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Abstract—With the falling price of memory, an increasing
number of multimedia servers and proxies are now equipped with
a large memory space. Caching media objects in the memory of a
proxy helps to reduce the network traffic, the disk I/O bandwidth
requirement, and the data delivery latency. The running buffer
approach and its alternatives are representative techniques to
caching streaming data in the memory. There are two limits in the
existing techniques. First, although multiple running buffers for
the same media object co-exist in a given processing period, data
sharing among multiple buffers is not considered. Second, user
access patterns are not insightfully considered in the buffer man-
agement. In this paper, we propose two techniques based on shared
running buffers in the proxy to address these limits. Considering
user access patterns and characteristics of the requested media
objects, our techniques adaptively allocate memory buffers to
fully utilize the currently buffered data of streaming sessions, with
the aim to reduce both the server load and the network traffic. Ex-
perimentally comparing with several existing techniques, we show
that the proposed techniques achieve significant performance
improvement by effectively using the shared running buffers.

Index Terms—Patching, proxy caching, shared running buffer,
streaming media, video-on-demand (VOD).

I. INTRODUCTION

ABASIC structure of a content delivery network is a server-
proxy-client system. In this system, the server delivers the

content to the client through a proxy. The proxy can choose to
cache the object so that subsequent requests to the same object
can be served directly from the proxy without contacting the
server. Proxy caching strategies have therefore been the focus of
many studies. Much work has been done in caching static web
content to reduce network load and end-to-end latency. Typical
examples of such work include CERN httpd [1], Harvest [2],
and Squid [3].

The caching of streaming media content presents a different
set of challenges: 1) the size of a streaming media object is
usually orders of magnitudes larger than traditional web con-
tents—for example, a 2-h long MPEG video requires about 1.4
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GB of disk space, while traditional web objects are of the mag-
nitude of 10 kB and 2) the demand of continuous and timely
delivery of a streaming media object is more rigorous than that
of text-based Web pages. Therefore, a lot of resources have to
be reserved for delivering the streaming media data to a client.
In practice, even a relatively small number of clients can over-
load a media server, creating bottlenecks by demanding high
disk bandwidth on the server and hight network bandwidth to
the clients.

To address these challenges, researchers have proposed
different methods to cache streaming media objects via partial
caching, patching or proxy buffering. In the partial caching
approach, either a prefix [4] or segments [5] of a media object
instead of the whole object is/are cached. Therefore, less storage
space is required. For on-going streaming sessions, patching
can be used so that later sessions for the same object can be
served simultaneously. For proxy buffering, either a fixed-size
running buffer [6] or an interval [7] can be used to allocate
buffers to buffer a running window of an on-going streaming
session in the memory of the proxy. Among these techniques,
partial caching uses disk resource on the proxy; patching
uses storage resource on the client side, and theoretically no
memory resource is required at the proxy; proxy buffering uses
the memory resource on the proxy. However, neither running
buffer nor interval caching uses the memory resource to the full
extent. More detailed analysis of these techniques can be found
in Section II.

In this paper, we first propose a new memory-based caching
algorithm for streaming media objects using shared running
buffers (SRB). In this algorithm, the memory space on the
proxy is allocated adaptively based on the user access pat-
tern and the requested media objects themselves. Streaming
sessions are cached in running buffers. This algorithm dynam-
ically caches media objects in the memory while delivering
the data to the client so that the bottleneck of the disk and/or
network I/O is relieved. More importantly, similar sessions can
share different runs of the on-going sessions. This approach is
especially useful when requests to streaming objects are highly
temporal localized. The SRB algorithm: 1) adaptively allocates
memory space according to the user access pattern; 2) enables
maximal sharing of the cached data in memory; 3) optimally
reclaims memory space when requests terminate; and 4) applies
a near-optimal replacement policy in the real time.

Based on the SRB media caching algorithm, we further
propose an efficient media delivering algorithm: Patching SRB
(PSRB), which further improves the performance of the media
data delivery without the necessity of caching.

1520-9210/$20.00 © 2005 IEEE
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Simulations are conducted based on synthetic workloads of
web media objects with mixed lengths as well as workloads
with accesses to lengthy media objects in the video-on-demand
(VOD) environment. In addition, we use an access log of a
media server in a real enterprise intranet to further conduct sim-
ulations. The simulation results indicate that the performance of
our algorithms is superior to previous solutions.

The rest of the paper is organized as follows. In Section II,
the related work is surveyed. Section III describes the optimal
memory-based caching algorithms we propose. To test the per-
formance of the proposed algorithms, we use synthetic work-
loads as well as real workload from an enterprise media server.
Some statistical analysis of these workloads is provided in Sec-
tion IV. Performance evaluations are conducted in Section V. We
then make concluding remarks in Section VI.

II. RELATED WORK

In this section, we survey previous work related to the caching
of streaming media content. Three types of methods are inves-
tigated as follows.

A. Partial Caching

Storing the entire media object in the proxy may be ineffi-
cient if mostly small portions of very large media objects are
accessed. This is particularly true if the cached streaming media
object is not popular. The first intuition is to cache portions of
the media object. These partial caching systems always use the
storage on the proxy. Some early work on the storage for media
objects can be found in [8], [9]. Two typical types of partial
caching have been investigated.

