
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/220398175

SOPA: Selecting the Optimal Caching Policy Adaptively

Article in ACM Transactions on Storage · July 2010

DOI: 10.1145/1807060.1807064 · Source: DBLP

CITATIONS

9
READS

80

5 authors, including:

Some of the authors of this publication are also working on these related projects:

Approxiamte Query Processing over Big Data Streams View project

Accelerate Latent Dirichlet Allocation on GPUs View project

Guangyan Zhang

Tsinghua University

33 PUBLICATIONS 490 CITATIONS

SEE PROFILE

Wei Xue

Tsinghua University

125 PUBLICATIONS 1,738 CITATIONS

SEE PROFILE

All content following this page was uploaded by Wei Xue on 07 March 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/220398175_SOPA_Selecting_the_Optimal_Caching_Policy_Adaptively?enrichId=rgreq-05c62b28b2a720bcaa33e02a05056989-XXX&enrichSource=Y292ZXJQYWdlOzIyMDM5ODE3NTtBUzoxMDM0ODkzNDY3MzYxNDhAMTQwMTY4NTE5MTk5OA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/220398175_SOPA_Selecting_the_Optimal_Caching_Policy_Adaptively?enrichId=rgreq-05c62b28b2a720bcaa33e02a05056989-XXX&enrichSource=Y292ZXJQYWdlOzIyMDM5ODE3NTtBUzoxMDM0ODkzNDY3MzYxNDhAMTQwMTY4NTE5MTk5OA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Approxiamte-Query-Processing-over-Big-Data-Streams?enrichId=rgreq-05c62b28b2a720bcaa33e02a05056989-XXX&enrichSource=Y292ZXJQYWdlOzIyMDM5ODE3NTtBUzoxMDM0ODkzNDY3MzYxNDhAMTQwMTY4NTE5MTk5OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Accelerate-Latent-Dirichlet-Allocation-on-GPUs?enrichId=rgreq-05c62b28b2a720bcaa33e02a05056989-XXX&enrichSource=Y292ZXJQYWdlOzIyMDM5ODE3NTtBUzoxMDM0ODkzNDY3MzYxNDhAMTQwMTY4NTE5MTk5OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-05c62b28b2a720bcaa33e02a05056989-XXX&enrichSource=Y292ZXJQYWdlOzIyMDM5ODE3NTtBUzoxMDM0ODkzNDY3MzYxNDhAMTQwMTY4NTE5MTk5OA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Guangyan-Zhang?enrichId=rgreq-05c62b28b2a720bcaa33e02a05056989-XXX&enrichSource=Y292ZXJQYWdlOzIyMDM5ODE3NTtBUzoxMDM0ODkzNDY3MzYxNDhAMTQwMTY4NTE5MTk5OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Guangyan-Zhang?enrichId=rgreq-05c62b28b2a720bcaa33e02a05056989-XXX&enrichSource=Y292ZXJQYWdlOzIyMDM5ODE3NTtBUzoxMDM0ODkzNDY3MzYxNDhAMTQwMTY4NTE5MTk5OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Tsinghua-University?enrichId=rgreq-05c62b28b2a720bcaa33e02a05056989-XXX&enrichSource=Y292ZXJQYWdlOzIyMDM5ODE3NTtBUzoxMDM0ODkzNDY3MzYxNDhAMTQwMTY4NTE5MTk5OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Guangyan-Zhang?enrichId=rgreq-05c62b28b2a720bcaa33e02a05056989-XXX&enrichSource=Y292ZXJQYWdlOzIyMDM5ODE3NTtBUzoxMDM0ODkzNDY3MzYxNDhAMTQwMTY4NTE5MTk5OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wei-Xue-12?enrichId=rgreq-05c62b28b2a720bcaa33e02a05056989-XXX&enrichSource=Y292ZXJQYWdlOzIyMDM5ODE3NTtBUzoxMDM0ODkzNDY3MzYxNDhAMTQwMTY4NTE5MTk5OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wei-Xue-12?enrichId=rgreq-05c62b28b2a720bcaa33e02a05056989-XXX&enrichSource=Y292ZXJQYWdlOzIyMDM5ODE3NTtBUzoxMDM0ODkzNDY3MzYxNDhAMTQwMTY4NTE5MTk5OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Tsinghua-University?enrichId=rgreq-05c62b28b2a720bcaa33e02a05056989-XXX&enrichSource=Y292ZXJQYWdlOzIyMDM5ODE3NTtBUzoxMDM0ODkzNDY3MzYxNDhAMTQwMTY4NTE5MTk5OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wei-Xue-12?enrichId=rgreq-05c62b28b2a720bcaa33e02a05056989-XXX&enrichSource=Y292ZXJQYWdlOzIyMDM5ODE3NTtBUzoxMDM0ODkzNDY3MzYxNDhAMTQwMTY4NTE5MTk5OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wei-Xue-12?enrichId=rgreq-05c62b28b2a720bcaa33e02a05056989-XXX&enrichSource=Y292ZXJQYWdlOzIyMDM5ODE3NTtBUzoxMDM0ODkzNDY3MzYxNDhAMTQwMTY4NTE5MTk5OA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

7

SOPA: Selecting the Optimal Caching
Policy Adaptively

YANG WANG, JIWU SHU, GUANGYAN ZHANG, WEI XUE, and WEIMIN ZHENG
Tsinghua University

With the development of storage technology and applications, new caching policies are continu-
ously being introduced. It becomes increasingly important for storage systems to be able to select
the matched caching policy dynamically under varying workloads. This article proposes SOPA, a
cache framework to adaptively select the matched policy and perform policy switches in storage
systems. SOPA encapsulates the functions of a caching policy into a module, and enables online
policy switching by policy reconstruction. SOPA then selects the policy matched with the work-
load dynamically by collecting and analyzing access traces. To reduce the decision-making cost,
SOPA proposes an asynchronous decision making process. The simulation experiments show that
no single caching policy performed well under all of the different workloads. With SOPA, a stor-
age system could select the appropriate policy for different workloads. The real-system evaluation
results show that SOPA reduced the average response time by up to 20.3% and 11.9% compared
with LRU and ARC, respectively.

