More About Heaps
Complete Binary Tree As Array

• To use an array to represent a complete binary tree, you need more information:
 – An `int` index of the root of the tree of interest
 • There might be many subtrees inside the tree rooted at index 0, and you might want to do something to these subtrees as well as to the whole tree
 – An `int` index of the last node of the whole tree
 • You need to know which entries in the array contain tree node labels; entries at index 0 through the last index are useful, but others are “junk”
Note that the array might be larger than the tree now, even if at one point they were the same size. How could this happen?
For the gray tree:

\[\text{top} = 0 \]
\[\text{last} = 4 \]
For the pink tree:
\[\text{top} = 1 \]
\[\text{last} = 4 \]
For the blue tree:

- **top** = 2
- **last** = 4
Note that all the entries in a given subtree (e.g., blue here) are in positions top through $last$ of the array—but not all entries of the array in that range are in the subtree!
private Comparator<T> machineOrder;
private boolean insertionMode;
private Queue<T> entries;
private T[] heap;
private int heapSize;
private Comparator<T> machineOrder;
private boolean insertionMode;
private Queue<T> entries;
private T[] heap;
private int heapSize;

This instance variable is set by the constructor, and does not change; it determines the ordering of T values.
This instance variable records whether this is in insertion mode.
private Comparator<T> machineOrder;
private boolean insertionMode;
private Queue<T> entries;
private T[] heap;
private int heapSize;

This instance variable holds the entries of this while it is in insertion mode.
private Comparator<T> machineOrder;
private boolean insertionMode;
private Queue<T> entries;
private T[] heap;
private int heapSize;

This instance variable holds the entries of this while it is in extraction mode.
private Comparator<T> machineOrder;
private boolean insertionMode;
private Queue<T> entries;
private T[] heap;
private int heapSize;

This instance variable is 0 while this is in insertion mode; it holds the number of entries of this while it is in extraction mode.
/**
 * @correspondence
 * if $this.insertionMode then
 * this = (true, $this.machineOrder,
 * multiset_entries($this.entries))
 * else
 * this = (false, $this.machineOrder,
 * multiset_entries(
 * $this.heap[0, $this.heapSize])))
 */
/**
 * @convention
 * if $this.insertionMode then
 * $this.heapSize = 0
 * else
 * $this.entries = <> and
 * for all i: integer
 * where (0 <= i and i < |$this.heap|)
 * ([entry at position i in $this.heap
 * is not null]) and
 * SUBTREE_IS_HEAP($this.heap, 0,
 * $this.heapSize - 1, [relation computed by
 * $this.machineOrder.compare method]) and
 * 0 <= $this.heapSize <= |$this.heap|
 */
/**
 * @convention
 * if $this.insertionMode then
 * $this.heapSize = 0
 * else
 * $this.entries = < > and
 * for all i: integer
 * where (0 <= i and i < |$this.heap|)
 * ([entry at position i in $this.heap
 * is not null]) and
 * SUBTREE_IS_HEAP($this.heap, 0,
 * $this.heapSize - 1, [relation computed by
 * $this.machineOrder.compare method]) and
 * 0 <= $this.heapSize <= |$this.heap|
 */

This mathematical definition (not shown on slides) means what you should think it does.
Commutative Diagram

\[(\leq, \text{true}, <3, 1>, ?, 0)\]
Commutative Diagram

Does this concrete value satisfy the representation invariant?

\[(\leq, \text{true}, <3, 1>, ?, 0)\]
Commutative Diagram

(add(7))

What abstract value does it represent?

(≤, true, <3, 1>, ?, 0)
What does the contract say the abstract result of this method call will be?

\((\leq, \text{true}, \langle 3, 1 \rangle, ?, 0)\)
What concrete value represents that abstract value?

(≤, true, <3, 1>, ?, 0)
What method body would do this (for any valid starting point)?

\[(\leq, \text{true}, \langle 3, 1 \rangle, ?, 0) \]
Another Useful Pseudo-Contract

/**
 * Reports whether a complete binary tree is a heap.
 * @requires [t is a complete binary tree]
 * @ensures isHeap = [t is a heap]
 */

public static boolean isHeap(BinaryTree<T> t) {
 ...
}

Implementing \texttt{isHeap}

- If $|t| \leq 1$ then t is a heap
- If $|t| > 1$ then t is a heap iff:
 - The root is \leq the root of the left subtree
 - The left subtree is a heap
 - The root is \leq the root of the right subtree (if any)
 - The right subtree (if any) is a heap
Implementing $isHeap$

- If $|t| \leq 1$ then t is a heap.
- If $|t| > 1$ then t is a heap iff:
 - The root is \leq the root of the left subtree
 - The left subtree is a heap
 - The root is \leq the root of the right subtree (if any)
 - The right subtree (if any) is a heap

A smaller subproblem of the same kind; a hint to use recursion.
Example: $|t| > 1$
Example: $|t| > 1$

Is $x \leq y$?
If not, then t is not a heap.
If so, then check whether this subtree is a heap.
Example: $|t| > 1$
Example: $|t|$ is a heap.

Is $x \leq y$?
If not, then t is not a heap.
If so, then check whether this subtree is a heap.