Prefix caching [4] stores only the first part (prefix) of the pop-
ular media object. When a client requests a media stream whose
prefix is cached, the proxy delivers the prefix to the client while
it requests the remainder of the object from the origin server. By
caching a (large enough) prefix, the start-up latency perceived
by the client is reduced. The challenge lies in the determination
of the prefix size. Items such as roundtrip delay, server-to-proxy
latency, video specific parameters (e.g., size, bit rate, etc.), and
retransmission rate of lost packets can be considered in calcu-
lating the appropriate prefix length.

Alternatively, media objects can be cached in segments. This
is particularly useful when clients only view portions of the ob-
jects. The segments in which clients are not interested will not
be cached. Wu et al. [5] use segments with exponentially incre-
mental size to model the fact that clients usually start viewing
a streaming media object from the beginning and are more and
more likely to terminate the session toward the end of the ob-
ject. A combination of fixed length and exponential length seg-
ment-based caching method is considered in the RCache and
Silo project [10]. Lee et al. [11] uses a context-aware segmen-
tation so that segments of user interest are cached.

B. Session Sharing

The delivery of a streaming media object takes time to com-
plete. We call this delivery process a streaming session. Sharing
is possible among sessions that overlap. To this end, various

kinds of patching schemes are proposed for sharing along the
time line. This type of work is typically seen in research related
to VOD systems.

Patching algorithms [12] use storage on the client device so
that a client can listen to multiple channels. Greedy patching al-
ways patches to the existing full streaming session while grace
patching restarts a new full streaming session at some appro-
priate point in time. Optimal patching [13] further assumes suf-
ficient storage resource at the client side to receive as much data
as possible while listening to as many channels as possible.

In the greedy patching, a full server-to-proxy session is es-
tablished at the first request arrival for a certain media object.
All subsequent requests for the same media object are served
as patches to the this full session before it terminates, at which
point another full session is established for the next request ar-
rival. It is obvious that the patching session can be excessively
long. It is more efficient to start a new session even before the
previous full session terminates. In the grace patching, upon the
arrival of the fifth request, a new full server-to-proxy session
is started. Therefore, the patching session of the last request is
significantly shorter than in the greedy patching example. The
optimal point to start a new full session can be derived mathe-
matically given certain request arrival pattern [14].

The optimal patching scheme is introduced in [13]. The basic
idea is that later sessions patch to as many on-going sessions
as possible. The ongoing sessions can be a full session or a
patching session. The last request patches to the patching ses-
sion started for the second last request as well as the full session
started for the first request. This approach achieves the max-
imum server-to-proxy traffic reduction. On the other hand, it re-
quires extra resource in client storage and proxy-to-client band-
width as well as complex scheduling at the proxy.

Note that no storage resource is required on the proxy for
these session sharing algorithms. On the other hand, since
clients have to listen to multiple channels and store content
before its presentation time, client side storage is necessary.

One special type of the session-sharing approaches is the
batching approach [15], [16]. In this approach, requests are
grouped and served simultaneously via multicast. Therefore,
requests arriving earlier have to wait. Hence, certain delay is
introduced to the early arrived requests.

C. Proxy Buffering

To further improve the caching performance for streaming
media, memory resources on the proxy are used. This is more
and more practical given that the price for memory keeps falling.
For memory-based caching, running buffer and interval caching
methods have been studied.

Dynamic caching [6] uses a fixed-size running buffer to
cache a running window of a streaming session. It works as fol-
lows. When a request arrives, a buffer of a predetermined length
is allocated to cache the media data the proxy fetches from the
server, in the expectation that closely followed requests will use
the data in the memory instead of fetching from other sources
(e.g., disk or origin server or other cooperative caches). A
fix-sized buffer is allocated upon the arrival of the first request.
The buffer is filled by the session started by the first request
and run to the end of stream. Subsequent requests are served
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from the buffer if they arrive within the time period covered by
the buffer. If a request arrives beyond the range covered by the
first buffer, a second buffer of the same predetermined size is
allocated, which servers the requests arrived in the time period
covered by this new buffer.

On a different approach, interval caching [7], [17] further
considers request arrival patterns so that memory resource is
more efficiently used. Interval caching considers closely arrived
requests for the same media object as a pair and orders their ar-
rival intervals globally. The subsequent allocation of memory
always favors smaller intervals. Effectively, more requests are
served given a fixed amount of memory. Upon the arrival of the
second request an interval is formed with the first request, and
a buffer of the size equivalent to the interval is allocated. The
buffer is filled by the session started by the first request from
this point on. The session initiated by the second request only
needs to receive the first part of data from the server. It can re-
ceive the rest of data from the buffer. When there is no space for
the newly formed intervals, the largest buffer will be released,
and the space will be allocated to the newly formed one.

Note that these two approaches use the memory resource on
the proxy so that the client is relieved from the buffer require-
ment as in the patching schemes discussed in the previous sec-
tion. In addition, one proxy-to-client channel suffices for these
buffering schemes.

III. SHARED RUNNING BUFFER (SRB)
MEDIA CACHING ALGORITHM

Buffering streaming content in memory has been shown to
have great potential to alleviate contention on the streaming
server so that a larger number of sessions can be served. It has
been shown that two existing memory caching approaches: run-
ning buffer caching [6] and interval caching [7], [17], do not
make effective use of the limited memory resource. Motivated
by the limits of the current memory buffering approaches, we
design a SRB-based caching algorithm for streaming media to
better utilize memory. In this section, with the introduction of
several new concepts, we first describe the basic SRB media
caching algorithm in detail. Then, we present an extension to
the SRB: PSRB.