Categories and Subject Descriptors: D.4.2 [Operating Systems]: Storage Management; H.3.2
[Information Storage and Retrieval]: Information Storage

General Terms: Algorithms, Performance, Design

Additional Key Words and Phrases: Caching policies, policy adaptation, policy switch

ACM Reference Format:
Wang, Y., Shu, J., Zhang, G., Xue, W., and Zheng, W. 2010. SOPA: Selecting the optimal caching
policy adaptively. ACM Trans. Storage 6, 2, Article 7 (July 2010), 18 pages.
DOI = 10.1145/1807060.1807064 http://doi.acm.org/10.1145/1807060.1807064

1. INTRODUCTION

Caches can greatly improve the overall performance of storage systems. They
are widely used in file systems [Nelson et al. 1998], database systems [Li et al.

This research was supported by the National Natural Science Foundation of China under Grant
No. 10576018, the National Grand Fundamental Research 973 Program of China under Grant No.
2004CB318205, the Program for New Century Excellent Talents in University (NCET-05-0067),
and the National High-Tech Research and Development Plan of China (No. 2009AA01A403).
Authors’ addresses: Department of Computer Science and Technology, Tsinghua University, 100084
Beijing, P. R. China; Jiwu Shu; email: shujw@tsinghua.edu.cn.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2010 ACM 1553-3077/2010/07-ART7 $10.00
DOI 10.1145/1807060.1807064 http://doi.acm.org/10.1145/1807060.1807064

ACM Transactions on Storage, Vol. 6, No. 2, Article 7, Publication date: July 2010.

7:2 • Y. Wang et al.

2005; Chou and Dewitt 1985], RAID controllers [Menon 1994], disks [Menon
and Hartung 1988], Web servers [Cao and Irani 1997], and so on. With the
development of storage architecture and applications, new caching policies are
continuously being designed to suit the different needs of applications, such
as MQ [Zhou and Philbin 2001], ARC [Megiddo and Modha 2003], SANBoost
[Ari et al. 2004], DULO [Jiang et al. 2005], and WOW [Gill and Modha 2005].
Some of them are adaptive, such as MQ and ARC, while others try to make
optimizations for specific workloads, for example, DULO targets achievement
of a high hit ratio under workloads with many sequential accesses.

In fact, as a result of the evolving and changing access patterns, no single pol-
icy is able to adapt to all workloads [Ari et al. 2004]. This makes it increasingly
important for cache systems to be capable of selecting the matched caching
policy dynamically. In most of existing systems, caching policies are tightly
coupled with the cache systems, making it hard to perform policy switches.

In this article, we propose SOPA, a framework that evaluates all avail-
able candidate policies according to the change of workloads, selects the
matched one, and performs a policy switch online. SOPA uses the following two
techniques.

—The modularization of caching policies and policy switch. Cache systems
call the functions of the various caching policy modules through a unified
interface, and they do not depend on the implementation details of these
policies. By policy reconstruction, SOPA enables online switching between
any two caching policies.

—The online policy selection. SOPA can select the matched caching policy dy-
namically for a varying workload. It collects the access trace and selects the
matched policy through trace analyzing.

SOPA was evaluated via two experiments on a simulation system and on a
real system. The simulation results show that a single caching policy could not
perform well under all of the different workloads, while SOPA could select the
matched policy for each workload and achieve a satisfactory hit rate. The real
system evaluation shows that SOPA reduced the average response time by up
to 20.3% and 11.9% compared with LRU and ARC, respectively.

This article is organized as follows. Section 2 briefly reviews the related
work. In Section 3, the architecture of SOPA is introduced. In Sections 4 and 5,
we present the evaluation results on the simulation and real systems. Finally
some conclusions and comments on future work are given in Section 6.

2. RELATED WORK

With the development of storage systems, various caching policies have been
introduced. LRU and LFU are the earliest caching policies. Later policies take
into account both recency and frequency factors, such as LRU-k [O’Neal et
al. 1993], 2Q [Johnson and Shasha 1994], FBR [Robinson and Devarakonda
1990], LRFU [Lee et al. 2001], LIRS [Jiang and Zhang 2002], MQ [Zhou and
Philbin 2001], ARC [Megiddo and Modha 2003] and CAR [Bansal and Modha
2004]. These policies mainly try to raise the hit rate and require no additional

ACM Transactions on Storage, Vol. 6, No. 2, Article 7, Publication date: July 2010.

SOPA: Selecting the Optimal Caching Policy Adaptively • 7:3

information from the cache system. Some policies also take into account other
effects, or try to use some additional information from the cache system.
SANBoost [Ari et al. 2004], WOW [Gill and Modha 2005] and Karma [Yadgar
and Factor 2007] are such examples.

It should be pointed out that, since access patterns have always been evolving
and changing, no single policy is able to adapt to all workloads [Ari et al. 2002];
in addition, existing policies may also continuosly be replaced by new ones.
Therefore, it is necessary to employ a method to match the proper caching
policy to a specific workload.

Some caching policies have parameters tunable for performance. By tuning
these parameters, the policies could deal with a wide variety of workloads. For
some of them, the tuning of parameters is done manually by the administrator.
For example, the Correlated Reference Period in LRU-k, Kin and Kout in 2Q, Lhir

in LIRS, λ in LRFU, and Fnew and Fold in FBR, are parameters that are tuned
by rule of thumb. The designers of these policies give some suggestions about
the tuning of these parameters, but it requires the administrators to be very
experienced and it is also difficult to change these parameters online.

Adaptive caching policies can tune the parameters online without interfer-
ence by the administrators. MQ and ARC are two typical adaptive caching
policies. The lifetime parameter of MQ is adaptive. MQ uses several queues to
identify the priority of a cache block and uses lifetime to determine how long
a cache block can stay in a queue. MQ recommends using the peak temporal
distance as the value of lifetime; this distance can be dynamically estimated
for the current workload. ARC uses two queues, T1 and T2, to balance recency
and frequency. The sizes of T1 and T2 are adaptive. T1 contains blocks that
have been accessed only once recently, while T2 contains blocks that have been
accessed at least twice recently. Two history lists, B1 and B2, are kept for T1

and T2, respectively. When ARC finds that an access hits B1, it will increase
the size of T1 and decrease the size of T2. When an access hits B2, ARC will
increase the size of T2 and decrease the size of T1. In this way, ARC can au-
tomatically tune the size of T1 and T2 according to the characteristics of the
workload. Adaptive policies can adapt to a wide range of workloads without the
interference of users, but such adaptation is still limited to the parameters of
the policy. In most cases, the adaptive policies cannot behave as well as the
ones most matched with the workload.

