Recursion: Thinking About It
Recursion

• A remarkably important concept and programming technique in computer science is **recursion**
 – A **recursive method** is simply one that calls itself

• There are two quite different views of recursion!
 – We ask for your patience as we introduce them one at a time...
Question Considered Now

• *How should you think about* recursion so you can use it to develop elegant recursive methods to solve certain problems?
Question Considered Next

• *Why* do those recursive methods work?
Question Considered Only Later

• *How* do those recursive methods work?
 – Don’t worry; we will come back to this
 – If you *start* by insisting on knowing the answer to this question, you may never be fully capable of developing elegant recursive solutions to problems!
Suppose...

• You need to reverse a String
• Contract specification looks like this:

```java
/**
 * Reverses a String.
 * ...
 * @ensures
 * reversedString = rev(s)
 */

private static String reversedString(String s) {...}
```
Suppose...

• You need to reverse a `String`.
• Contract specification looks like:

```java
/**
 * Reverses a String.
 * ...
 * @ensures
 * reversedString = rev(s)
 */

private static String reversedString(String s) {
...}
```

Try to implement it (i.e., write the method body).
private static String reversedString(String s) {
 String rs = "";
 for (int i = 0; i < s.length(); i++) {
 rs = s.charAt(i) + rs;
 }
 return rs;
}
```java
for (int i = 0; i < s.length(); i++) {
    rs = s.charAt(i) + rs;
}
```

```java
s = "abc"
rs = ""
```
Trace It: Iteration 1

- \(s = "abc" \\ \) \(rs = "" \\)

```java
for (int i = 0; i < s.length(); i++) {
    rs = s.charAt(i) + rs;
}
```
Trace It: Iteration 1

<table>
<thead>
<tr>
<th></th>
<th>s = "abc"</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>rs = ""</td>
</tr>
<tr>
<td>for (int i = 0; i < s.length(); i++) {</td>
<td>s = "abc"</td>
</tr>
<tr>
<td></td>
<td>rs = ""</td>
</tr>
<tr>
<td></td>
<td>i = 0</td>
</tr>
<tr>
<td>rs = s.charAt(i) + rs;</td>
<td>s = "abc"</td>
</tr>
<tr>
<td></td>
<td>rs = "a"</td>
</tr>
<tr>
<td></td>
<td>i = 0</td>
</tr>
</tbody>
</table>
Trace It: Iteration 2

\[s = "abc" \]
\[rs = "" \]

\[
\textbf{for} \ (\textbf{int} \ i = 0; \ i < s.\text{length}(); \ i++) \ { \\
 s = "abc" \n rs = "a" \n i = 1 \\
 rs = s.\text{charAt}(i) + rs; \\
 s = "abc" \n rs = "a" \n i = 0 \\
}\]

\]

8 October 2013

OSU CSE 12

12
Trace It: Iteration 2

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| | s = "abc"
| | rs = ""
| **for** (int i = 0; i < s.length(); i++) { | |
| | s = "abc"
| | rs = "a"
| | i = 1
| rs = s.charAt(i) + rs; | |
| | s = "abc"
| | rs = "ba"
| | i = 1
| } | |
Trace It: Iteration 3

<table>
<thead>
<tr>
<th>s = "abc"</th>
<th>rs = ""</th>
</tr>
</thead>
<tbody>
<tr>
<td>for (int i = 0; i < s.length(); i++) {</td>
<td>s = "abc"</td>
</tr>
<tr>
<td>rs = s.charAt(i) + rs;</td>
<td>rs = "ba"</td>
</tr>
<tr>
<td>}</td>
<td>i = 1</td>
</tr>
</tbody>
</table>

8 October 2013 OSU CSE
Trace It: Iteration 3

<table>
<thead>
<tr>
<th>s = "abc"</th>
<th>rs = ""</th>
</tr>
</thead>
<tbody>
<tr>
<td>for (int i = 0; i < s.length(); i++) {</td>
<td>s = "abc"</td>
</tr>
<tr>
<td>s = "abc"</td>
<td>rs = "ba"</td>
</tr>
<tr>
<td>rs = s.charAt(i) + rs;</td>
<td>i = 2</td>
</tr>
<tr>
<td>}</td>
<td>s = "abc"</td>
</tr>
<tr>
<td></td>
<td>rs = "cba"</td>
</tr>
<tr>
<td></td>
<td>i = 2</td>
</tr>
</tbody>
</table>
Trace It: Ready to Return