A. Related Definitions

The algorithm first considers buffer allocation in a time span
starting from the first request. We denote as the th request

to media object , and as the arrival time of this request.
Assume that there are request arrivals within the time span

and is the last request arrived in . For the convenience
of representation without losing precision, is normalized to
0 and (where ) is a time relative to . Based
on the above, the following concepts are defined to capture the
characteristics of the user request pattern.

1) Interval Series: An interval is defined as the difference in
time between two consecutive request arrivals. We denote

as the -th interval for object . An Interval Series

consists a group of intervals. Within the time , if ,
the interval is defined as ; otherwise, it is defined as

(1)

Since represents the time interval between the last re-
quest arrival and the end of the investigating time span, it
is also called the Waiting Time.

2) Average Request Arrival Interval (ARAI): The ARAI is
defined as when . ARAI does
not exist when since it indicates only one request
arrival within time span and thus we set it as .

For the buffer management, three buffer states and three
timing concepts are defined, respectively, as follows.

1) Construction State and Start-Time: When an initial buffer
is allocated upon the arrival of a request, the buffer is filled
while the request is being served, expecting that the data
cached in the buffer could serve closely followed requests
for the same object. The size of the buffer may be ad-
justed to cache less or more data before it is frozen. Be-
fore the buffer size is frozen, the buffer is in the Construc-
tion State. Thus, the Start-Time of a buffer , the -th
buffer allocated for object , is defined as the arrival time
of the last request before the buffer size is frozen. The re-
quests arriving in a buffer’s Construction State are called
the resident requests of this buffer and the buffer is called
the resident buffer of these requests.

Note that if no buffer exists for a requested object, a
first buffer with superscript is allocated. Subse-
quent buffer allocations use monotonically increasing s
even if the immediate preceding buffer has been released.
Therefore, only after all buffers of the object run to the
end, is it possible to reset and start from 1 again.

2) Running State & Running-Distance: After the buffer
freezes its size it serves as a running window of a
streaming session and moves along with the streaming
session. Therefore, the state of the buffer is called the
Running State.

The Running-Distance of a buffer is defined as the dis-
tance in time between the start-time of a running buffer
and the start-time of its preceding running buffer. We use

to denote the Running-Distance of . Note that for
the first buffer allocated to an object , is equal to the
length of object : , assuming a complete viewing sce-
nario. Since we are encouraging sharing among buffers,
clients served from are also served from any preceding
buffers that are still in running state. This requires that the
running-distance of equals to the time difference with
the closest preceding buffer in running state. Mathemati-
cally, we have

(2)

where and is the start time of the closest
preceding buffer in running state.

3) Idle State & End-Time: When the running window reaches
the end of the streaming session, the buffer enters the Idle
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Fig. 1. SRB memory allocation: the initial buffer freezes its size.

State, which is a transient state that allows the buffer to be
reclaimed.

The End-Time of a buffer is defined as the time when a
buffer enters idle state and is ready to be reclaimed. The
End-Time of the buffer , denoted as , is defined as

(3)

denotes the start time of the latest running buffer
for object . Here, is dynamically updated upon the
forming of new running buffers. The detailed updating
procedure of is described in the following section.

B. SRB Algorithm

For an incoming request to the object , the SRB algorithm
works as follows: 1) If the latest running buffer of the object is
caching the prefix of the object , the request is served directly
from all the existing running buffers of the object. 2) Otherwise,
(a) If there is enough memory, a new running buffer of a prede-
termined size is allocated. The request is served from the new
running buffer and all existing running buffers of the object .
(b) If there is not enough memory, the SRB buffer replacement
algorithm (see Section III-B-3) is invoked to either re-allocate
an existing running buffer to the request or serve this request
without caching. 3) Update the End-Times of all existing buffers
of the object based on (3). During the process of the SRB algo-
rithm, parts of a running buffer could be dynamically reclaimed
as described in Section III-B.2 due to the request termination
and the buffer is dynamically managed based on the user access
pattern through a lifecycle of three states as described in Sec-
tion III-B1.

1) SRB Buffer Lifecycle Management: Initially, a running
buffer is allocated with a predetermined size of . Starting from
the Construction State, the buffer then adjusts its size by going
through a three-state lifecycle management process as described
in the following.

• Case 1: the buffer is in the Construction State. The proxy
makes a decision at the end of as follows.

— If , which indicates that there is only one
request arrival so far, the initial buffer enters the Idle
State (case 3) immediately. For this request, the proxy
acts as a bypass server, i.e., content is passed to the

client without caching. This scheme gives preference
to more frequently requested objects in the memory al-
location. Fig. 1(a) illustrates this situation. The shadow
indicates the allocated initial buffer, which is reclaimed
at .

— If ( is the waiting time), the initial
buffer is shrunk to the extent that the most recent re-
quest can be served from the buffer. Subsequently, the
buffer enters the Running State (case 2). This running
buffer then serves as a shifting window and run to the
end. Fig. 1(b) illustrates an example. Part of the initial
buffer is reclaimed at the end of . This scheme per-
forms well for periodically arrived request groups.