ACME (Adaptive Caching using Multiple Experts) [Ari et al. 2002] combines
several policies to reduce the risk of a wrong cache replacement. It simulates
several policies and assigns a weight to each. Each policy votes on the blocks
it wants to keep, assigning higher values to blocks that it believes are more
worth keeping. The block with the lowest sum of weighted votes is selected as
the replacement victim. In ACME, the weights of the policies could be adjusted
by a machine learning method. The weakness of ACME is that it introduces a
large latency and computation overhead. Furthermore, ACME has to maintain
several policies simultaneously, which takes up more memory space.

Salmon et al. [2003] introduce a policy decision-making method for disk sys-
tems. Although it is suggested that the method can also be used for cache
systems, there is no implementation and verification. Different from disk

ACM Transactions on Storage, Vol. 6, No. 2, Article 7, Publication date: July 2010.

7:4 • Y. Wang et al.

Fig. 1. Architecture of SOPA. CP-Mod stands for caching policy module. 1. The Trace Collector
collects I/O traces; 2. the Trace Analyzer decides the optimal policy; 3. the cache system performs
a policy switch.

systems, cache systems have stricter requirements of latency and efficiency.
It is difficult for this method to satisfy these requirements.

Instead of introducing a new policy, SOPA makes better use of existing ones.
Compared with intrapolicy adaptation, interpolicy adaptation can adapt to a
wider range of workloads, but it usually has a larger overhead. SOPA selects
the matched policy from a large candidate set, so it is an interpolicy adaptation.
Different from ACME, SOPA selects the matched policy, but not the optimal
victim block, so the overhead is reduced. In most cases, the overhead of SOPA
is negligible.

3. THE ARCHITECTURE OF SOPA

The architecture of SOPA is depicted in Figure 1. SOPA consists of three compo-
nents: Caching policy Modules (CP-Mods), Trace Collector, and Trace Analyzer.
Every CP-Mod encapsulates the functions of a caching policy and exports these
functions to other modules, which are called caching policy users (CP-Users),
through a fixed interface. By policy reconstruction, the CP-User can dynami-
cally switch between any two CP-Mods. The cache system itself is a CP-User
and its caching policy is determined by the currently-used CP-Mod, which is
called an “active CP-Mod.” The cache system can select a candidate CP-Mod
and switch the active CP-Mod. It can also deploy a new policy by adding a new
CP-Mod. The Trace Collector records I/O traces when policy decision-making
is needed. It first stores the I/O traces in a memory trace pool, and when
the pool is full, it moves them to a file on the disk and empties the memory
pool. The Trace Analyzer is also a CP-User. It selects the matched policy for
the cache system when enough traces are collected. The Trace Analyzer re-
plays the access trace collected by the Trace Collector with all the candidate
policies. Then it selects the optimal one and informs the cache system of the
result.

ACM Transactions on Storage, Vol. 6, No. 2, Article 7, Publication date: July 2010.

SOPA: Selecting the Optimal Caching Policy Adaptively • 7:5

This framework has several advantages. First, the cache system can perform
policy switching online; thus it can adapt to the varying workloads. Second, new
polices can be deployed dynamically; thus the future caching policy can also be
utilized. Third, when no policy decision is performed, SOPA introduces only a
small CPU overhead and memory cost.

3.1 Modularization of Caching policies

The key idea of the modularization of caching policies is as follows. The CP-
Mod implements a group of interface functions, and registers these functions
to the CP-User; then the CP-User calls the functions of the CP-Mod through
this interface. The modularization of caching policies separates the CP-User
from the implementation details of the CP-Mod; thus supporting online policy
switching.

After studying the well-received caching policies, we designed the interface
and metadata organization for the modularization of caching policies. In this
article, metadata refers to the data used to describe the cache system and the
caching policy. The design complies with three rationales.

(1) Efficiency. SOPA should not add much overhead to the execution of the
caching policies.

(2) Function encapsulation. The CP-Mod should only deal with the logic of the
caching policy, without the need of considering the other functions of the
CP-User. This allows the policy designers to focus on their policies and
simplifies their work.

(3) Metadata separation. The CP-User should not maintain the policy-specific
metadata, which should be managed by the CP-Mod. This rationale enables
the deployment of new CP-Mods and reduces the memory requirement.

3.1.1 Interface and Metadata Organization. To design an interface and
metadata that are suitable for a wide range of policies, we have studied the
design and implementation of various policies, including LRU, LFU, LRU-k,
2Q, FBR, LRFU, LIRS, MQ, ARC, CAR, DULO, and SANBoost. The design is
depicted in Figure 2. An interface is composed of three groups of functions,
and the CP-Mod registers the implementation of the interface to the CP-User.
There are two types of metadata, universal metadata and policy metadata.
The universal metadata is allocated and maintained by the CP-User and has a
pointer to the policy metadata, which is managed by the CP-Mod. The CP-User
does not need to know about the policy metadata, which satisfies the rationale
of metadata separation.

The interface of the CP-Mod is composed of three groups of functions;
(1) initialization and release functions, including the initialize function to allo-
cate and initialize the policy metadata and the release function to release the
policy metadata; (2) cache access processing functions, including the blk hit
function to process a cache block hit event, the blk new function to process
a cache block insertion event, and the blk find victim function to process the
cache block replacement event—he cache system will call these functions when
the corresponding cache event occurs; (3) cache access preprocessing functions,

ACM Transactions on Storage, Vol. 6, No. 2, Article 7, Publication date: July 2010.

7:6 • Y. Wang et al.

Fig. 2. Design of the interface and the metadata organization. The cache directory entry (CDE)
carries the information describing a cache block.

including the pre blk access, pre blk hit, pre blk new, and pre blk find victim
functions to preprocess the corresponding cache events.

