Interactive Semantic Parsing for If-Then Recipes via Hierarchical Reinforcement Learning

Ziyu Yao
The Ohio State University

In collaboration with: Xiujun Li (MSR, UW), Jianfeng Gao (MSR), Brian Sadler (ARL), Huan Sun (OSU)
Outline

- Background
- Interactive Semantic Parser
 - Why
 - How
- Experiments
- Conclusion
Outline

- Background
- Interactive Semantic Parser
 - Why
 - How
- Experiments
- Conclusion
Semantic Parsing

- General task
 - To map natural language to formal domain-specific meaning representations.
Semantic Parsing

- General task
 - To map natural language to formal domain-specific meaning representations.

- Example
 - Knowledge based question answering
 - NL Question => Logical form in lambda-DCS (or, SPARQL/SQL query)

"Find people who died from lung cancer before 1960 and whose parent died for the same reason"

(Su et al., 2016)
Semantic Parsing

- General task
 - To map natural language to formal domain-specific meaning representations.

- Example
 - General-purpose program synthesis
 - NL question => Python program
 - “how to sort my_list in descending order in python?”
 - `sorted(my_list, reverse=True)`
Semantic Parsing for If-Then Recipes

- If-Then program: A conditional statement
 - Informally known as “If this, then that”
 - Whenever the conditions of the trigger (i.e., “this”) are satisfied, the action (i.e., “that”) is performed
 - e.g., “Turn on my lights when I arrive home” (home automation), “tell me if the door opens” (home security), etc.
Semantic Parsing for If-Then Recipes

- If-Then program: A conditional statement
 - Informally known as “If this, then that”

- Providing services that allow end users to connect and integrate their web applications

Interactive Semantic Parsing for If-Then recipes via Hierarchical Reinforcement Learning
Semantic Parsing for If-Then Recipes

- If-Then program: A conditional statement
 - Informally known as “If this, then that”

- Formally, an If-Then recipe:
 - A natural language description
 - 4 components in the program
 - Trigger channel
 - Trigger function
 - Action channel
 - Action function
Example

- NL description

 "Create a link note on Evernote for my liked tweets"

- If-Then program

 - Trigger channel: Twitter
 - Trigger function: New liked tweet by you
 - Action channel: Evernote
 - Action function: Create a link note
Outline

- Background
- Interactive Semantic Parser
 - Why
 - How
- Experiments
- Conclusion
Previous Work

- Semantic parsing \textit{in one shot}:
 - User gives an NL description, and system responds with a program
 - (Quirk et al., 2015; Liu et al., 2016; Dong and Lapata, 2016)
Challenges

- Natural language descriptions can be ambiguous, and contain incomplete information

Example:
- NL description: “record to evernote”
- Ground truth: [Twitter(trigger channel), New liked tweet by you (trigger function), Evernote (action channel), Create a link note (action function)]
Challenges

- Natural language descriptions can be ambiguous, and contain incomplete information

Example:

- **NL description**: “record to evernote”
- **Ground truth**: [Twitter(*trigger channel*), New liked tweet by you (*trigger function*), Evernote (*action channel*), Create a link note (*action function*)]
- **Other possible interpretations**: [Instagram, You like a photo, Evernote, Create a note], …
Challenges

- Natural language descriptions can be ambiguous, and contain incomplete information.

- In the widely used dataset (Quirk et al., 2015), 80% of ~4K human evaluated descriptions are considered ambiguous to some degree.
Challenges

- Natural language descriptions can be ambiguous, and contain incomplete information

- Quite difficult for an automated parser to produce a correct program, *if only based on an ambiguous description*.
Interactive Semantic Parsing

- An intelligent agent can ask user questions for clarification to improve parsing accuracy.

<table>
<thead>
<tr>
<th>User: “record to evernote”</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRL agent: “Which event triggers the action?”</td>
</tr>
<tr>
<td>User: “If I like a tweet”</td>
</tr>
<tr>
<td>HRL agent: “Which event results from the trigger?”</td>
</tr>
<tr>
<td>User: “Create a note with link”</td>
</tr>
</tbody>
</table>

Agent Prediction: [tc: Twitter, tf: New liked tweet by you, ac: Evernote, af: Create a link note]
An intelligent agent can ask user questions for clarification to improve parsing accuracy.

Goal
- Improve parsing accuracy, but with as few questions as possible.
Outline

- Background
- Interactive Semantic Parser
 - Why
 - How
- Experiments
- Conclusion
Interactive Semantic Parsing

Challenges

- Lack of supervision on when system should ask a question
 - The only feedback is whether a synthesized program is correct or not.