— If , the initial buffer maintains the con-
struction state and continues to grow to the length of

, where , expecting that a
new request arrives very soon. At , the and

are recalculated and the above procedure repeats.
Eventually, when the request to the object becomes less
frequent, the buffer will freeze its size and enter the
Running State (case 2). In the extreme case, the full
length of the media object is cached in the buffer. In
this case, the buffer also freezes and enters the running
state (a static running). For most frequently accessed
objects, this scheme ensures that the requests to these
objects are served from the proxy directly. Fig. 1(c) il-
lustrates this situation. The initial buffer has been ex-
tended beyond the size of for the first time.

The buffer expansion is bounded by the available
memory in the proxy. When the available memory is
exhausted, the buffer freezes its size and enters the run-
ning state regardless of future request arrivals.

• Case 2: the buffer is in the Running State. After a buffer
enters the running state, it starts running away from the
beginning of the media object and subsequent requests
can not be served completely from the running buffer. In
this case, a new buffer of an initial size is allocated
and goes through its own lifecycle starting from case 1.
Subsequent requests are served from the new buffer as
well as its preceding running buffers.

Fig. 2 illustrates the maximal data sharing in the SRB
algorithm. The requests to are served simulta-
neously from and . Late requests are served from
all existing running buffers. Note that except for the first
buffer, the other buffers do not run to the end of the object.
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Fig. 2. Multiple running buffers.

The Running-Distance and End-Time are determined
based on (2) and (3), respectively, for any buffer entering
the Running State. In addition, the End-Times of its pre-
ceding running buffers need to be modified according to
the arrival time of the latest request, as shown in (3).

• Case 3: the buffer is in the Idle State. When a buffer enters
the Idle State, it is ready for reclamation.

In the above algorithm, the time span (which is the initial
buffer size) is determined based on the object length. Typically,
a Scale factor (e.g., 1/2 to 1/32) of the origin length is used. To
prevent a extremely large or small buffer size, the buffer size
is bounded by a upper bound High-Bound and a lower bound
Low-Bound. These bounds are dependent on the streaming rate
to allow the initial buffer to cache a reasonable portion (e.g., 1
to 10 min) of media objects. The algorithm requires the client
be able to listen to multiple channels at the same time: once a
request is posted, it should be able to receive data from all the
ongoing running buffers of that object simultaneously.

2) SRB Dynamic Reclamation: Memory reclamation of a
running buffer is triggered by two different types of session ter-
minations: complete session termination and premature session
termination. In complete session termination, a session termi-
nates only when the delivery of the whole media object is com-
pleted. Assuming that is the first request being served by a
running buffer, when reaches the end of the media object,
the resident buffer of is reclaimed as follows.

• If the resident buffer is the only buffer running for the
media object, the resident buffer enters the Idle State. In
this state, the buffer maintains its content until all the res-
ident requests reach the end of the session, at which time
the buffer is released.

• If the resident buffer is not the only buffer running, that
is, there are succeeding running buffers, the buffer enters
the Idle State and maintains its content until its End-Time.
Note that the End-Time may have be updated by suc-
ceeding running buffers.

Premature session termination is much more complicated. In
this case, a request that arrives later may terminate earlier. Con-
sider a group of consecutive requests to , the session for
one of the requests, say , where , terminates before
everyone else. The situation is handled as follows.

• If is served from the middle of its resident buffer,
that is, there are preceding and succeeding requests served
from the same running buffer, the resident buffer maintain

Fig. 3. SRB memory reclamation: different situations of session termination.

its current state and is deleted from all its associated
running buffers. Fig. 3(a) and (a’) show the buffer situa-
tion before and after is terminated, respectively.

• If is served from the head of its resident buffer as
shown in Fig. 3(b), the request is deleted from all of its
associated running buffers. The resident buffer enters the
Idle State for a time period of . During this time period,
the content within the buffer is moved from to the
head. At the end of the time period , the buffer space from
the tail to the last served request is released and the buffer
enters the Running State again as shown in Fig. 3(b’).

• If is served at the tail of a running buffer, two scenarios
are further considered.

— After deleting the from the request list of its resident
buffer, if the request list is not empty, then do nothing. Al-
ternatively, the algorithm can choose to shrink the buffer
to the extent that is served from the buffer assuming

is a resident request of the same buffer. In this case,
the End-Time of the succeeding running buffers needs to
be adjusted.

— If is at the tail of the last running buffer as shown in
Fig. 3(c), the buffer is shrunk to the extent that is
the last request served from the buffer. is deleted from
the request list. Subsequently, the buffers run as shown in
Fig. 3(c’).

3) SRB Buffer Replacement Policies: The replacement
policy is important in the sense that the available memory is
still scarce compared to the size of video objects. So to effi-
ciently use the limited resources, it is critical to achieve the best
performance gain. In this section, we propose popularity-based
replacement policies for the SRB media caching algorithm.
The basic idea is described as follows.

• When a request arrives while there is no available
memory, all the objects that have on-going streams
in memory are ordered according to their popularities
calculated in a certain past time period. If the object
being demanded has a higher popularity than the least
popular object in memory, then the latest running buffer
of the least popular object is released, and the space is
re-allocated to the new request. Those requests without
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Fig. 4. SRB algorithm.

running buffers do not buffer their data at all. In this
case, theoretically, they are assumed to have no memory
consumption.

