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Abstract
Silent Data Corruption (SDC) in processors can lead to vari-

ous application-level issues, such as incorrect calculations

and even data loss. Since traditional techniques are not effec-

tive in detecting processor SDCs, it is very hard to address

problems caused by SDCs. For the same reason, knowledge

about SDCs in the wild is limited.

In this paper, we conduct an extensive study on SDCs in a

large production CPU population, encompassing over one

million processors. In addition to collecting overall statis-

tics, we perform a detailed study to understand 1) whether

certain processor features are particularly vulnerable and

their potential impacts on applications; 2) the reproducibility

of SDCs and the triggering conditions (e.g., temperature)

of those less reproducible SDCs; and 3) the challenges and

opportunities to mitigate SDCs.

Inspired by the above observations, we design an effi-

cient SDC mitigation approach called Farron, which relies

on prioritized testing to detect highly reproducible SDCs and

temperature control to mitigate less reproducible SDCs. Our

experimental results indicate that Farron can achieve lower

overall overhead with better coverage of SDCs, compared to

the baseline used in Alibaba Cloud.

CCS Concepts: • Computer systems organization→ Re-
liability; Maintainability and maintenance; Processors and
memory architectures.
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1 Introduction
In recent years, CPU technology has achieved rapid develop-

ment with higher clock frequency andmore cores attached in

one processor. A classical assumption is that processors work

as designed and produce reliable computation results [38].

However, processor faults do occur in production environ-

ments [1, 46–48, 56]. Both the growing complexity of modern

CPUs and the increasing scale of cloud infrastructures have

increased the risk of processor faults.

These processor faults can lead to application-level errors,

which fall into two categories. One class of errors causes

crashes or exceptions promptly. The other class of errors can

introduce undesired data (e.g., incorrect calculation results

or even data loss) without being detected immediately. We

call the second class of errors caused by processor faults as

“silent data corruptions”, acronymized as SDCs.
CPU SDCs occur at a low but non-negligible frequency in

production. For example, a few processors in Alibaba Cloud

occasionally gave wrong checksum calculation results. Such

incorrect information misled the cloud application to con-

clude that request data was corrupted and thus triggered

repeated requests frequently, which impaired the overall

performance. SDCs also occur in Google Cloud [48]: a small

subset of their processors gavewrong results when executing

some rarely-used instructions. These errors made a large-

scale data-analysis application give wrong answers. Meta

also notices SDCs [46]: one machine occasionally misjudged

the file size to be zero due to wrong calculation, and caused

a database to lose files.

Data corruptions in storage and memory systems are well-

known to be dangerous and hard to detect and diagnose. CPU

SDCs are even more notorious, because the basic technique

to detect data corruptions in storage and memory systems

can hardly be applied to CPU instructions (e.g., how to know

that a computational instruction gives a wrong result?). As a

result, Meta shows SDCs can require months of engineering
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time to debug [46], and Alibaba Cloud once took several

weeks to debug a SDC.

Researchers have conducted studies on SDCs [4, 11, 15,

16, 33, 46–48, 50, 54], which fall into three categories: 1)

theoretically stating the existence of SDCs but not studying

concrete errors [8, 11, 16]; 2) studying the impacts and tol-

erance techniques of SDCs, through artificial fault injection

instead of naturally produced SDCs [10, 11, 23, 32, 36, 57];

3) providing brief data about CPU SDC cases in real world

but lacking detailed measurement and analysis about failure

rate, software symptoms, occurrence patterns, etc [46–48,

50–52]. To this end, the current knowledge about SDCs in the
wild is limited.

In this paper, we investigate SDCs in a large production CPU
population, encompassing over one million CPUs from hun-

dreds of clusters in 28 data centers across 14 countries. To the

best of our knowledge, this is the first work to quantitatively

assess and systematically analyze CPU SDC phenomena in a

large-scale production environment. The main contributions

of this paper can be summarized as follows:

• Assessing SDCs in a large-scale production environment: We

have conducted SDC testing on over one million proces-

sors over 32 months. In addition to providing the overall

statistics of failure rate, we further analyze how micro-

architecture, the timing of testing, etc., affect the failure

rate and whether these failures affect a single core or all

cores within the processor.