- How to optimize the parsing accuracy and number of asks at the same time?
Previous Rule-based Agents

- For each component, build a classifier model

- If the prediction of the current component is lower than a threshold, ask user a question.

 e.g., \(P(\text{Trigger channel} = \text{Instagram}) = 0.3 < 0.4 \) (threshold), ask user a question* like “which channel to trigger?”

*Question is formulated using templates. (Chaurasia and Mooney, 2017)
Our Formulation

- Treat predicting the 4 components as 4 subtasks

- Hierarchical decision making process
 - At the high level, decide which subtask to work on
 - At the low level, for the current selected subtask, decide whether to make a prediction or to ask user a question, based on the current status
Hierarchical Decision Making

In a Hierarchical Reinforcement Learning framework (Sutton et al., 1999)

s: state information.
g_t: the subtask to work on from time step t
a_t: the low-level action at time step t when working on subtask g_t.

$\pi^h_{g_t}(g; s)$: high-level policy

$\pi^l_{g_t+2}(a; s)$: low-level policy
Actions

- **High-level action space**
 - 4 subtasks
 - Each representing predicting one component, e.g., trigger channel

- **Low-level action space**
 - For each component selected at the high level, e.g., trigger channel,
 \[\{\text{all possible trigger channels}\} \cup \{\text{AskUser}\} \]
States

- A state s consists of 9 items:
 - The initial recipe description I
 - The boolean indicator b_i ($i = 1 \sim 4$) for each subtask, showing whether each subtask has been predicted or not
 - The received user answer d_i ($i = 1 \sim 4$) for each subtask
Rewards

- Low level

\[r_{gt}^l(s_t, a_t) = \begin{cases}
1 & \text{if } a_t = \ell_{gt} \\
-\beta & \text{if } a_t = \text{AskUser} \\
-1 & \text{otherwise}
\end{cases} \]

* \(\ell_{gt} \): ground-truth label for subtask
\(\beta \in [0,1) \): penalty for asking the user

- High level

\[r_{gt}^h(s_t, g_t) = \begin{cases}
\sum_{k=t}^{t+N} r_{gt}^l(s_k, a_k) & \text{for eligible } t \\
0 & \text{otherwise}
\end{cases} \]

*eligible \(t\): at the beginning of a subtask or when a subtask terminates
The low-level policy function for subtask \(st_i \):

- \(v_i = (1 - w_d)v_I + w_d v_{di} \) represents the information integrated from both the recipe description and the user answer, traded off by weight \(w_d \).

- \(s_{st_i}^l \): the low-level state vector of subtask \(st_i \), i.e.,
 \[s_{st_i}^l = \tanh(W_c [s_{st_1}^l; \ldots; s_{st_{i-1}}^l; v_i; s_{st_{i+1}}^l; \ldots; s_{st_4}^l]) \]

- Low-level policy value (probability distribution over action space):
 \[\pi_{st_i}^l(a; s) = \text{softmax}(W_{st_i}^l s_{st_i}^l) \]
The low-level policy function for subtask s_{ti}:

- $v_i = (1 - w_d)v_l + w_d v_{di}$ represents the information integrated from both the recipe description and the user answer, traded off by weight w_d.

- **Low-level** state vector of subtask s_{ti}:

 $s^l_{st_i} = \tanh(W_{ci}[s^l_{st_1}; \ldots; s^l_{st_{i-1}}; v_i; s^l_{st_{i+1}}; \ldots; s^l_{st_4}])$

- Low-level policy value (probability distribution over action space):

 $\pi^l_{s_{ti}}(a; s) = \text{softmax}(W^l_{s_{ti}}s^l_{s_{ti}})$
High-level Policy Function Design

High-level policy decides which subtask to work on:

- $s_{st_i}^l$: the state vector for subtask st_i ($i = 1\sim4$)
- b_i: a boolean value indicating whether subtask st_i is completed

High-level state vector:

$$s^h = \tanh(W_c[s_{st_1}^l; b_1; \ldots; s_{st_4}^l; b_4])$$

Policy value (probability distribution over 4 subtasks):

$$\pi^h(g; s) = \text{softmax}(W^h s^h)$$
Hierarchical Policy Learning

- Learned by the REINFORCE algorithm (Williams, 1992)
- For each policy, perform gradient ascent to maximize the future rewards
User Simulator

Why user simulator is needed?
- Save real human efforts in training

Simulating user answers when the agent asks clarification questions about channels and functions.
User Simulator

- Simulating user answers for channels by *channel names*, e.g., “Gmail”.
- Simulating user answers for functions by:
 - Revised function name / definition from IFTTT.com and their paraphrases
 - e.g., “This Trigger fires *every time you like a tweet*”
 - Extractions from user data
 - e.g., extracting X from recipe description “If X then Y” as a user answer when asked about the corresponding trigger function
Outline