Alternatively, the system can choose to start a memoryless
session in which the proxy bypasses the content to the client
without caching. This is called a nonreplacement policy. We
have evaluated the performances of both two polices by sim-
ulations in the later section. It is shown that a straightforward
nonreplacement police may achieve similar performance given
long enough system running time.

Fig. 5. PSRB caching example.

Fig. 4 shows the SRB algorithm containing these three main
components in the pseudocode.

C. PSRB Media Delivering Algorithm

Since the proxy has finite amount of memory space, it is pos-
sible that the proxy serves as a bypass server without caching
concurrent sessions. The SRB algorithm prohibits the sharing of
such sessions, which may lead to excessive server access if there
are intensive request arrivals to many different objects. To solve
this problem, the SRB algorithm can be extended to a PSRB
algorithm which enables the sharing of such bypass sessions.
This is related to the session sharing algorithms as discussed in
Section II-B. It is important to note that PSRB scheme makes
the memory-based SRB algorithm work with the memoryless
patching algorithm.

Fig. 5 illustrates a PSRB scenario. The first running buffer
has been formed for requests to . No buffer is running for

since it does not have a close neighboring request. However,
a patching session has been started to retrieve the absent prefix
in from the content server. At this time, request is served
from both the patching session and until the missing prefix
is patched. Then, is served from only (the solid line for

stops in the figure).
When and arrive and form the second running buffer
, they are served from and as described in the SRB

algorithm. In addition, they are also served from the patching
session initiated for . Note that the patching session for
is transient, or we can think of it as a running buffer session
with zero buffer size. As evident from Fig. 5, the filling of
does not cause server traffic between position and (no solid
line between and ) since is filled from the patching ses-
sion for . Thus, sharing the patching session further reduces
the number of server accesses for and . By using more
client-side storage, PSRB tries to maximize the data sharing
among concurrent sessions in order to minimize the server-to-
proxy traffic.

IV. WORKLOAD ANALYSIS

To evaluate the performance of the proposed algorithms and
to compare them with prior solutions, we conduct simulations
based on several workloads. Both synthetic workloads and a
real workload extracted from enterprise media server logs are
used. We design three synthetic workloads. The first simulates
accesses to media objects in the Web environment in which the
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TABLE I
WORKLOAD STATISTICS

length of the video varies from short ones to longer ones. The
second simulates the video access in a VOD environment in
which only longer streams are served. Both workloads assume
complete viewing client sessions. We use WEB and VOD as the
name of these workloads. These workloads assume a Zipf-like
distribution ( , ) for the popularity
of the media objects. They also assume request inter arrival to
follow the Poisson distribution

.
In the case of video accessing in the Web environment, clients

accesses to videos may be incomplete, that is, a session may ter-
minate before the whole media object is delivered. We simulate
this scenario by designing a partial viewing workload based on
the WEB workload. In this workload, called PARTIAL, 80% of
the sessions terminate before 20% of the accessed objects is de-
livered.

For the real workload, we obtain logs from HP Corporate
Media Solutions, covering the period from April 1 through April
10, 2001. During these ten days, there were two servers running
Windows Media Server, serving contents to clients around the
world within HP intranet. The contents include videos, with the
coverage of keynote speeches at various corporate and industry
events, messages from the company’s management, product an-
nouncements, training videos and product development courses
for employees, etc. This workload is called REAL. A detailed
analysis of the overall characteristics of the logs from the same
servers covering different time periods can be found in [18].

A. Workload Characteristics

Table I lists some statistics of the four workloads. For the
WEB workload, there is a total of 400 unique media objects,
with a total size of 51 GB, stored on the server. The length of
the media objects ranges from 2 min to 2 h. The request inter-ar-
rival follows a Poisson distribution with s and
(according to [19]) of Zipf-like distribution for object populari-
ties. The media objects are coded and streamed at 256 kbps. The
total number of requests is 15 188. The simulation lasts 87 114 s
or roughly 24 h. The Low-Bound and High-Bound for the initial
buffer size are set as 2 and 16 MB, respectively.

For the PARTIAL workload, 80% of the requests view only
20% of the requested streaming media objects and then prema-
turely terminate. Both the partial-viewing requests and the par-
tial-viewed objects are randomly distributed. Other parameters
of the synthesized trace are identical to those of WEB as shown
in Table I.

For the VOD workload, the number of unique objects stored
on the server is 100, which accounts to total size of 149 GB. The
length of the objects ranges from 1 to 2 h. The request inter-ar-
rival follows a Poisson distribution with s. The Zipf-like

Fig. 6. REAL: (a) distribution of absolute viewing time (b) distribution of
viewing percentage.

distribution for object popularity is set as (according
to [20]). The media objects are coded and streamed at 2 Mbps.
The total number of requests is 10 731. The simulation runs for
654 539 s or roughly a week. The Low-Bound and High-Bound
for initial buffer allocation are set as 16 and 128 MB, respec-
tively.