• Investigating software impacts of SDCs: Through this study,

we identify vulnerable features in the processors (e.g.,

cache consistency, floating-point computation, and vector

computation), and find that, not surprisingly, workloads

that extensively engage such vulnerable features are likely

to be affected. Moreover, we reveal the deficiency of exist-

ing failure models. For example, we find for floating point

calculations, SDCs are more likely to cause bitflips in the

fraction part, which only cause a small loss of accuracy due

to floating point encoding [17] and thus render existing

accuracy-based detection techniques less effective [33].

• Analyzing reproducibility of SDCs: We find that, on the one

hand, some SDCs are highly reproducible, which means,

without proper mitigation, they will manifest frequently

in production: this is confirmed by Alibaba Cloud’s in-

vestigation of production errors caused by SDCs. On the

other hand, some SDCs can only be triggered under spe-

cific conditions (e.g., temperature, workload stress). Such

observations motivate our exploration of new SDC miti-

gation strategies, as discussed next.

• Assessing current mitigation practices for SDCs: We iden-

tify a substantial design space for improving existing SDC

testing by prioritizing testcases and developing testcases

focused on multi-threading scenarios. Moreover, we dis-

cuss the challenges that SDCs present to fault-tolerance

techniques.

• Proposing a concrete approach for SDC mitigation. Inspired
by the above observations, we propose Farron, an efficient

SDC mitigation approach. It relies on regular testing to

identify those highly reproducible SDCs, and improves the

efficiency of this approach with testcase prioritization; it

controls the temperature of processors to minimize the

occurrences of those less reproducible SDCs; it can further

make a trade-off between these two approaches by assign-

ing longer testing time if a processor has to work under

a high temperature for long. Our evaluation shows that

Farron can protect applications from CPU SDCs, with both

higher SDC detection rate and lower overhead compared

to the baseline approach.

2 Motivation and Methodology
2.1 Target System
We study SDCs in Alibaba Cloud, which involves hundreds

of clusters deployed in 28 data centers worldwide. Alibaba

Cloud has provided a stable working environment for hard-

ware, with a strong focus on cooling, power distribution,

cable management and environmental monitoring, and envi-

ronment variations are controlled to be minimal.

Our study includes over one million processors deployed

since 2017. These processors are supplied by a well-known

international chip manufacturer. These processors cover a

wide range of micro-architectures in recent years, apply

the advanced lithographic technology, and widely use the

multi-core technology. We believe our processors are able to

represent the international mainstream.

2.2 SDC Examples in Production
Over time, Alibaba Cloud has occasionally observed servers

with a higher error rate compared to others. After extensive

debugging to identify the root cause, we find the problems

are due to processor defects. Here we present some examples.

In one case, a storage application frequently reported

checksum mismatch of the user data. After weeks of debug-

ging, we found that one processor in the fleet was faulty and

a checksum-calculation related instruction on the processor

gave wrong result intermittently.

In the second case, we also observed checksummismatches,

but our debugging revealed a different cause: A client thread

packed data and its checksum into a buffer, which was then

shared with a daemon thread. Due to defective cache coher-
ence, the daemon thread sometimes got inconsistent data,

incurring checksum mismatches.

In another case, a program sometimes triggered assertion

failures. We later found this is because the application used

a hash map to manage its metadata, and defective hashing
calculation in a faulty processor affected its metadata service.

These cases, particularly the concerns that some errors

may not be detected by checksums, and similar reports from

industry [46, 48] have motivated us to conduct this study.
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2.3 Toolchain
We use a toolchain provided by the chip manufacturer, which

is designed to detect SDCs related to cloud workloads. The

toolchain includes 633 testcases and a framework. The frame-

work drives these testcases and checks for the occurrence

of SDCs. According to a user’s specification, the framework

selects the testcases to be performed and controls their ex-

ecution order, resource allocation (such as CPU time and

concurrency) during testing, etc.

Testcases are programs that simulate cloud workloads,

carefully crafted with consideration of both software behav-

iors and hardware features. Most testcases focus on indi-

vidual processor features, such as floating point calculation,

branch prediction, cache, interconnect between cores, etc.

