Recursion: Why It Works
Question Considered Before

• **How should you think about** recursion so you can use it to develop elegant recursive methods to solve certain problems?

• **Answer**: Pretend there is a *FreeLunch* class with a method that has the *same contract* as the code you’re trying to write (but it works only for *smaller* problems)
Question Considered Now

• *Why* do those recursive methods work?
Question Considered Only Later

• How do those recursive methods work?
 – Don’t worry; we will come back to this
 – If you start by insisting on knowing the answer to this question, you may never be fully capable of developing elegant recursive solutions to problems!
private static String reversedString(String s) {
 if (s.length() == 0) {
 return s;
 } else {
 String sub = s.substring(1);
 String revSub = reversedString(sub);
 String result = revSub + s.charAt(0);
 return result;
 }
}
Example #1

private static String reversedString(String s) {
 if (s.length() == 0) {
 return s;
 } else {
 String sub = s.substring(1);
 String revSub = reversedString(sub);
 String result = revSub + s.charAt(0);
 return result;
 }
}

There is no reason to declare the variable `result`, only to return it in the next statement.
private static String reversedString(String s) {
 if (s.length() == 0) {
 return s;
 } else {
 String sub = s.substring(1);
 String revSub = reversedString(sub);
 return revSub + s.charAt(0);
 }
}
Confidence-Building Approach

• We can make an intuitive *confidence-building* argument that the code is correct (i.e., correctly implements its contract)

• Consider the *size metric* that allows you to argue that a smaller problem is being solved by each recursive call in your code
 – In this example, recall we used as a measure of problem size $|s|$, the length of the value of parameter s
First, a Smallest Problem

- First, consider each *smallest* problem according to that metric
 - In this example, there is exactly one smallest problem: \(|s| = 0 \), i.e., \(s = \langle \rangle \)

- Convince yourself that your code works correctly for each smallest problem
 - Trace the code (though you could also execute it as if testing it on these cases)
Trace Code With \(| s | = 0\)

<table>
<thead>
<tr>
<th></th>
<th>(s = "")</th>
</tr>
</thead>
<tbody>
<tr>
<td>if ((s.length() == 0)) {</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(s = "")</td>
</tr>
<tr>
<td>return (s;)</td>
<td></td>
</tr>
</tbody>
</table>
Trace Code With $|s| = 0$

<table>
<thead>
<tr>
<th></th>
<th>$s = ""$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s = ""$</td>
<td></td>
</tr>
<tr>
<td>if (s.length() == 0) {</td>
<td></td>
</tr>
<tr>
<td>$s = ""$</td>
<td></td>
</tr>
<tr>
<td>return s;</td>
<td></td>
</tr>
</tbody>
</table>

The code in this case returns the value "$\"$ (since $s = \"\") and this satisfies the postcondition $\text{reversedString} = \text{rev}(s)$ so it works when $|s| = 0$.
Then, a Next-Smallest Problem

• Now, consider a *next-smallest* problem according to that metric
 – In this example, there are many next-smallest problems, but all have $|s| = 1$, e.g., these include $s = "a", s = "X", s = "\%", etc.$

• Convince yourself that your code works correctly for each of these next-smallest problems
 – Maybe one such problem is convincing...
Trace Code With $|s| = 1$

<table>
<thead>
<tr>
<th>Code</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>if (s.length() == 0) { ... } else {</code></td>
<td>$s = "X"$</td>
</tr>
<tr>
<td><code>String sub = s.substring(1);</code></td>
<td></td>
</tr>
<tr>
<td><code>String revSub = reversedString(sub);</code></td>
<td>$s = "X"$</td>
</tr>
<tr>
<td><code>return revSub + s.charAt(0);</code></td>
<td>$s = "X"$</td>
</tr>
<tr>
<td></td>
<td>$sub = ""$</td>
</tr>
<tr>
<td></td>
<td>$revSub = ""$</td>
</tr>
</tbody>
</table>

26 April 2013
How do we know what this recursive call does? We just convinced ourselves it satisfies its contract in this case because $|\text{sub}| = 0$ in this recursive call.