For the REAL workload, there is a total of 403 objects with a
total size of 20 GB. There are 9000 request arrivals in a time span
of 916 427 s or roughly ten days. Fig. 6(a) shows the distribution
of the absolute length of viewing time (in minutes). It shows that
83.08% of the sessions last less than 10 min. Fig. 6(b) shows the
cumulative distribution of the percentage of viewing time with
respect to the full object length. It shows that 56.24% of the
requests access less than 10% of the media object. Only 9.74%
of the requests access the full objects.

B. Shared Session

During the course of a streaming session of an object, when
there are other requests accessing the same object, this portion
of the streaming session is shared. The actual caching benefit
depends on the number of sharing requests. For example, the
benefit of caching an ongoing sessions simultaneously shared
by two requests is different from that by three requests. To fur-
ther evaluate the benefit the proxy system can get by caching
for shared sessions, we obtain the distribution of the number of
requests on the shared sessions. This statistics are collected as
follows. At each time instance (second), we recode the num-
bers of on-going sessions that are shared by different numbers
of sharing requests. These numbers are accumulated in bins rep-
resenting numbers of sharing requests. At the end of the simu-
lation, the number in each bin is divided by the total simulation
duration in second, thus obtaining a histogram of the averaged
number of shared sessions at any time instance. Fig. 7(a) shows
the distribution in full range on the number of sharing requests,
and Fig. 7(b) shows the range from 2 to 20 in more detail. For a
given point on the curves, indicates the average number
of on-going sessions that are shared by number of requests.
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Fig. 7. Shared request histogram: (a) full and (b) part.

We find that the number of sharing sessions ranges predom-
inately from 2 to 20. Since the sessions in the VOD workload
last the longest, it is expected that its average number of shared
sessions is the largest among the group of workloads. PARTIAL
is the partial viewing case of WEB; thus, the number of shared
sessions in PARTIAL should be less than that in WEB work-
load.

V. PERFORMANCE EVALUATION

A. Evaluation Metrics

We have implemented an event-driven simulator to model a
proxy’s memory caching behaviors. Since object hit ratio or hit
ratio is not suitable for evaluating the caching performance of
the streaming media, we use server traffic reduction rate (shown
as “bandwidth reduction” in the figures) to evaluate the perfor-
mance of the proposed caching algorithms. If the algorithms
are employed on a server, this parameter indicates the disk I/O
traffic reduction rate.

Using SRB or PSRB algorithms, a client needs to listen to
multiple channels for maximal sharing of cached data in the
proxy’s memory. We measure the traffic between the proxy and
the client in terms of the average client channel requirement.
This is an averaged number of channels the clients are listening
to during the sessions. Since the clients are listening to ear-
lier on-going sessions, storage is necessary at the client side to
buffer the data before its presentation. We use the average client
storage requirement in percentage of the full size of the media
object to indicate the storage requirement on the client side.

The effectiveness of the algorithms is studied by simulating
different scale factors for the allocation of the initial buffer size
and varying memory cache capacities. The streaming rate is as-
sumed to be constant for simplicity. The simulations are con-
ducted on HP workstation x4000, with 1-GHz CPU and 1-GB
memory.

For each simulation, we compare a set of seven algorithms
in three groups. The first group contains the buffering schemes
which include dynamic buffering and interval caching. The
second group contains the patching algorithms, namely greedy
patching, grace patching and optimal patching algorithms. The
third group contains the two shared running buffer algorithms
proposed in this paper.

B. Performance on Synthetic Workloads

We consider complete viewing scenario for streaming media
caching in both Web environments and VOD environments. We
also simulate the partial viewing scenario for web environment.

There are no partial viewing cases for media delivery in the
VOD environment.

1) Complete Viewing Workload of Web Media Ob-
jects: First, we evaluate the caching performance with respect
to initial buffer size. With a fixed memory capacity of 1 GB,
the initial buffer size varies from 1 to 1/32 of the length of the
media object. For each scale factor, an initial buffer of different
size is allocated if the media object length is different. The
server traffic reduction, the average client channel requirement
and the average client storage requirement are recorded in the
simulation. The results are plotted in Fig. 8.

Fig. 8(a) shows the server traffic reduction achieved by each
algorithm. Note that PSRB achieves the best reduction and SRB
achieves the next best reduction except optimal patching. RB
caching achieves the least amount of reduction. As expected, the
performance of the three patching algorithms does not depend
on the scale factor for allocating of the initial buffer. Neither
does that of interval caching since it allocates buffers based on
access intervals.

For the running buffer schemes, we notice some variation in
the performance with respect to the scale factor. In general, the
variations are limited. To a certain extent, the performance gain
of the bandwidth reduction is a trade-off between the number of
running buffers and the size of running buffers. A larger buffer
indicates that more requests can be served from the it. How-
ever, a larger buffer indicates less memory space left for other
requests. This in turn leads to more server accesses since there is
no available proxy memory. On the other hand, a smaller buffer
may serve a smaller number of requests but it leaves more proxy
memory space to allocate for other requests.

Fig. 8(b) and (c) shows the average channel and storage re-
quirement on the client. Note that optimal patching achieves the
better server traffic reduction by paying the penalty of imposing
the biggest number of client channels required. Comparatively,
PSRB and SRB requires 30% 60% less client channels while
achieving similar or better server traffic reduction.

PSRB allows session sharing even when memory space is not
available. It is therefore expected that PSRB achieves the max-
imal server traffic reduction. In the mean time, it also requires
the maximum client side storage and client channels. On the
other hand, SRB achieves six percentage point less traffic re-
duction than PSRB, but the requirement on client channel and
storage is significantly lower.