The complexity of these testcases vary significantly: 1) Some

execute a specific instruction within a loop. 2) Some call

functions in libraries. 3) Some invoke application logics.

Moreover, we also try other toolchains designed for SDC

detection like OpenDCDiag [60] as supplementary and reach

the same observations in our study.

In our study, this toolchain serves two roles. First, it pro-

vides an authoritative method to test processor functions.

Second, it acts as an impacted workload simulator when

conducting in-depth study on faulty processors. To facili-

tate testing and analysis, we have designed additional tools,

which will be discussed in the corresponding sections.

Despite the toolchain provided by the manufacturer, it is

often not easy to determine whether a failed test is due to a

CPU SDC or other reasons (e.g., memory error), especially

considering some failures are not reproducible. Therefore,

if we cannot determine the root cause with a reasonable

amount of effort, we will send the suspected processor back

to the manufacturer. All the faulty processors reported in

this paper have been confirmed by the manufacturer.

On the other hand, like any testing techniques, the toolchain

may not be complete to cover all SDCs.We did find SDCs that

cannot be detected by this toolchain, after extensive testing

and debugging. Therefore, this work should be considered

a best-effort approach to detect and understand SDCs: both

false negatives and false positives are possible.

2.4 Study Process and Approaches
We carry out large-scale tests in order to find faulty proces-

sors in Alibaba Cloud, both before production and during

production. As shown in Figure 1, pre-production testing is

carried out 1) after factory delivery (after manufactured chip

is shipped to Alibaba Cloud), 2) after datacenter delivery,

and 3) after system re-installation (before a machine goes

into production, it needs to install a new system for its ser-

vice). Then in production, machines will be regularly tested

in groups. Testing for each group lasts about 2 weeks, and

testing for the whole fleet needs months.

In these large-scale tests, we execute all the testcases in

the toolchain sequentially, and each testcase is allocated

Factory 

delivery

Datacenter 

delivery

Re-

installation

Regular 

tests

Pre-production tests

Figure 1. Test timing in our fleet.

Factory Datacenter Re-install Regular Total
0.776‱ 0.18‱ 2.306‱ 0.348‱ 3.61‱

Table 1. Failure rate of different test timings.

with equal test duration specified by the administrator. We

started such tests since January 2021, and so far, we have

found hundreds of faulty processors.

Among these faulty processors, we have conducted exten-

sive experiments on 27 of them for a more detailed analysis

(the others have been returned to the manufacturer). To be

concrete, we have run tens of millions of tests and collected

more than ten thousand SDC records from these tests to

understand their potential impacts on applications and their

reproducibility.

3 SDCs in the Wild
3.1 Brief Overview of Test Results
Observation 1. In overall, 3.61‱ of the CPUs are identified
to cause SDCs in our study.

Our results are consistent with but are more precise than

those reported by Google (“the order of a fewmercurial cores

per several thousand machines” [48]) and Meta (“hundreds

of CPUs detected for SDCs in hundreds of thousands of ma-

chines” [46]). Google’s and Meta’s decisions to not disclose

exact numbers may be for business considerations. This ob-

servation substantiates the notion that SDCs represent a

pervasive issue rather than a “black swan” event, especially

in the cluster with a significant number of processors.

Observation 2. The failure rates observed during the pre-
production testing period and the regular testing period amount
to 3.262‱ and 0.348‱, respectively.

As shown in Table 1, 3.262‱ of CPUs are detected to

cause SDCs in pre-production tests, accounting for a signif-

icant proportion (90.36%) of all faulty processors we have

identified. This means pre-production testing is indispens-

able since it prevents many faulty processors from entering

our production environment. 0.348‱ of CPUs are detected

to cause SDCs in regular testing. These faulty processors

have passed pre-production tests and some have even passed

several rounds of regular tests.

However, despite all SDC tests, we still encounter SDC

issues that affect Alibaba Cloud services as discussed in Sec-

tion 2.2. This can be attributed to the window between regu-

lar SDC tests and the non-determinism of reproducing SDCs.

