaces
 - IP addresses associated
- Dotted decimal notation

d. xuan

223

- IP address:
 - network part (high order bits)
 - host part (low order bits)

What's a network ?

(from IP address perspective)

d. xuan

- device interfaces with same network part of IP address
- can physically reach each other without intervening router

network consisting of 3 IP networks (for IP addresses starting with 223, first 24 bits are network address)

Getting Datagram from Source to Destination 4

Arriving at 223.1.4, destined for 223.1.2.2

- look up network address of E
- E on same network as router's interface 223.1.2.9, i.e. router, E directly attached
- link layer sends datagram to 223.1.2.2 inside link-layer frame via interface 223.1.2.9
- datagram arrives at 223.1.2.2!!! (hooray!)

d. xuan

Datagram Lifetime & Type of Service

- Datagrams could loop indefinitely:
 - Consumes resources
- Datagram marked with lifetime:
 - Time to Live field in IP
 - Hop count
 - Decrement time to live on passing through each router
 - Time count
 - Once lifetime expires, datagram discarded (not forwarded)
- Type of Service filed:
 - Specify treatment of data unit during transmission through networks

IP Fragmentation & Reassembly

- network links have MTU (max.transfer size) - largest possible link-level frame.
 - different link types, different MTUs
- large IP datagram divided ("fragmented") within net
 - one datagram becomes several datagrams
 - "reassembled" only at final destination
 - IP header bits used to identify, order related fragments

d. xuan

35

Fragmentation and Re-assembly

- IP re-assembles at destination (resulting in packets getting smaller as data traverses internet), using:
 - Data unit ID identified by:
 - Source Address and Destination Address
 - Protocol layer generating data (e.g. TCP)
 - · Identification supplied by that layer
 - Fragment Offset: position of fragment of user data in original datagram, in multiples of 64 bits (8 octets)
 - More bit: indicates that this is not the last fragment; also Don't Fragment bit
 - Re-assembly may fail if some fragments get lost; reassembly time out assigned to first fragment to arrive.

Error Control and Flow Control

- Error Control:
 - Not guaranteed delivery
 - Router should attempt (ICMP protocol used) to inform source if packet discarded, for time to live expiring
 - Datagram identification needed
 - Source may modify transmission strategy
 - May inform high layer protocol
- Flow Control:
 - Allows routers and/or stations to limit rate of incoming data
 - Limited in connectionless systems
 - Send flow control packets (ICMP used)
 - Requesting reduced flow; again ICMP used
 - No flow control currently provided for in Internet

ICMP – Internet Control Message Protocol

- · IP protocol filed identifies ICMP
- Often considered as a part of IP layer
- Provides feedback from the network:
 - destination (network, host, or protocol) unreachable or unknown
 - time to live expiring
 - parameter problem
 - fragmentation needed but *Don't Fragment* bit set
 - source quench
- Can be used by the host to obtain certain information:
 - echo request and echo replay (ping program)
 - timestamp request and timestamp replay

Routing in Packet Switching Networks

- Complex, crucial aspect of packet switched networks
- Characteristics required:
 - Correctness
 - Simplicity
 - Robustness
 - Stability
 - Fairness
 - Optimality
 - Efficiency
- Routing Strategies:
 - Fixed
 - Flooding
 - Random
 - Adaptive

g. babic Presentation G 41

Elements of Routing Techniques

- · Performance criteria:
 - minimize number of hops
 - minimize delay
 - maximize throughput
 - minimize cost
- Decision time:
 - datagram → each packet
 - virtual circuit → only call request packet
- Decision place
 - distributed → made by each node
 - centralized → made by central node
 - source → made by originating node

Elements of Routing Techniques (continued)

- Network information source:
 - Distributed routing → each node makes decisions
 - Nodes use local knowledge
 - May collect information from adjacent nodes
 - May collect information from all nodes on a potential route
 - Central routing → one central node makes decisions
 - One node collects information for all nodes
- Update timing:
 - Fixed never updated
 - After major load changes
 - After topology changes
 - Regular updates

g. babic Presentation G 43

Example of Network for Fixed Routing

- Each link is assigned its cost, that is a base for routing decisions
- Link costs in different directions may be different
- Can have link value (i.e. link cost) inversely proportional to capacity
- Define cost of path between two nodes as sum of costs of links

Fixed Routing

- Least cost algorithm, for each node pair, finds a path with the least cost
- Single permanent route for each source to destination pair
- Route fixed, at least until a change in network topology