We now investigate the performance of different algorithms
with respect to various memory capacities on the proxy. In this
simulation, we use a fixed scale factor of 1/4 for the initial buffer
size. Fig. 9(a) indicates flat traffic reduction rate for the three
patching algorithms. This is expected since no proxy memory
resource is utilized in patching. On the other hand, all the other
algorithms investigated achieve higher traffic reduction when
memory capacity increases. It is important to note that the pro-
posed two SRB algorithms achieve better traffic reduction than
the interval caching and running buffer schemes.

In Fig. 9(b), the client channel requirement decreases for
the PSRB algorithm when the cache capacity increases. This is
again expected since more clients are severed from the proxy
buffers instead of proxy patching sessions. When the cache
capacity reaches 4 GB, PSRB requires only 30% of the client
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Fig. 8. WEB: (a) server traffic reduction, (b) average client channel, and (c) storage requirement(%) with 1-GB proxy memory.

Fig. 9. WEB: (a) bandwidth reduction, (b) average client channel, and (c) storage requirement(%) with the scale of 1/4.

channel needed for the optimal patching scheme. PSRB also
requires less client storage at this cache capacity as indicated
in Fig. 9(c). And yet, PSRB achieves more than 10 percentage
points of traffic reduction compared to the optimal patching
scheme. For the SRB algorithm, it generally achieves the
second best traffic reduction with even less penalty on client
channel and storage requirements.

The performance gain for the VOD workload is larger than
that of the WEB workload, correspondingly. This is mainly due
to the longer streaming session on average in the VOD work-
load. We omit it for brevity; interested readers can refer to [21].

2) Partial Viewing of Web Workload: In streaming media de-
livery over the Web, it is possible that some clients terminate
the session after watching for a while from the beginning of the
media object. It is important to evaluate the performance of the
proposed algorithm under this situation. Using the PARTIAL
workload as defined in Section IV, we perform the same simula-
tions and evaluate the same set of parameters. Fig. 10(a) shows
similar characteristics as those in Fig. 8. PSRB and SRB still
achieve better traffic reduction. The conclusion holds that PSRB
uses 60% of the client channel to achieve five percentage points
better traffic reduction compared with the optimal patching.

In the event that a session terminates before it reaches the
end of the requested media object, it is possible that the client
has already downloaded future part of the media stream which
is no longer needed. To characterize this wasted delivery from
the proxy to the client, we record average client waste. It is
the percentage of wasted bytes versus the total prefetched data.

Fig. 10. PARTIAL: (a) bandwidth reduction and (b) average client channel
requirement with 1-GB proxy memory.

Fig. 11 shows the client waste statistic. Note that for PARTIAL
and REAL workloads, since both contain premature session ter-
minations, the prefetched data which is not used in the presenta-
tion are not counted as bytes hit in the calculation of the server
traffic reduction.

As shown in Fig. 11(b), PSRB and SRB have about 42% and
15% of prefetched data wasted compared with 0% for interval
caching. Since the wasted bytes are not counted as hit, this leads
to the lowered traffic reduction rate for PSRB and SRB com-
pared to that of interval cache. From another perspective, in-
terval caching does not promote sharing among buffers; hence,
the client listens to one channel only and there is no buffering of
future data. Thus, there is no waste in proxy-to-client delivery
in the event of premature session termination.
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Fig. 11. PARTIAL: (a) average client storage requirement (%) and (b) client
waste (%) with 1-GB proxy memory.

Fig. 12. PARTIAL: (a) bandwidth reduction and (b) average client channel
requirement with the scale of 1/4.

We now again start investigation of the caching performance
with a fixed scale factor for the initial buffer size in Fig. 12.
Compared with Fig. 8(a), the distances between the traffic re-
duction curves between PSRB, SRB and interval caching be-
come much smaller in general. This reinforces the observation
above that PSRB and SRB may lead to more wasted bytes in the
partial viewing cases. In addition, the grace patching achieving
almost no traffic reduction shows its incapability in dealing with
the partial viewing situation. The reason might be that the new
session started by the grace patching, which is supposed to be
a complete session, often terminates when 20% of the media
object is delivered. Since the duration of the session is short, it
is less likely that a new request to the same media object is re-
ceived.

In Fig. 12(b), PSRB demonstrates monotonic decreasing of
average client channel requirement when memory capacity in-
creases. This is due to the fact that there is a fewer number
of zero-sized running buffers with increasing proxy memory
capacity. Similarly, as shown in Fig. 13, the client storage re-
quirement and average client waste also decrease since a fewer
number of patching is required.

C. Performance on REAL Workload

Based on a real video delivering workload captured from cor-
porate intranet, the same simulations are conducted to evaluate
the caching performance. We start first by evaluating the caching
performance versus varying scale factor for the initial buffer
size.

The server side traffic reduction is shown in Fig. 14(a) while
the client side statistics are shown in Fig. 14(b) and Fig. 15.
Comparing Fig. 14(a) with Fig. 8(a), it is clear that the differ-
ence in the scale factor has a much more significant impact on
the performance of the proposed SRB and PSRB algorithms for

Fig. 13. PARTIAL: (a) average client storage requirement (%) and (b) client
waste (%) with the scale of 1/4.