Addressing this issue is challenging, as it is not feasible to

perform regular SDC tests frequently. As a result, services
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Arch M1 M2 M3 M4 M5 M6 M7 M8 M9 avg
Failure rate 4.619‱ 0.352‱ 2.649‱ 0.082‱ 0.759‱ 3.251‱ 1.599‱ 9.29‱ 4.646‱ 3.61‱

Table 2. Failure rate of different micro-architectures.

requiring high reliability may need to take SDC tolerance

into consideration.

Observation 3. SDCs have been identified across all micro-
architectures present within Alibaba Cloud fleet. The failure
rate does not decrease with newer chips.

Wehave found faulty processors in everymicro-architecture

we have, indicating SDC is a general problem for modern

processors.We have tested hundreds of thousands of samples

for each of these micro-architectures. As shown in Table 2,

the failure rates of different micro-architectures range from

0.082‱ to 9.29‱.

In our tests, the failure rate does not decrease with newer

chips. This phenomenon can be attributed to multiple factors.

The testing ability may increase with the processor develop-

ment, but the difficulty of testing also increases, as features

and circuits become more complex with the processor de-

velopment. In fact, due to the complex micro-architecture

diagram, comprehensive testing for the chip has prohibi-

tive costs and makes faulty processors escaping from high-

volume manufacturing testing a fact of life [58]. Moreover,

different micro-architectures have different degrees of matu-

rity, which also affects their failure rates.

Despite extensive testing and the advancements in chip

development, online services continue to be exposed to po-

tential risks stemming from SDCs. This highlights the essen-

tial requirement of SDC-tolerant systems for cloud vendors

to enhance the reliability of their services.

3.2 Zooming in on Faulty Processors
Table 3 shows the hardware details and error information of

a subset of our faulty processors as examples. We make the

following observation by studying these faulty processors:

Observation 4. A single processor fault may exert its influ-
ence on an individual physical core or encompass all cores
within the processor.

In about half of the faulty processors, there exists only one

defective physical core. This is probably because in these

faulty processors, the defects occur in the components that

can only be used by a single physical core, like arithmetic

units. Note that multiple hardware threads, also known as

logical cores, can share a single physical core. In most cases,

all the logical cores sharing the same defective physical core

are affected and they fail the same testcases with a similar

frequency.

In the other half of the faulty processors, defects impact

all physical cores. Some are probably due to the fact that the

defects occur in the components shared by all cores, like CPU

cache. However, we do observe cases that a defect impacts the

same non-shared component of every core (e.g., MIX1 and

MIX2 in Table 3). These cores fail the same testcases but at a

different frequency. The difference can be up to several orders

of magnitude under the same test setting, making some of

the defective cores difficult to be detected. We presume this

phenomenon may come from defects in chip design and

manufacturing. The proportion of processors with multiple

defective cores in our study (i.e., about half) is significantly

higher than what has been reported by Google [50], where a

single processor with multiple defective cores is considered a

low-probability event. We hypothesize that such difference is

primarily due to the fact that we use a different toolchain, and

our toolchain appears to have better detection capabilities

for coherency problems among cores.

Large companies decommission the whole faulty proces-

sor or isolate the whole machine no matter which of its cores

are identified as faulty [48, 52]. This practice is reasonable

given the relatively low failure rate. However, it could be

worthwhile to investigate the feasibility of continuing to

utilize the unaffected cores within a faulty processor [56].

4 Software Symptoms of SDCs
4.1 Impacted Workloads
Observation 5. SDCs exhibit a substantial prevalence in par-
ticular workloads, exposing five vulnerable features, namely
arithmetic logic computation, vector operations, floating point
calculation, cache coherency and transactional memory.

This observation can be explained by two contradictory

theories: On the one hand, it is possible that, compared to

other features, these features are indeed more vulnerable

due to their complexity (e.g., cache is known to occupy a

big portion of the chip area [57]). On the other hand, it is

also possible that other features are equally or even more

vulnerable, but since operating systems and applications

make use of other features heavily, a fault in other features

will cause a crash instead of a SDC [57]. Either way, this

observation suggests that a developer can focus on a limited

set of features when considering SDC related issues.