<table>
<thead>
<tr>
<th>s = "X"</th>
<th>s = "X"</th>
</tr>
</thead>
<tbody>
<tr>
<td>sub = ""</td>
<td>sub = ""</td>
</tr>
<tr>
<td>String revSub = reversedString(sub);</td>
<td>return revSub + s.charAt(0);</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sub = ""</th>
</tr>
</thead>
<tbody>
<tr>
<td>revSub = ""</td>
</tr>
</tbody>
</table>

26 April 2013
OSU CSE
The code in this case returns the value "X" (since \text{revSub} = "" and \text{s} = "X") and this satisfies the postcondition \text{reversedString} = \text{rev}(\text{s}) so it works when |s| = 1.
Trace Code With $|s| = 1$

```java
if (s.length() == 0) { ... } else {
    String sub = s.substring(1);
    sub = "";
    String revSub = reversedString(sub);
    return revSub + s.charAt(0);
}
```

Note that concluding “it works when $|s| = 1$” demands that we generalize from the one case we traced/tested, realizing that there was nothing at all special about the assumption $s = \"X\"$.
Then, a Next-Smallest Problem

• Now, consider a **next-smallest** problem according to that metric
 – In this example, there are many next-smallest problems, but all have $|s| = 2$, e.g., these include $s = "rx", s = "PU", etc.$

• Convince yourself that your code works correctly for each of these next-smallest problems
 – Maybe one such problem is convincing...
Trace Code With $|s| = 2$

<table>
<thead>
<tr>
<th>Code</th>
<th>s = "PU"</th>
</tr>
</thead>
<tbody>
<tr>
<td>if (s.length() == 0) { ... } else {</td>
<td>----------</td>
</tr>
<tr>
<td>String sub = s.substring(1);</td>
<td>s = "PU"</td>
</tr>
<tr>
<td>String revSub = reversedString(sub);</td>
<td>s = "PU"</td>
</tr>
<tr>
<td>return revSub + s.charAt(0);</td>
<td>s = "PU"</td>
</tr>
</tbody>
</table>

sub = "U"
revSub = "U"
How do we know what this recursive call does? We just convinced ourselves it satisfies its contract in this case because $|sub| = 1$ in this recursive call.

```java
String revSub = reversedString(sub);

return revSub + s.charAt(0);
```
The code in this case returns the value "UP" (\(revSub = "U" \) and \(s = "PU"\)) and this satisfies the postcondition \(reversedString = rev(s)\) so it seems to work when \(|s| = 2\).
Trace Code With $|s| = 2$

```java
if (s.length() == 0) { ... } else {
    String sub = s.substring(1);
    s = "PU"
    sub = "U"
    String revSub = reversedString(sub);
    s = "PU"
    sub = "U"
    return revSub + s.charAt(0);
}
```

Note that concluding “it works when $|s| = 2$” demands that we generalize from the one case we traced/tested, realizing that there was nothing at all special about the assumption $s = "PU"$.
Then, a Next-Smallest Problem

• Now, consider a next-smallest problem according to that metric
 – In this example, there are many next-smallest problems, but all have $|s| = 3$, e.g., these include $s = "cse"$, $s = "OSU"$, etc.

• Convince yourself that your code works correctly for each of these next-smallest problems
 – Maybe one such problem is convincing...
| Trace Code With | $|s| = 3$ |
| --- | --- |
| **if** (s.length() == 0) { ... } **else** { | **s** = "OSU"
| s = "OSU" | **s** = "OSU"
| String sub = s.substring(1); | **s** = "OSU"
| sub = "SU" |
| String revSub = reversedString(sub); | **s** = "OSU"
| sub = "SU"
| revSub = "US" |
| return revSub + s.charAt(0); | **s** = "OSU"
| sub = "SU"
| revSub = "US" |
How do we know what this recursive call does? We just convinced ourselves it satisfies its contract in this case because $|sub| = 2$ in this recursive call.

```java
String revSub = reversedString(sub);

return revSub + s.charAt(0);
```
The code in this case returns the value "USO" (\texttt{revSub} = "US" and \texttt{s} = "OSU") and this satisfies the postcondition \texttt{reversedString} = \texttt{rev}(s) so it seems to work when $|s| = 3$.

```java
if (s.length() == 0) { ... }
else {
    s = "OSU"
    String sub = s.substring(1);
    s = "OSU"
    sub = "SU"
    String revSub = reversedString(sub);
    s = "OSU"
    sub = "SU"
    revSub = "US"
    return revSub + s.charAt(0);
}
```