<table>
<thead>
<tr>
<th>s = "abc"</th>
<th>rs = ""</th>
</tr>
</thead>
<tbody>
<tr>
<td>for (int i = 0; i < s.length(); i++) {</td>
<td></td>
</tr>
<tr>
<td>s = "abc"</td>
<td>rs = "ba"</td>
</tr>
<tr>
<td>rs = s.charAt(i) + rs;</td>
<td>i = 2</td>
</tr>
<tr>
<td>}</td>
<td></td>
</tr>
<tr>
<td>s = "abc"</td>
<td>rs = "cba"</td>
</tr>
</tbody>
</table>

8 October 2013 OSU CSE
Oh, Did I Mention...

• There is already a static method in the class FreeLunch, with exactly the same contract:

```java
/**
 * Reverses a String.
 * ...
 * @ensures
 * reversedString = rev(s)
 */

private static String reversedString(String s) {...}
```
A Free Lunch Sounds Good!

- The slightly nasty thing about the FreeLunch class is that its methods will not directly solve your problem: you have to make your problem “smaller” first.
- This reversedString code will not work:

  ```java
  private static String reversedString(String s) {
      return FreeLunch.reversedString(s);
  }
  ```
Recognizing the Smaller Problem

• A key to recursive thinking is the ability to recognize some smaller instance of the same problem “hiding inside” the problem you need to solve.

• Here, suppose we recognize the following property of string reversal:

\[\text{rev}(<x> \ast a) = \text{rev}(a) \ast <x> \]
The Smaller Problem

• If we had some way to reverse a string of length 4, say, then we could reverse a string of length 5 by:
 – removing the character on the left end
 – reversing what’s left
 – adding the character that was removed onto the right end
The Smaller Problem

- If we had some way to reverse a string of length 4, say, then we could reverse a string of length 5:
 - removing the character on the left end
 - reversing what’s left
 - adding the character that was removed onto the right end

This is a smaller instance of exactly the same problem as we need to solve.
Time for Our Free Lunch

• We can use the FreeLunch class now:

```java
private static String reversedString(String s) {
    String sub = s.substring(1);
    String revSub = FreeLunch.reversedString(sub);
    String result = revSub + s.charAt(0);
    return result;
}
```
<table>
<thead>
<tr>
<th>Trace It</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s = "abc"$</td>
</tr>
<tr>
<td>$\text{String sub} = s \text{.substring}(1);$</td>
</tr>
</tbody>
</table>
| $s = "abc"$
$\text{sub} = "bc"$ |
| $\text{String revSub} =$
$\text{FreeLunch\text{.reversedString}(sub);} =$ |
| $s = "abc"$
$\text{sub} = "bc"$
$\text{revSub} = "cb"$ |
| $\text{String result} = \text{revSub} + s \text{.charAt}(0);$ |
| $s = "abc"$
$\text{sub} = "bc"$
$\text{revSub} = "cb"$
$\text{result} = "cba"$ |
How do you trace over this call? By looking at the contract, as usual!
Almost Done With Lunch

• Is this code correct?

```java
private static String reversedString(String s) {
    String sub = s.substring(1);
    String revSub =
        FreeLunch.reversedString(sub);
    String result = revSub + s.charAt(0);
    return result;
}
```
Almost Done With Lunch

• Is this code correct?

```java
private static String reversedString(String s) {
    String sub = s.substring(1);
    String revSub = FreeLunch.reversedString(sub);
    String result = revSub + s.charAt(0);
    return result;
}
```

This call has a precondition: `s` must not be the empty string (which can be gleaned from the API with a careful reading).
This call has a precondition: \(s \) must not be the empty string (which can be gleaned from the API with a careful reading).

```java
String reversedString(String s) {
    String sub = s.substring(1);
    String revSub = FreeLunch.reversedString(sub);
    String result = revSub + s.charAt(0);
    return result;
}
```
Accounting for Empty Strings

```java
private static String reversedString(String s) {
    if (s.length() == 0) {
        return s;
    } else {
        String sub = s.substring(1);
        String revSub = FreeLunch.reversedString(sub);
        String result = revSub + s.charAt(0);
        return result;
    }
}
```
Accounting for Empty Strings

```java
private static String reversedString(String s) {
    if (s.length() == 0) {
        return s;
    } else {
        String sub = s.substring(1);
        String revSub = FreeLunch.reversedString(sub);
        String result = revSub + s.charAt(0);
        return result;
    }
}
```