Figure 2 shows the proportion of faulty processors per

feature. Note that the sum of these proportions is bigger than

1. This is because a defect can occur on shared or integrated

components of multiple features and thus some processors

can encounter errors among multiple features. For example,

we find Processor MIX1 has wrong execution results in both

vector operations and complicated floating-point calcula-

tion, and we blame this problem on the combination of FPU

functionalities with vector units. Another example is CNST1,

which fails to guarantee the consistency in both cache and

transactional memory.

219



CPU id arch age(Y) #pcore #err SDC type impacted workloads impacted datatypes

MIX1 M2 1.75 16 25 computation

matrix calculation;

checksum calculation;

string manipulation;

large integer arithmetic;

int32; unint32;

float32; float64;

byte; bin16; bin32;

MIX2 M2 0.92 16 24 computation

matrix calculation;

checksum calculation;

bit operations; hashing;

int16; int32; unint32;

float32; float64;

bit; byte; bin16; bin32;

SIMD1 M2 2.33 1 5 computation matrix calculation; float32

SIMD2 M5 0.50 1 1 computation matrix calculation; float64;

FPU1 M5 0.58 1 3 computation

floating-point computing;

mathematical function;

float64; float64x;

FPU2 M5 1.83 1 3 computation

floating-point computing;

mathematical function;

float64; float64x;

FPU3 M3 3.08 1 2 computation floating-point computing; float64;

FPU4 M6 1.62 1 1 computation floating-point computing; float64;

CNST1 M2 0.92 1 9 consistency

multi-thread lock;

transactional memory

–

CNST2 M3 1.08 24 8 consistency transactional memory; –

Table 3. Hardware details and error information of a subset of our faulty processors. #pcore denotes the number of defective

physical cores on the faulty processor; #err is the number of failed testcases on the faulty processor.

We further categorize SDCs with defective features into

two types: computation and consistency. SDCs with com-

putation type are due to defective arithmetic operations,

including arithmetic logic computation, vector operations

and floating point calculation. SDCs with consistency type

are due to defective features related to consistency guar-

antee, such as cache coherency and transactional memory.

We distinguish these two types for two reasons: First, they

require different testing strategies since SDCs with consis-

tency type can only be detected with multi-threaded tests.

Second, we observe that, if one processor has multiple de-

fective features, they always belong to one type. Among the

27 faulty processors we have tested extensively, 19 proces-

sors have computation defects and the remaining ones have

consistency defects.

Since each testcase is designed to mimic a real-world work-

load, we can further speculate potential impacts on real-

world workloads, as sampled in Table 3. For example, Pro-

cessor FPU1 produces incorrect results on a specific floating-

point calculation operation, which is used by a library widely

used in HPC applications. The wide impacts of certain SDCs

are due to the wide usage of these defective features.

We have tried to further pinpoint which instructions are

problematic, which turns out to be a challenging task. For

some of these errors, the toolchain preserves the context and

points out the incorrect instructions. For example, in SIMD1,

the toolchain reports that a vector instruction that performs

multiplication and addition operations simultaneously gives

wrong results. The others, however, need manual investiga-

tion, but we meet the classic problem that, since these errors

are often hard to reproduce, it is unclear where to modify the

testcases to print more information. Therefore, we turn to

a statistical approach: we instrument the toolchain to catch

the number of times each type of instruction is executed

during each testcase via Pin [9]. This method helps us nar-

row down the scope of suspected instructions. Take cases

in Table 3 as examples: we find one instruction, which uses

the floating-point calculation feature to calculate a complex

math function (arctangent), is a suspect in FPU1 and FPU2,

because all the testcases using this instruction could repro-

duce SDCs and all the other testcases can pass. In another

example, we find instructions responsible for managing the

transactional region a suspect in CNST2.

However, not all errors have obvious suspected instruc-

tions. The SDCs in CNST1 causes cache coherence issues and

we fail to locate the suspected instructions. This is reason-

able since cache coherence mechanisms are mostly hidden

from a program so a program often does not invoke a specific

instruction for cache coherence.