Generally speaking, on-demand caching policies (i.e., every missed block
is migrated into the cache) only require the implementation of the first two
groups. The other caching policies such as SANBoost or prefetching policy may
require the implementation of all three.

The design of the interface has several advantages; (1) SOPA can easily
make use of existing caching policies. They can be brought into SOPA with a
little adjustment; (2) The CP-Mod does not need to deal with the details of the
cache system, which satisfies the rationale of function separation.

The metadata organization is required to satisfy the rationale of metadata
separation and it should also guarantee the efficiency of policy execution. SOPA
takes both requirements into account. A normal cache implementation uses a
specific data structure to describe the information of a cache block, which we
call the Cache Directory Entry (CDE) structure [Robinson and Devarakonda
1990]. Some other data structures are used to look up the CDEs or to implement
the caching policy, such as hashtable [Robinson and Devarakonda 1990], LRU
list [O’Neal et al. 1993; Ari et al. 2002; Johnson and Shasha 1994; Zhou and
Philbin 2001; Megiddo and Modha 2003], history records [Zhou and Philbin
2001; Megiddo and Modha 2003], and so on. As shown in Figure 2, SOPA
divides CDEs into Universal CDEs and Policy CDEs, and also divides the
other metadata into two parts. SOPA recombines them into universal metadata
and policy metadata. The universal metadata is maintained by the CP-User,
and policy metadata is allocated and managed by the CP-Mod. The CP-Users
need not to know the organization of the policy metadata, which satisfies the
rationale of metadata separation. To improve the efficiency of metadata lookup,
SOPA adds a pointer in each Universal CDE, which points to its corresponding
Policy CDE. Additionally, SOPA keeps the most frequently and widely used
policy metadata in the Universal CDE to improve the accessing efficiency.

ACM Transactions on Storage, Vol. 6, No. 2, Article 7, Publication date: July 2010.

SOPA: Selecting the Optimal Caching Policy Adaptively • 7:7

SOPA provides a balance between the rationale of efficiency and the rationale
of metadata separation.

3.1.2 Caching Policy Switch. The basic process of policy switching is as
follows. The CP-User releases the current caching policy, then registers and
initializes the new caching policy. The main problem is that after a period of
time of running, some blocks have been migrated into the cache, but after the
policy switching, the new policy does not have the record. A simple solution is to
empty the cache before performing the switching. However, this has two main
drawbacks. First, all the dirty blocks have to be written to the disks, which
brings a large latency. Second, the cache has to be rewarmed, which reduces
the hit rate and brings an extra cost of block remigration.

SOPA initializes the policy metadata according to the existing cache blocks
to reflect the current status of cache. It does not require any disk accesses
or cache block movements. Furthermore, SOPA can provide warm-up for the
new caching policy and avoids the costs of block remigration. As a result of
the rationale of metadata separation, the CP-User does not understand the
organization of the policy metadata, and thus cannot build up the policy meta-
data directly. To solve this problem, the CP-User keeps an LRU History List
(LHL) for the existing cache blocks. When a new block is migrated into the
cache or when a block is hit, this block is moved to the tail of the LHL (just the
adjustment of a pointer, requiring no data movement); when a block replace-
ment occurs, the victim block is removed from the LHL, and the new block is
moved to the tail of the LHL. In this way, the CP-User keeps an access his-
tory for the existing cache blocks in an LRU order. When a policy switching is
performed, the CP-User calls the blk new function of the new CP-Mod for each
LHL record in order. In this way, the CP-Mod can reconstruct its own policy
metadata indirectly through the blk new interface function. The policy recon-
struction does not require the CP-User to understand the policy metadata and
can be used in switching between any two CP-Mods. The cost of this method is
that an LRU list entry has to be added to each Universal CDE to maintain the
LHL.

3.2 Policy Decision-Making

Policy decision-making is used to select the matched policy. The process consists
of three steps. First, the Trace Collector records the I/O traces. Second, when
enough traces are collected, the Trace Analyzer replays these I/O traces with all
the candidate caching policies and selects the best matched CP-Mod. Finally, a
policy switch is performed if the Trace Analyzer finds that the Active CP-Mod
is not the optimal one. The I/O traces are deleted after each decision process.

Figure 3 depicts the decision process. Tc is the time for trace collecting, Ta

is the time for trace analyzing and Tr is the time for normal running without
additional operations. In most cases, Ta << Tc << Tr, so this overhead will not
have a heavy impact on the cache system. Typically, replaying 1M accesses for
one policy takes only tens of seconds on a modern CPU.

To make a good and quick decision, SOPA introduces multi-round decisions.
When the hit ratio of the cache system drops greatly, which means that the

ACM Transactions on Storage, Vol. 6, No. 2, Article 7, Publication date: July 2010.

7:8 • Y. Wang et al.

Fig. 3. The decision-making process.

workload has changed greatly and the last decision result may not be matched
any more, a new decision process will restart.

One major problem of the decision process is how to determine the value of
Tc. If Tc is set too small, the traces collected may not have enough information
about the workload and the decision process will not achieve good results. If Tc

is too long, the trace collecting process will introduce more overhead. To deal
with this problem, SOPA introduces multi-round decisions to ensure the quality
of the decision with limited Tc. When a fixed number of traces is collected, the
Trace Analyzer replays these traces and makes a decision, and then the Trace
Collector continues to collect traces for the Trace Analyzer for another round
of decision. The decision process does not stop until two consecutive rounds
of decisions reach the same result. Empirically, we found that in each round,
collecting one million block requests is enough, and normally two to four rounds
of decisions can succeed in reaching the final decision.

The Trace Analyzer requires a criterion to determine which policy is optimal
among the current set of candidate policies. The hit rate is the most widely used
criterion (used in LRU-k, 2Q, FBR, LRFU, LIRS, MQ, ARC, CAR, etc). Other
criteria, such as the hit density (in SANBoost) are also used in practice. In
SOPA, the total cost of all operations in policy adaption is used as the criterion
to evaluate the candidate caching policies.