Figure 12.2

g. babic

Node 1 Directory		Node 2 Directory		Node 3 Directory	
Destination	Next Node	Destination	Next Node	Destination	Next Node
2	2	1	1	1	5
3	4	3	3	2	5
4	4	4	4	4	5
5	4	5	4	5	5
6	4	6	4	6	5
Node 4 I	Directory	Node 5 I	Directory	Node 6 I	Directory
Node 4 I Destination	Directory Next Node	Node 5 I Destination	Directory Next Node	Node 6 I Destination	Directory Next Node
			-		-
	Next Node		Next Node		Next Node
Destination 1	Next Node	Destination 1	Next Node	Destination 1	Next Node
Destination 1 2	Next Node 2 2	Destination 1 2	Next Node 4 4	Destination 1 2	Next Node 5

Flooding

- No network info required
- Incoming packets retransmitted on every link except incoming link
- Eventually a number of copies will arrive at destination
- Each packet is uniquely numbered so duplicates can be discarded
- Nodes can remember packets already forwarded to keep network load in bounds
- Can include a hop count in packets
- Property of flooding
 - All possible routes are tried, thus it is very robust
 - At least one packet will have taken minimum hop count route, thus it can be used to set up virtual circuit
 - All nodes are visited, thus useful to distribute information (e.g. routing)

Random Routing

- Node selects one outgoing path for retransmission of incoming packet
- Selection can be random or round robin
- Can select outgoing path based on probability calculation
- No network info needed
- Resulting route is typically not least cost nor minimum hops
- But far less traffic than flooding

Adaptive Routing

- Used by almost all packet switching networks
- Routing decisions change as conditions on the network change
 - -Link (or node) failure
 - -Congestion, i.e. change in traffic load
- Requires information about network
- Decisions more complex
- Tradeoff between quality of network information and overhead
- Classification based on information sources
 - —Local (isolated)
 - -Adjacent nodes
 - -All nodes
- Reacting too quickly can cause oscillation
- Reacting too slowly can make irrelevant

g. babic Presentation G 49

Isolated Adaptive Routing • Route to outgoing link with shortest queue • Can include bias for each destination • Rarely used - do not make use of easily available information To 2 Node 4's Bias То 3 Table for Destination 6 Next Node Bias 9 2 6 To 5 3 0 Packet arriving with Figure 12.4 node 6 as destination will be sent through link 3; min(Q + B) = 4g. babic Presentation G 50

First Generation ARPANET Routing

- Node makes routing decisions based on "Next node" column in its routing table
- Periodically, neighbor nodes exchange "Delay" columns
- Every node calculates delays on each of its links based on current queue lengths
- Having received new "Delay" columns, a node updates its routing table

ARPANET Routing

- Distributed adaptive
- First generation ARPANET routing:
 - Estimated delay used as performance criterion
 - Node exchanges delay vector with its neighbors
 - Update routing table based on incoming information
 - Doesn't consider line speed, just queue length
 - Queue length is not necessary a good measurement of delay
 - Responds slowly to congestion
- Second generation ARPANET routing:
 - Delay measured directly (time-stamped packets)
 - If there are any significant changes in delay, the information is sent to all other nodes using flooding
 - Each node maintains an estimate of delay on every network link
 - Good under light and medium loads
 - Under heavy loads, oscillation may occur

What is Congestion?

Congestion:

- informally: "too many sources sending too much data too fast for network to handle"
- · different from flow control!
- manifestations:
 - —lost packets (buffer overflow at routers)
 - —long delays (queueing in router buffers)
- a top-10 problem!

d. xuan 5

What is Congestion?

- Congestion occurs when the number of packets being transmitted through the network approaches the packet handling capacity of the network
- Congestion control aims to keep number of packets below level at which performance falls off dramatically
- Generally 80% line utilization is critical
- Data network is a network of gueues
 - Packets arriving are stored at input buffers
 - Routing decision made
 - Packet moves to output buffer
 - Packets queued for output transmitted as fast as possible
 - If packets arrive too fast to be routed, or to be output, buffers will fill and congestion starts occurring
 - finite queues mean data may be lost

Mechanisms for Congestion Control

- backpressure
- choke packets
- implicit congestion signaling
- explicit congestion signaling

g. babic Presentation G 57

Backpressure & Choke Packet

- Backpressure
 - —if node becomes congested it can slow down or halt flow of packets from other nodes and other nodes have to apply control on outgoing packet rates
 - o propagates back to source
 - —used in connection oriented networks that allow hop-by-hop flow control (e.g. X.25)
- Choke Packet
 - generated at congested node and sent back to source node
 - ICMP Source Quench packet
 - o from router or destination end system and source cuts back until it no longer receives source quench messages
 - o message is issued for every discarded packet

Implicit & Explicit Congestion Signaling

- Implicit congestion signaling:
 - With network congestion transmission delay increases and packets may be discarded
 - Source can detect congestion and reduce flow
 - Responsibility of end systems
 - o Effective on connectionless (datagram) networks
- Explicit congestion signaling:
 - Network alerts end systems of increasing congestion and end systems take steps to reduce offered load
 - Backward: congestion avoidance notification in opposite direction to packet required
 - Forward: congestion avoidance notification in same direction as packet required