This test could also be done as:

```java
s.equals("")
```

but not as:

```java
s == ""
```
Accounting for Empty Strings

```java
private static String reversedString(String s) {
    if (s.length() == 0) {
        return s;
    } else {
        String sub = s.substring(1); String revSub = FreeLunch.reversedString(sub);
        String result = revSub + s.charAt(0);
        return result;
    }
}
```

Returning an empty string could also be written as:
```
return "";
```
Oh, Did I Mention...

• Sorry, there is no FreeLunch!
There Is No **FreeLunch**?!

```java
private static String reversedString(String s) {
    if (s.length() == 0) {
        return s;
    } else {
        String sub = s.substring(1);
        String revSub = FreeLunch.reversedString(sub);
        String result = revSub + s.charAt(0);
        return result;
    }
}
```
There Is No **Free Lunch**?!?

```java
private static String reversedString(String s) {
    if (s.length() == 0) {
        return s;
    } else {
        String sub = s.substring(1);
        String revSub = reversedString(sub);
        String result = revSub + s.charAt(0);
        return result;
    }
}
```
We Don’t Need a FreeLunch

private static String reversedString(String s) {
 if (s.length() == 0) {
 return s;
 }
 else {
 String sub = s.substring(1);
 String revSub = reversedString(sub);
 String result = revSub + s.charAt(0);
 return result;
 }
}
A Recursive Method

Note that the body of `reversedString` now calls itself, so we just wrote a *recursive method*.
Crucial Theorem for Recursion

• If your code for a method is correct when it calls the (hypothetical) FreeLunch version of the method — remember, it must be on a smaller instance of the problem — then your code is still correct when you replace every call to the FreeLunch version with a recursive call to your own version
Theorem Applied

• If the code that makes a call to `FreeLunch.reversedString` is correct, then so is the code that makes a recursive call to `reversedString`.

• Remember: this is so only because the call to `FreeLunch.reversedString` is for a smaller problem, i.e., a string with smaller length.
No Need For Multiple Returns

```java
private static String reversedString(String s) {
    String result = s;
    if (s.length() > 0) {
        String sub = s.substring(1);
        String revSub = reversedString(sub);
        result = revSub + s.charAt(0);
    }
    return result;
}
```

Alternative solution with a single return. In this case, multiple returns are not necessary and they do not provide a better solution.
Another Example: Suppose...

- You need to increment a `NaturalNumber`

```java
/**
   * Increments a NaturalNumber.
   * ...
   * @updates n
   * @ensures
   * n = #n + 1
   */

private static void increment (NaturalNumber n) {...}
```
Another Example:
• You need to increment a NaturalNumber:

```java
/**
 * Increments a NaturalNumber.
 * ...
 * @updates n
 * @ensures
 * n = #n + 1
 */

private static void increment (NaturalNumber n) {...}
```

Try to implement it (i.e., write the method body) using only the kernel methods:
- `multiplyBy10`
- `divideBy10`
- `isZero`
Not So Easy

• Unlike string reversal, there is no straightforward iterative solution to this problem
• So, let’s try a recursive solution...
• Can you recognize the smaller problem?
Recognizing the Smaller Problem

• Think about how you would increment (add 1 to) a number using the grade-school arithmetic algorithm

• Examples:

\[
\begin{array}{ccc}
41072 & 41079 & 41999 \\
+ 1 & + 1 & + 1 \\
41073 & 41080 & 42000 \\
\end{array}
\]
Recognizing the Smaller Problem

• Think about how you would increment (add 1 to) a number using the grade-school arithmetic algorithm

• Examples:

\[
\begin{array}{c}
41072 \\
+ \underline{1} \\
41073
\end{array}
\]

\[
\begin{array}{c}
41079 \\
+ \underline{1} \\
41080
\end{array}
\]

\[
\begin{array}{c}
41999 \\
+ \underline{1} \\
42000
\end{array}
\]
The Smaller Problem

• If we had some way to increment a number with 4 digits, say, then we could increment a 5-digit number by:
 – taking off the one’s digit
 – incrementing it and asking: is there is a “carry”?
 – if there is, then incrementing what’s left
 – putting back the updated one’s digit