Call = Chit × Nhit + Cmigration × Nmigration + Cdirect × Ndirect (1)

C is the average cost of the operation specified as the subscript, and N
is the number of operations executed. The subscript “hit” stands for a cache hit.
The subscript “migration” stands for a migration of data from the slow device
to the fast device. The subscript “direct” stands for an access to the slow device.
One typical scenario of a direct operation is as follows. When a cache miss
appears, the slow device is accessed directly. The Trace Analyzer selects the
policy with the minimum Call.

For on-demand caches, since every missed block is migrated into the cache,
Ndirect is zero, so we have:

Call = Chit × Nhit + Cmigration × (Nall − Nhit)

= Nall × [
Chit × h + Cmigration × (1 − h)

]
h = Nhit/Nall. (2)

Since Chit << Cmigration and Nall is a fixed number, the larger the h (hit
rate) is, the smaller the Call is. So for on-demand caches, Call is equivalent to

ACM Transactions on Storage, Vol. 6, No. 2, Article 7, Publication date: July 2010.

SOPA: Selecting the Optimal Caching Policy Adaptively • 7:9

the hit rate. For caching policies not only based on hit rate like SANBoost,
Ndirect is not zero, and Call can evaluate these policies more precisely. Call is
compatible with the most widely used hit rate criterion. It can also describe
various caching policies. So SOPA can be applied to a wide range of cache
systems.

The values of C depend on the cache system. In the current version of SOPA,
they are set manually. In Chen et al. [2005], the latencies of different storage
systems are measured and they can be used as the values of C. Some tools such
as lmbench [Mcvoy and Staelin 1996] can measure the bandwidth and latency
of the disks and memories, which can also help the setting of C. Improving the
Call expression (for example to distinguish read/write or sequential/random
operations) and automatically collecting the required parameters are not in
the scope of this article.

The number of candidate policies will increase with the deployment of the
new caching policies, and this will add work to the trace analyzing process,
so less frequently used policies should be dropped. In SOPA, the usage rate

time as Active CP-Mod
elapsed time since deployed is used to evaluate each policy. When the number of candi-
date policies goes beyond a threshold, SOPA drops the policy with the lowest
usage rate.

4. SIMULATION EVALUATION

We implemented a simulator for the evaluation. We simulated four kinds of
representative workloads and observed whether SOPA could correctly select
the optimal policy.

4.1 Traces and Caching policies

The traces we used include two SPC-1 Financial traces (F1, F2), three SPC-1
Websearch traces (W1-W3) [SPC-1 traces], one Cello99 trace (C1) [Ruemmler
and Wilkes 1993; HP traces], and one TPC-C trace (T1) [TPC-C trace].

SPC-1 Financial traces contain two I/O traces (F1, F2) from OLTP appli-
cations running at two large financial institutions. F1 contains 5.3 million
references and accesses 17.2 GB of data in 12.1 hours. F2 contains 3.7 million
references and accesses 8.4 GB of data in 11.4 hours.

SPC-1 Websearch traces contain three I/O traces (W1-W3) from a popular
search engine. W1 contains 1.1 million references and accesses 15.2 GB of data
in 0.88 hours. W2 contains 3 million references and accesses 43.0 GB of data in
2.5 hours. W3 contains 4.3 million references and accesses 62.6 GB of data in
83.0 hours (99.98% of them are in the first 6.3 hours).

The Cello99 trace is a low-level disk I/O trace collected on an HP UNIX
server with 2 GB of memory [Chen et al. 2003]. We use a one-week trace (C1)
between 12/01/1999 and 12/07/1999. C1 contains 43 million references and
accesses 350.8 GB of data in a week.

TPC-C contains a disk trace (T1) of the TPC-C database benchmark with
20 warehouses. The client ran 20 iterations for Postgres 7.1.2. It was collected
with DTB v1.1. T1 contains 10 million references and accesses 438.4 GB of data
in 14.5 hours.

ACM Transactions on Storage, Vol. 6, No. 2, Article 7, Publication date: July 2010.

7:10 • Y. Wang et al.

Fig. 4. Fluctuation of the hit ratio on W3, switching from LRU to ARC at time 5. Cache size was
4G.

LRU, 2Q, MQ, ARC, and LIRS were used in our evaluation, since they are all
hit ratio-based general-purpose policies and require no additional information
from the cache system. LRU-k and LRFU are not used because of their large
overhead [Megiddo and Modha 2003]. Nine caching policies were selected as
candidates, including the same policy with different parameters (cache con-
tains c blocks): LRU, ARC, MQ (with 8 queues and 4c history records), 2Q1 (Kin

is 0.2c, Kout is 0.5c), 2Q2 (Kin is 0.3c, Kout is 0.5c), LIRS1 (Lhir is 0.01c), LIRS2

(Lhir is 0.1c), LIRS3 (Lhir is 0.2c), and LIRS4 (Lhir is 0.3c). These policies were
all implemented according to the information from the publication. The param-
eters of these policies used in the experiments were all suggested or used by
the authors of the policies in the published articles. Without loss of generality,
the initial policy of SOPA was ARC in the evaluation.

These evaluations ran on a machine with four Xeon 700MHz CPUs and
block size is 4 KB in all tests. Virtual time, which is the number of blocks
requested, was used in this section to depict the variation of the hit ratio in the
process.

4.2 The Process of Policy Switching

First, we observed the fluctuation of the hit ratio in the process of policy switch-
ing. The LRU policy was first used for trace W3, and it was switched to the new
policy, ARC, at virtual time 5 (x106). Here, the virtual time is denoted by the
number of I/O operations. The fluctuation of the hit ratio is shown in Figure 4.

Figure 4 depicts the fluctuation of hit ratio with time. After the policy switch-
ing was performed at time 5, the hit ratio was retained between times 5 and 6.
From time 7, the hit ratio of the new policy overcame that of the original LRU
policy. This reveals that the old policy can be switched to a new one smoothly,
without an obvious performance penalty.

ACM Transactions on Storage, Vol. 6, No. 2, Article 7, Publication date: July 2010.