\texttt{revSub} = "US" and \texttt{s} = "OSU"
Trace Code With $|s| = 3$

<table>
<thead>
<tr>
<th></th>
<th>$s = \text{"OSU"}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>if (s.length() == 0) { ... } else {</td>
<td></td>
</tr>
<tr>
<td>String sub = s.substring(1);</td>
<td>$s = \text{"OSU"}$</td>
</tr>
<tr>
<td>sub = \text{"SU"};</td>
<td></td>
</tr>
<tr>
<td>revSub = reversedString(sub);</td>
<td></td>
</tr>
<tr>
<td>s = revSub + s.charAt(0);</td>
<td></td>
</tr>
</tbody>
</table>

Note that concluding “it works when $|s| = 3$” demands that we generalize from the one case we traced/tested, realizing that there was nothing at all special about the assumption $s = \text{"OSU"}$.
And So On...

- You should see that this reasoning process could continue long enough to reach any finite integer length, with the conclusion that the code works for any value of s
 - Because s must have a finite length; why?
Proof by Induction

• A formal version of this argument follows the proof technique known as mathematical induction
 – Recursion and induction are entirely parallel concepts
Proof by Contradiction

• Another formal proof technique known as *proof by contradiction* can also be used
 – “Suppose the code does *not* work for some s. Then there must be a shortest s for which it
does not work. So, assume $|s| = n$. Now let’s show that this assumption leads to the
conclusion that the code must not work for some string of length $n-1$. This is a
contradiction. Hence, there cannot be any such s for which the code does not work.”
Proof by Contradiction

- Another formal proof technique known as *proof by contradiction* can also be used:

 - “Suppose the code does *not* work for some s. Then there must be a shortest s for which it does not work. Let’s show that this assumption leads to the conclusion that the code must not work for some string of length $n−1$. This is a contradiction. Hence, there cannot be any such s for which the code does not work.”

Some people find this kind of proof easier to understand than induction, but it does not seem to have a simplified intuitive basis like induction does.
private static void increment (NaturalNumber n) {
 int onesDigit = n.divideBy10();
 onesDigit++;
 if (onesDigit == 10) {
 onesDigit = 0;
 increment(n);
 }
 n.multiplyBy10(onesDigit);
}
First, a Smallest Problem

• First, consider each \textit{smallest} problem according to the size metric: the value of the parameter n
 – In this example, there is exactly one smallest problem: $n = 0$

• Convince yourself that your code works correctly for each smallest problem
 – Trace through the code with $n = 0$
Then, a Next-Smallest Problem

• Next, consider a \textit{next-smallest} problem according to that metric
 – In this example, there is exactly one next-smallest problem: $n = 1$

• Convince yourself that your code works correctly for each of these next-smallest problems
 • Trace through the code with $n = 1$
And So On...

- On this example, the intuitive confidence-building argument may be slightly more convincing because every value of parameter n is covered directly in one of the steps.
- But it takes 9 steps before anything interesting even happens!
Conclusion

• The purpose of the confidence-building method is (as its name suggests) to give you confidence that the code works
 – A nice feature is that it suggests some test cases, should you decide to run the code on the computer rather than tracing it manually
 – However, you still need to have traced it — albeit perhaps only mentally — in order to have written the code in the first place!
Conclusion

You might be surprised how many people who should know better seem not to have noticed this rather obvious conclusion!