Fig. 14. REAL: (a) bandwidth reduction and (b) average client channel
requirement with 1-GB proxy memory.

Fig. 15. REAL: (a) average client storage requirement (%) and (b) client waste
(%) with 1-GB proxy memory.

REAL. This could be due to the bursty nature of the accesses
logged in the workload. To a certain extent, this result indicates
the effectiveness of the adaptive buffer allocation scheme we
proposed in the algorithms.

Setting the initial buffer size as 1/4 of the requested media
objects, we again evaluate the caching performance with in-
creasing amount proxy memory available. Figs. 16 and 17 show
the server traffic reduction and the client side statistics. Com-
pared with the simulation results obtained with synthetic work-
loads, Fig. 16(a) shows a flat gain when memory capacity in-
creases. It seems to indicate that memory capacity is less of a
factor. Once again, the bursty nature of the request arrival may
play a role here. In addition, the volume of the burst may also
be low which leads to the fact that limited amount of memory
space suffices the sharing of sessions.

The simulation results for the real workload provide the fol-
lowing understanding for the studying of caching of streaming
media. Contrary to the intuition that the caching of streaming
media requires large memory space, our study using the syn-
thetic and real workloads shows that the user-access pattern
based buffer allocation and sharing policy is critical to achieve
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Fig. 16. REAL: (a) bandwidth reduction and (b) average client channel
requirement with the scale of 1/4.

Fig. 17. REAL: (a) average client storage requirement (%) and (b) client waste
(%) with the scale of 1/4.

good caching performance with a limited memory resource.
This is also the motivation of the proposed SRB and PSRB
algorithms.

D. Further Analysis on Client Channel Requirement

The performance analysis in the previous section indicates
that the SRB and PSRB algorithms achieve superior server
traffic reduction by utilizing the memory resource on the proxy
and sufficient bandwidth resource between the proxy and the
clients. In most cases, the proxy streams data from multiple
buffers to the client through multiple channels. To have a
better understanding on the client channel requirement, we
collect additional statistics that illustrates the distribution of the
number of client channels required. Figs. 18 and 19 show the
CDF of the client channel requirement for simulations on four
workloads. In these simulations, the proxy has 1-GB memory
capacity and the scale factor for the initial buffer size is fixed
at 1/4.

For simple running buffer caching, only one channel is re-
quired for a client since there is no session sharing. Greedy
and grace patching algorithms need at most two client channels.
For WEB and VOD workloads, approximately 60% of greedy
patching sessions and 40% of grace patching sessions require
only one client channel. Interval caching also requires at most
two client channels with 78% of the sessions requiring only one
channel.

Optimal patching needs the largest number of client channels.
It is not surprising since requests arrive later always try to patch
to as many earlier on-going sessions as possible. Among the
simulation results of all four workloads, the number of client
channel required could exceed nine for the optimal patching
scheme.

Fig. 18. Client channel requirement CDF: (a) WEB and (b) VOD.

Fig. 19. Client channel requirement CDF: (a) PARTIAL and (b) REAL.

For the proposed SRB and PSRB algorithms, the number
of the required client channel often falls in between that of
the optimal patching and the group of algorithms containing
greedy, grace patching and interval caching. Note further that
for SRB algorithm, very few sessions require more than three
client channels with around 98% of session requires no more
than two. The statistics shown for in the REAL workload as
in Fig. 19(b) verifies further that 94% of the PSRB sessions
needs no more than two client channels. On the other hand,
more than 10% of the optimal patching sessions needs three or
more client channels. Referring back to Fig. 16(a), it is clear
that SRB and PSRB algorithms achieve higher server traffic
reduction rate than the optimal caching but pay less penalty in
proxy-to-client channel requirement. This analysis enhances
the advantages of the proposed algorithms. In addition, these
observations are useful when limited bandwidth resource is
available between the proxy and the client. In this case, the
proxy system can choose to execute a session sharing algorithm
which achieves better caching performance without exceeding
the proxy-to-client link capacity.

Based on the evaluation results, these SRB based algorithms
can be used not only for the media delivery in the VOD environ-
ment, but also for processing the increasing amount of streaming
media objects on the Web today to improve the performance
on the client side (such as the playback jitter, the startup delay)
eventually. Different from the SRB work in this paper, we have
also thoroughly evaluated the client playback jitter and startup
delay in [22] and [23], which are important for streaming de-
livery systems from the client point of view.

VI. CONCLUSION

In this paper, we propose two new algorithms, SRB and
PSRB, for caching of streaming media objects, by maximizing
the available memory resource utilization in the existing proxies
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to exploit the temporal locality of client accesses, thus to relieve
the bottlenecks of disk bandwidth and network bandwidth for
streaming media delivery. The SRB caching algorithm dynami-
cally caches media objects in the proxy memory during delivery
while the PSRB algorithm further enhances the memory utiliza-
tion in the proxy. Extensive simulations using both synthetic
and real workloads are conducted. The simulation results
demonstrate they can greatly reduce the network traffic or the
disk bandwidth. Although both algorithms require the client
capable of listening to multiple channels at the same time, the
proposed algorithms achieve higher server traffic reduction rate
with less or similar load on the link between the proxy and
the client when compared with previous solutions which also
require multiple client channels.
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