- Background
- Interactive Semantic Parser
 - Why
 - How
- Experiments
- Conclusion
Experiments: Dataset

- **Training and validation**
 - 291,285 pairs of <NL description, If-Then program> (Ur et al., 2016)

- **Testing**
 - 3,870 pairs (Quirk et al., 2015)
 - Each description manually annotated by 5 AMTurkers

<table>
<thead>
<tr>
<th>Test Data</th>
<th>CI</th>
<th>VI</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>VI-1/2</td>
<td>VI-3/4</td>
</tr>
<tr>
<td>Size (%)</td>
<td>727</td>
<td>1,271</td>
<td>1,872</td>
</tr>
<tr>
<td></td>
<td>(18.79)</td>
<td>(32.84)</td>
<td>(48.37)</td>
</tr>
</tbody>
</table>

CI: “clear description”
VI: “vague description”
Experiments: Methods to Compare

- **LAM**: Latent Attention Model (Liu et al., 2016); one of the state-of-the-art If-Then parsing models in one shot
 - One classifier for each of 4 components

- LAM-rule
- LAM-sup

- HRL (our model)
- HRL-fixedOrder (fixing the high-level subtask order)
Experiments: Methods to Compare

- **LAM**: Latent Attention Model (Liu et al., 2016); one of the state-of-the-art If-Then parsing models in one shot
 - One classifier for each of 4 components

- **LAM-rule**
 - By running the trained LAM.
 - Prediction probability < threshold (0.85) \(\Rightarrow\) Ask.
 - Concatenating the received user answer with the recipe description as input for the next time step.
Experiments: Methods to Compare

- **LAM**: Latent Attention Model (Liu et al., 2016); one of the state-of-the-art If-Then parsing models in one shot
 - One classifier for each of 4 components

- **LAM**-rule

- **LAM**-sup
 - LAM with “user answer understanding” module
 - Input: recipe description, user answer (if any).
 - Output: *predict “AskUser”* for asking questions, or predict the channel/function value.
Experiments: Methods to Compare

- **LAM**: Latent Attention Model (Liu et al., 2016); one of the state-of-the-art If-Then parsing models in one shot
 - One classifier for each of 4 components

- **LAM-rule**

- **LAM-sup**
 - Synthesized training data based on the performance of LAM-rule
 - e.g., completing *with* asking users:
 - `<recipe description, ∅> ➔ “AskUser”`
 - `<recipe description, received user answer> ➔ true label`
Experiments: Methods to Compare

- **LAM**: Latent Attention Model (Liu et al., 2016); one of the state-of-the-art If-Then parsing models in one shot
 - One classifier for each of 4 components

- LAM-rule
- LAM-sup

- HRL (our model)
- HRL-fixedOrder (fixing the high-level subtask order)
Simulation Evaluation on Test Set

<table>
<thead>
<tr>
<th>Model</th>
<th>CI C+F Acc</th>
<th>CI #Asks</th>
<th>VI-1/2 C+F Acc</th>
<th>VI-1/2 #Asks</th>
<th>VI-3/4 C+F Acc</th>
<th>VI-3/4 #Asks</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAM</td>
<td>0.801</td>
<td>0</td>
<td>0.436</td>
<td>0</td>
<td>0.166</td>
<td>0</td>
</tr>
<tr>
<td>LAM-rule</td>
<td>0.897</td>
<td>1.433</td>
<td>0.743</td>
<td>2.826</td>
<td>0.721</td>
<td>5.568</td>
</tr>
<tr>
<td>LAM-sup</td>
<td>0.894</td>
<td>0.684</td>
<td>0.803</td>
<td>1.482</td>
<td>0.780</td>
<td>2.921</td>
</tr>
<tr>
<td>HRL-fixedOrder</td>
<td>0.950</td>
<td>1.522</td>
<td>0.855</td>
<td>1.958</td>
<td>0.871</td>
<td>2.777</td>
</tr>
<tr>
<td>HRL</td>
<td>0.949</td>
<td>1.226*</td>
<td>0.888</td>
<td>1.748*</td>
<td>0.878</td>
<td>2.615</td>
</tr>
</tbody>
</table>

- **Simulation Evaluation**: User answers are sampled from the *simulated* answer pool.
- **C+F Accuracy**: when all the 4 subtasks get correct predictions.
- **#Asks**: averaged number of questions for completing the entire task.
- * denotes significant different in mean between HRL vs. HRL-fixedOrder.
Simulation Evaluation on Test Set