SOPA: Selecting the Optimal Caching Policy Adaptively • 7:11

Table I. Hit Ratio of Different Policies on Different Traces. Underlined Numbers Designate the
Highest Hit Ratio Achieved by a Single Policy

Trace LRU ARC MQ 2Q LIRS SOPA
0.2 0.3 0.01 0.1 0.2 0.3 Selected Policy

SPC-1 Financial
F1,4M 66.4 66.4 67.3 65 66.1 57.6 65.6 66.2 66.4 67.2 MQ
F1,8M 68.3 68.3 68.9 68.5 69.1 62.4 68 68.2 68.2 68.7 2Q(0.3)
F1,16M 70.1 70.2 70.3 71 71.4 67.1 70 70.1 70.1 71 2Q(0.3)
F1,32M 71.8 72 72 72.7 72.9 70.6 71.9 71.9 71.9 72.7 2Q(0.3)
F1,64M 73.2 73.3 73.2 73.8 74 72.6 73.2 73.3 73.3 73.3 LIRS(0.3)
F2,4M 53.5 54.2 56.5 56.1 56.1 49.6 53.4 54 54.1 56.1 MQ
F2,8M 61.9 62.3 64.3 64.6 64.5 59.1 61.9 62.1 62.2 64.1 2Q(0.3)
F2,16M 71.2 70.8 72.3 73 73.2 68.5 70.3 70.7 70.9 72.7 2Q(0.3)
F2,32M 78.2 77.7 78.6 80.1 80.1 76 77.5 78.1 78.3 79.5 2Q(0.2)
F2,64M 83.2 83.1 83.3 84.6 84.5 81.5 83.3 83.5 83.5 84.2 2Q(0.2)

SPC-1 Websearch
W1,1G 0.3 0.7 5.4 1.3 1.3 13.2 12.2 11.1 10 10.5 LIRS(0.01)
W1,2G 11.2 20.6 17.9 19.9 18.7 30.8 28.8 26.5 24.1 27.5 LIRS(0.01)
W1,4G 48.9 50.7 49.9 44.2 44.2 53.5 51.7 50.6 50.1 51.6 LIRS(0.01)
W2,1G 0.4 2 12.2 4.2 4.2 14.8 13.7 12.5 11.1 13.7 LIRS(0.01)
W2,2G 12.5 30.2 27.3 29 25 35.1 32.9 30.5 27.7 33.8 LIRS(0.01)
W2,4G 57.5 61.6 61.2 57.9 56.9 65.4 62.9 61.4 60.9 64.6 LIRS(0.01)
W3,1G 0.4 2.9 15.7 5.8 5.8 15.2 14 12.7 11.2 14.5 LIRS(0.01)
W3,2G 11.9 31.5 31.5 30.8 26.2 36.2 33.9 31.3 28.3 35.4 LIRS(0.01)
W3,4G 58.7 62.8 64.6 60.3 58.8 67.5 65 63.3 62.7 67 LIRS(0.01)

Cello99
C1,4M 34.8 36.5 36.9 38.3 38.2 25.5 36.3 36.3 36.2 38.2 2Q(0.2,0.3)
C1,8M 37.3 38.7 38.7 40.2 40.2 37.4 38.5 38.6 38.5 40.1 2Q(0.2,0.3)
C1,16M 40.4 41.3 41.3 42.7 42.7 40.4 40.9 40.9 41 42.5 2Q(0.3), LIRS(0.1), ARC
C1,32M 44.4 44.9 44.8 45.4 45.6 42.9 43.4 43.6 43.8 45.4 2Q(0.3), LIRS(0.2), ARC
C1,64M 48.8 49 49 49.4 49.8 45.9 46.6 47.1 47.4 49.2 ARC, 2Q(0.3)
C1,128M 53 53 53.1 53.7 54.1 49.2 50.4 51.1 51.7 53.3 MQ, 2Q(0.2)
C1,256M 56.2 56.2 56.2 57.2 57.6 52.4 54.2 55.3 55.7 56.2 MQ, LIRS(0.3)
C1,512M 59 59.2 59 60.4 60.7 55.9 58.3 59 59.2 59.1 LRU, LIRS(0.2)
C1,1G 61.6 61.8 61.6 63.5 63.7 59.3 61.8 62.1 62.2 61.7 LRU, ARC

TPC-C
T1,128M 5.2 12.5 5.8 7.4 7.4 19.6 18.3 16.8 15.4 19.5 ARC, LIRS(0.01)
T1,256M 5.4 19.5 19.6 5.4 5.4 34.3 31.7 28.8 25.8 33.9 ARC, LIRS(0.01)
T1,512M 9.3 13.4 35.6 43.6 31.5 63.6 58.4 52.8 47.4 63.3 LIRS(0.01)
T1,1G 94 93.9 91.7 91.8 96 96 95.1 94.2 93.4 94.2 LIRS(0.2)
T1,2G 99.6 99.6 99.6 99.6 99.6 99.6 99.6 99.6 99.6 99.6 LRU

4.3 Simulation Results

In this section, we perform the simulation with all the traces in the on-demand
cache environment. The results of SOPA and other policies are compared in
Table I. Since for on-demand caches, Call is equivalent to the hit rate, hit rates
are used in this table. The highest hit rate achieved by a single policy was
underlined.

In the listed 19 cases of SPC-1 Financial and SPC-1 Websearch, where only
one decision was needed, SOPA selected the optimal policy in 16 cases and
selected the second optimal policy in 2 cases. In the Cello99 and TPC-C cases,

ACM Transactions on Storage, Vol. 6, No. 2, Article 7, Publication date: July 2010.

7:12 • Y. Wang et al.

Fig. 5. The variation of hit ratio with time on (W3, 4G).

Fig. 6. The variation of hit ratio with time on (T1, 256M).

where two or more decisions were needed, the hit rates of SOPA were also the
optimal ones.

This test shows that SOPA could correctly select the policy among the candi-
dates. Conversely, no single policy could behave satisfactorily on all the traces.
In our experiments, LIRS performs best on Websearch and TPC-C traces, 2Q
performs best on Cello and Financial traces, but they cannot perform equally
well on all the traces; and parameter tuning is also required.

Figure 5 takes a detailed view of one trace, W3. After the decision at time 2,
SOPA selected LIRS and performed the policy switch. Then its hit ratio went
beyond those of LRU, ARC, and MQ.

Figure 6 depicts the variation of hit ratio on T1. Since T1 is a trace with
varying characteristics, more decisions were needed. SOPA selected ARC in the

ACM Transactions on Storage, Vol. 6, No. 2, Article 7, Publication date: July 2010.