• Important: multiple carries don’t matter
The Smaller Problem

• If we had some way to increment a number with 4 digits, say, then we could increment a 5-digit number by:
 – taking off the one’s digit
 – incrementing it and asking: is there is a “carry”?
 – if there is, then incrementing what’s left
 – putting back the updated one’s digit

• Important: multiple carries don’t matter

This is a smaller instance of exactly the same problem as we need to solve.
Time for Our Free Lunch

• We can use the `FreeLunch` class now:

```java
private static void increment (NaturalNumber n) {
    int onesDigit = n.divideBy10();
    onesDigit++;
    if (onesDigit == 10) {
        onesDigit = 0;
        FreeLunch.increment(n);
    }
    n.multiplyBy10(onesDigit);
}
```
Almost Done With Lunch

• Is this code correct?

```java
private static void increment (NaturalNumber n) {
    int onesDigit = n.divideBy10();
    onesDigit++;
    if (onesDigit == 10) {
        onesDigit = 0;
        FreeLunch.increment(n);
    }
    n.multiplyBy10(onesDigit);
}
```
• Is this code correct?

```java
private static void increment (NaturalNumber n) {
    int onesDigit = n.divideBy10();
    onesDigit++;
    if (onesDigit == 10) {
        onesDigit = 0;
        increment(n);
    }
    n.multiplyBy10(onesDigit);
}
```
Theorem Applied

• If the code that makes a call to \texttt{FreeLunch.increment} is correct, then so is the code that makes a recursive call to \texttt{increment}

• Remember: this is so only because the call to \texttt{FreeLunch.increment} is for a \textit{smaller} problem, i.e., a number less than the incoming value of \texttt{n}
Another Example

/**
 * Raises an int to a power.
 * ...
 * @requires
 * \(p \geq 0 \) \text{ and } [n ^ (p) \text{ is within int range}]
 * @ensures
 * \(power = n ^ (p) \)
 */

private static int power(int n, int p) {...}
A Hidden Smaller Problem

• Can you recognize a smaller problem of the same kind hiding inside the computation of n^p?

• Here is a mathematical property that might help you see one:

$$n^p = n \times n^{p-1} \quad (\text{for } p > 0)$$
A Hidden Smaller Problem

• Can you recognize a smaller problem of the same kind hiding inside the computation of n^p?

• Here is a mathematical property that might help you see one:

$$n^p = n \times n^{p-1} \quad (for \ p > 0)$$
A Hidden Smaller Problem

• Can you recognize a smaller problem of the same kind hiding inside the computation of \(n^p \)?

• Here is a mathematical property that might help you see one:

\[
np = n \times np-1
\]

\((\text{for } p > 0) \)

Can you write the code for \texttt{power} as specified earlier, based on this property? (You also need to account for \(p = 0 \).)
Another Hidden Smaller Problem

• Here is a *different* mathematical property that might help you see a *different* smaller problem of the same kind:

\[n^p = \left(\frac{n^p}{2}\right)^2 \quad (\text{for even } p > 1) \]
Another Hidden Smaller Problem

• Here is a *different* mathematical property that might help you see a *different* smaller problem of the same kind:

\[n^p = \left(\frac{n^p}{2}\right)^2 \quad \text{(for even} \ p > 1) \]
Another Hidden Smaller Problem

• Here is a different mathematical property that might help you see a smaller problem of the same kind:

\[n^p = \left(\frac{n^p}{2}\right)^2 \quad (\text{for even } p > 1) \]

Can you write the code for \textit{power} as specified earlier, based on this property? (You also need to account for all the other values of \(p \).)
Fast Powering

• If you can write the code by using the second property as a guide, your implementation will be much faster than by using the first property
 – And much faster than the obvious iterative code!

• This really matters when you adapt the algorithm to work with `NaturalNumber` rather than `int`
Remaining Steps

• Use `FreeLunch` when you need to solve a smaller problem of the same kind (making sure it really *is* smaller in some sense!)

• Show that your code is correct assuming `FreeLunch.power` has the same contract as the `power` code you’re writing

• Replace any calls to `FreeLunch.power` with recursive calls to your own version of `power`

• Sit back and let the theorem about recursion show that your now-recursive code is correct