<table>
<thead>
<tr>
<th>Model</th>
<th>CI (C+F Acc)</th>
<th>CI (#Asks)</th>
<th>VI-1/2 (C+F Acc)</th>
<th>VI-1/2 (#Asks)</th>
<th>VI-3/4 (C+F Acc)</th>
<th>VI-3/4 (#Asks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAM</td>
<td>0.801</td>
<td>0</td>
<td>0.436</td>
<td>0</td>
<td>0.166</td>
<td>0</td>
</tr>
<tr>
<td>LAM-rule</td>
<td>0.897</td>
<td>1.433</td>
<td>0.743</td>
<td>2.826</td>
<td>0.721</td>
<td>5.568</td>
</tr>
<tr>
<td>LAM-sup</td>
<td>0.894</td>
<td>0.684</td>
<td>0.803</td>
<td>1.482</td>
<td>0.780</td>
<td>2.921</td>
</tr>
<tr>
<td>HRL-fixedOrder</td>
<td>0.950</td>
<td>1.522</td>
<td>0.855</td>
<td>1.958</td>
<td>0.871</td>
<td>2.777</td>
</tr>
<tr>
<td>HRL</td>
<td>0.949</td>
<td>1.226*</td>
<td>0.888*</td>
<td>1.748*</td>
<td>0.878*</td>
<td>2.615*</td>
</tr>
</tbody>
</table>

1. All interactive agents perform better than the non-interactive LAM.
2. LAM-rule simply asks redundant questions.
3. HRL-based agents outperform other agents by:
 - 5% on CI, 8%~15% on VI (taking up 80% of the dataset).
 - Reasonable/minimal number of questions.
4. HRL demands significantly less questions to humans.
Human Evaluation on VI-3/4

- The most challenging VI-3/4 dataset
- Two volunteer students familiar with IFTTT
- Each session:
 - One If-Then recipe sampled from VI-3/4
 - with official descriptions of each component
 - One agent sampled from \{LAM-rule, LAM-sup, HRL, HRL-fixedOrder\}
 - Unknown to the participant
- The participant is encouraged to answer in their own words when being asked
 - For better user experience: Each agent is limited to ask at most 1 question for each component
Human Evaluation on VI-3/4

- In total, collected 496 conversations
- Note:
 - LAM’s result is based on the 496 recipes
 - * denote significant in mean between HRL-based agents and {LAM-rule, LAM-sup}

<table>
<thead>
<tr>
<th>Model</th>
<th>C+F Acc</th>
<th>#Asks</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAM</td>
<td>0.206</td>
<td>0</td>
</tr>
<tr>
<td>LAM-rule</td>
<td>0.518</td>
<td>2.781</td>
</tr>
<tr>
<td>LAM-sup</td>
<td>0.433</td>
<td>2.614</td>
</tr>
<tr>
<td>HRL-fixedOrder</td>
<td>0.581</td>
<td>2.306*</td>
</tr>
<tr>
<td>HRL</td>
<td>0.634*</td>
<td>2.221*</td>
</tr>
</tbody>
</table>

Interactive Semantic Parsing for If-Then recipes via Hierarchical Reinforcement Learning
Human Evaluation on VI-3/4

1. All agents’ performance is not as good as in Simulation Evaluation
 • Mainly due to the high language complexity in real user answers
2. The two HRL-based agents outperform LAM-rule/sup by 6%~20% Acc, with fewer questions
3. HRL vs. HRL-fixedOrder: better Acc and fewer #Asks

<table>
<thead>
<tr>
<th>Model</th>
<th>C+F Acc</th>
<th>#Asks</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAM</td>
<td>0.206</td>
<td>0</td>
</tr>
<tr>
<td>LAM-rule</td>
<td>0.518</td>
<td>2.781</td>
</tr>
<tr>
<td>LAM-sup</td>
<td>0.433</td>
<td>2.614</td>
</tr>
<tr>
<td>HRL-fixedOrder</td>
<td>0.581</td>
<td>2.306*</td>
</tr>
<tr>
<td>HRL</td>
<td>0.634*</td>
<td>2.221*</td>
</tr>
</tbody>
</table>

Ziyu Yao
Interactive Semantic Parsing for If-Then recipes via Hierarchical Reinforcement Learning
Outline

- Background
- Interactive Semantic Parser
 - Why
 - How
- Experiments
- Conclusion
Conclusion

- Formulated interactive semantic parsing for If-Then recipes with HRL
- Improved parsing accuracy without asking user many questions
- Generalizable to other semantic parsing tasks (beyond If-Then recipes) with human-machine interaction/collaboration
Thanks! Questions?