SOPA: Selecting the Optimal Caching Policy Adaptively • 7:13

Table II. Average Response Time (ms) of
Different Policies on W3

LRU ARC MQ SOPA
w3, IG 9.5 9.4 8.5 8.3
w3, 2G 8.3 6.9 6.6 6.6
w3, 3G 6.1 5.4 5.4 5.0

first decision, but after time 5, the hit ratio dropped and SOPA started a new
decision. This time, SOPA selected LIRS and went beyond the other policies.

5. REAL SYSTEM EVALUATION

We implemented a write-through cache system for an iSCSI target [UNH
project 2006]. SOPA was applied to this system and compared with two adaptive
policies, ARC and MQ. The target machine was equipped with a Xeon 2.8 GHz
CPU, 4 GB memory, and six Maxtor MaxLine Plus II 250 GB SATA disks. The
initiator machine was equipped with a Xeon 2.4 GHz CPU and 1 GB memory.
The target machines installed Linux 2.4.31 and the initiator machine installed
Windows 2003 and Microsoft iSCSI Initiator. Two machines were connected
through Gigabyte Ethernet. The cache block size was 4 KB in all experiments.
SPC-1 Websearch and TPC-C traces were used in this evaluation. SPC-1 Finan-
cial and Cello99 traces were not used since they require too many disks (more
than 20). Traces were played on the initiator machine through direct I/Os.

5.1 Results on Websearch Workload

In this experiment, trace W3 was played on the initiator machine. The cache
size was set to 1 G, 2 G, and 3 G respectively. Since the total length of W3 is
63 hours and 99.98% of the requests are in the first 6.3 hours, the last 0.02%
requests are dropped to save time. The average response times were shown in
Table II.

The evaluation results showed that on W3, SOPA could reduce the average
response time by up to 20.3% compared with LRU, up to 11.8% compared with
ARC, and up to 6.7% compared with MQ.

Figure 7 depicts the variation of average response time in the whole process.
In each figure, SOPA made the decision at the first and second points. It can
be observed that at the first two points, the average response times of different
policies were almost the same, since the warm-up process had not finished.
SOPA could successfully reduce the average response time after selecting an
appropriate policy.

5.2 TPC-C Workload

In this experiment, trace T1 was played on the initiator machine. The cache
size was set to 256 M and 512 M. The average response times were shown in
Table III.

The evaluation results showed that on T1, SOPA could reduce the average
response time by up to 13.6% compared with LRU, up to 11.9% compared with
ARC, and up to 10.5% compared with MQ.

ACM Transactions on Storage, Vol. 6, No. 2, Article 7, Publication date: July 2010.

7:14 • Y. Wang et al.

Fig. 7. The variation of average response time on (W3, 3G) and (W3, 1G). Each point is the
average response time of 200,000 requests. For example, point 2 is the average response time of
the 400,001st to the 600,000th requests.

Table III. Average Response Time (ms) of
Different Policies on T1

LRU ARC MQ SOPA
T1, 256M 6.5 6.3 6.5 6.1
T1, 512M 6.4 6.3 6.2 5.5

Figure 8 depicts the variation of average response time on T1. Similarly,
after the policy decision at the first point, SOPA could successfully reduce the
average response time.

In these two evaluations, LIRS was selected as the optimal policy. In fact,
LIRS “will work well for stable workloads drawn according to the IRM, but not
for those LRU-friendly workloads drawn according to the SDD” [Megiddo and
Modha 2003], and our simulation also showed that LIRS performed well on
Websearch and TPC-C traces, but not on Financial and Cello99 traces. Thus,

ACM Transactions on Storage, Vol. 6, No. 2, Article 7, Publication date: July 2010.

SOPA: Selecting the Optimal Caching Policy Adaptively • 7:15

Fig. 8. The variation of average response time on (T1, 512M). Each point is the average response
time of 500,000 requests.

it is not a policy that can be adaptive to many workloads. But SOPA could
overcome this drawback, since SOPA only selected LIRS when it was good for
the decision process.

These evaluations showed that by automatically choosing and switching
among multiple policies, SOPA could adapt to different workloads and achieve
lower average response time.

5.3 Overhead of Trace Collecting and Analyzing

In this section, we presented the overhead of the trace collecting and analyzing
process.

Figure 9 depicted the overhead of the first round of the decision process on
W3 and T1, where in Figures 7 and 8, this process was compressed into several
points. Since the initial policy of SOPA was ARC, the average response time
of SOPA and ARC at the same period of time were compared. In Figure 9, it
can be observed that the overhead of trace collecting was almost negligible.
Analyzing the trace was CPU-intensive work. On T1, where the workload was
light at the time of trace analyzing, the overhead of trace analyzing was also
negligible. On W3, where the workload was heavier, this process introduced a
large average response time at point 28. However, the time for trace analyzing
was very short, thus even a large average response time at a single point had
little influence on the overall performance. Compared with the benefit gained
by the decision-making, this overhead was worthwhile.

6. CONCLUSIONS AND FUTURE WORK

This article presents SOPA, a framework that can select the policy matched
with the current workload adaptively for a cache system. It encapsulates the
functions of a caching policy into a module, and by policy reconstruction, it
allows dynamic switching from one caching policy to another one as well as

ACM Transactions on Storage, Vol. 6, No. 2, Article 7, Publication date: July 2010.

7:16 • Y. Wang et al.

Fig. 9. The variation of average response time on (W3, 1G) and (T1, 256M). Each point is the
average response time of 1000 requests.

the online deployment of new caching policies. It can select a caching policy
matched with varying workloads.

The simulation evaluation showed that no single caching policy could per-
form well under all the different workloads. By choosing and switching among
multiple policies, SOPA could achieve hit rates higher than any single caching
policy. The real system evaluation on an IPSAN system shows that SOPA can
reduce the average response time by up to 20.3% compared with LRU and up
to 11.9% compared with ARC.

Our future work will focus on building a decision-making system based on
experience. The Trace Analyzer stores the past decision results as experience
and when a new workload comes, it can make a decision based on its experience.
This can shorten the decision-making time needed and reduce the overhead of
the trace analyzing.

ACM Transactions on Storage, Vol. 6, No. 2, Article 7, Publication date: July 2010.

SOPA: Selecting the Optimal Caching Policy Adaptively • 7:17

REFERENCES

ARI, I., AMER, A., GRAMARCY, R., MILLER, E., BRANDT, S., AND LONG, D. 2002. ACME: Adaptive
caching using multiple experts. In Proceedings of the Workshop on Distributed Data and Struc-
tures, Carleton Scientific, 2002.

ARI, I., GOTTWALS, M., AND HENZE, D. 2004. SANBoost: Automated SAN-Level caching in storage
area networks, In Proceedings of the International Conference on Autonomic Computing (ICAC).

BANSAL, S. AND MODHA, D. S. 2004. CAR: Clock with adaptive replacement. In Proceedings of the
USENIX File and. Storage Technologies Conference (FAST), 142–163.

CAO. P. AND IRANI, S. 1997. Cost-aware WWW proxy caching algorithms. In Proceedings of the
USENIX Symposium on Internet Technologies and Systems.

CHEN, Z., ZHOU, Y., AND LI, K. 2003. Eviction-based cache placement for storage caches. In
Proceedings of the USENIX Annual Technical Conference, 269–281.

CHEN, Z., ZHANG, Y., ZHOU, Y., SCOTT, H., AND SCHIEFER, B. 2005. Empirical evaluation of multi-
level buffer cache collaboration for storage systems. In Proceedings of the ACM SIGMETRICS
Conference on Measurement and Modeling of Computer Systems (SIGMETRICS), 2005.

CHOU, H. T. AND DEWITT, D. J. 1985. An evaluation of buffer management strategies for relational
database systems. In Proceedings of the VLDB Conference.

GILL, B. S. AND MODHA, D. S. 2005. WOW: Wise ordering for writes—combining spatial and
temporal locality in non-volatile caches. In Proceedings of the USENIX Conference on File and
Storage Technologies (FAST).

HP TRACES. http://tesla.hpl.hp.com/public software/
JIANG, S. AND ZHANG, X. 2002. LIRS: An efficient low inter-reference recency set replacement

policy to improve buffer cache performance. In Proceedings of the ACM SIGMETRICS Conference
on Measurement and Modeling of Computer Systems. 31–42.

JIANG. S., DING, X., CHEN, F., TAN, E., AND ZHANG. X. 2005. DULO: An effective buffer cache man-
agement scheme to exploit both temporal and spatial localities. In Proceedings of the USENIX
Conference on File and Storage Technologies (Fast).

JOHNSON, T. AND SHASHA, D. 1994. 2Q: A low overhead high performance buffer management
replacement algorithm,” In Proceedings of the VLDB Conference. 297–306.

LEE, D., CHOI, J., KIM, J. H., NOH, S. H., MIM, S. L., CHO, Y., AND KIM, C. S. 2001. LRFU: A spectrum
of policies that subsumes the least recently used and least frequently used policies. IEEE Trans.
Comput. 50, 12, 1352–1360.

LI, X., ABOULNAGA, A., SACHEDINA, A., SALEM, K., AND GAO, S. B. 2005. Second-tier cache man-
agement using write hints. In Proceedings of the 4th USENIX Conference on File and Storage
Technologies (FAST), 115–128.

MCVOY, L. AND STAELIN, C. 1996. lmbench: Portable tools for performance analysis. In Proceedings
of the USENIX Technical Conference. 279–295.

MEGIDDO, N. AND MODHA, D. S. 2003. ARC: A self-tuning, low overhead replacement cache.
In Proceedings of the USENIX File and Storage Technologies Conference (FAST), 115–
130.

MENON, J. 1994. Performance of RAID5 disk arrays with read and write caching. Distrib. Parall.
Datab. 2, 3, 261–293.

MENON, J. AND HARTUNG, M. 1988. The IBM 3990 disk cache. In Proceedings of the IEEE Computer
Society International COMPCON Conference.

NELSON, M. N., WELCH, B. B., AND OUSTERHOUT, J. K. 1998. Caching in the Sprite network file
system. ACM Trans. Comput. Syst. 6, 1, 134–154.

O’NEIL, E. J., O’NEIL, P. E., AND WEIKUM, G. 1993. The LRU-K page replacement algorithm for
database disk buffering. In Proceedings of the International Conference on Management of Data,
297–306.

ROBINSON, J. T. AND DEVARAKONDA, M. V. 1990. Data cache management using frequency-based
replacement. In Proceedings of the ACM SIGMETRIC Conference on Measuring and Modeling
of Computer Systems, 134–142

RUEMMLER, C. AND WILKES, J. 1993. A trace-driven analysis of disk working set sizes. Tech. rep.
HPL{OSR{93{23, Hewlett-Packard Laboratories, Palo Alto, CA, USA.

ACM Transactions on Storage, Vol. 6, No. 2, Article 7, Publication date: July 2010.

7:18 • Y. Wang et al.

SALMON, B., THERESKA, E., SOULES, C. A. N, AND GANGER, G. R. 2003. A two-tiered software archi-
tecture for automated tuning of disk layouts. In Proceedings of the Workshop on Algorithms and
Architectures for Self-Managing Systems.

SPC-1 TRACES. http://traces.cs.umass.edu/index.php/Storage/Storage
TPC-C TRACE. http://tds.cs.byu.edu/tds/tracelist.jsp?searchby=attribute&type=Disk+I%2FO&

length=All&platform=All&cache=All&pageNum=0&searchAction=Go&x=52&y=19
UNH PROJECT. 2006. http://unh-iscsi.sourceforge.net/
YADGAR, G. AND FACTOR, M. 2007. Karma: Know-it-all replacement for a multilevel cache. In

Proceedings of the USENIX File and Storage Technologies Conference (FAST).
ZHOU, Y. AND PHILBIN, J. F. 2001. The multi-queue replacement algorithm for second level buffer

caches. In Proceedings of the USENIX Annual Technical Conference. 91–104.

Received May 2010; revised May 2010; accepted May 2010

ACM Transactions on Storage, Vol. 6, No. 2, Article 7, Publication date: July 2010.

View publication statsView publication stats

https://www.researchgate.net/publication/220398175