It should be noted that not all testcases executing a defec-

tive instruction will generate errors. For example, in MIX1,

we find a defective instruction is used in seven testcases, but

only two of them generate errors. We study the triggering

conditions in details in Observation 10.
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Figure 2. The proportion of processors with a faulty feature.
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4.2 Error Breakdown in Mis-calculated Data
We further study the properties of computation SDCs to un-

derstand the influence of defective features on the workload

results. We exclude consistency SDCs from this investigation

since they don’t have a deterministic pattern.

Observation 6. SDCs have been confirmed to affect opera-
tions on all tested data types, including integers, single- and
double-precision floating-point numbers, bytes, and more. No-
tably, operations related to floating-point numbers demonstrate
heightened vulnerability to SDCs.

0

0.2

0.4

0.6

i16 i32 ui3
2 f32 f64 bit by

te
bin
16
bin
32
bin
64

Figure 3. Proportion of faulty processors with a certain

affected operation datatype.

Figure 3 shows the proportion of faulty processors involv-

ing each operation datatype. We find all datatypes under

tests are impacted by SDCs, and floating-point datatypes

involve more faulty processors than other datatypes. We

find two reasons attribute to this issue: Many different vul-

nerable features are related to floating-point calculation, in-

cluding vector operations with floating-point datatypes and

specific floating-point calculation. Some floating-point oper-

ations, such as trigonometric functions, are complex, which

increases the difficulty on the design and test of relevant

processor features.

Observation 7. For floating-point numbers, bitflips predomi-
nantly occur in the fraction part, resulting in minor precision
losses.

As for computation SDCs, we investigate which bits are

different between the expected result and the actual result,

which is also known as bitflip phenomenon. Figure 4(a)-4(d)

shows the bitflips of different numerical data types. We find

that it is rare that bitflips occur in the most significant bits.

Note this bitflip pattern does not apply to non-numerical

data, in which all the positions have comparable amount of

bitflips (Figure 5).

Furthermore, we find nearly half (51.08%) of bitflips are

changed from zero to one, which means there is no tendency

of bitflip direction in general. However, a tendency exists in

some corner cases. For example, as for 16-bit integer data

statistics in MIX1, 72.27% of bitflips are from zero to one.

The impact of an SDC on a numerical data depends on

the type of the data. In floating point encoding standard (i.e.,

IEEE-754 [17]), the bits are divided into three parts: sign,

exponent, and fraction. A bitflip usually hits the fraction

part, probably due to two reasons. First, as for floating-point

numbers, the computation logic of the fraction part is more

complex than that of the exponent part, making the fraction

part more vulnerable. Second, we observe a concentration of

many bitflips in the middle of the data and a gradual decrease

towards the ends, which follow related research about fail-

ure distribution on registers [57]. Given the relatively long

fraction part in the data, most of the bitflips tend to occur

in this part. Because IEEE-754 assumes an implicit leading

1 in the fraction, the relative precision loss caused by one

bitflip in fraction only depends on the position of the bit but

does not depend on the value of the number. Other datatypes

do not have this property. For example, for an integer, if its

value is small, then a bitflip in a less significant bit can still

cause a significant precision loss.

We show the relative precision losses between expected

data and actual data in Figure 4(e)- 4(h). Since the bitflips

we observed mostly occur in the fraction bits, the precision

losses of floating-point datatypes are small. For example, all

of the precision losses on extended double precision (80bit)

floating-point numbers are less than 0.002%. 99.9% of the

precision losses on double precision (64bit) floating-point

numbers are less than 0.02%. 80.25% of the precision losses

on single precision (32bit) floating-point numbers are less

than 5%. On the other side, 40.2% of the precision losses on

32-bit integer data are bigger than 100%.

Observation 8. As for a specific failed setting (i.e., a combi-
nation of a testcase and a processor), bitflips tend to manifest
at fixed position(s) within the number representations.

We define a bitflip pattern as a set of positions where

bitflips occur with whatever inputs in a given setting, i.e.,

a combination of a testcase and a processor. To find bitflip

patterns, we use a mask, i.e., the exclusive-or value of the

expected result and the actual result, to represent the bitflip

positions. If more than 5% of the SDC records of a setting

have the same mask, we regard this mask as a bitflip pattern.

A setting could have multiple bitflip patterns in our obser-

vations. We suspect it is because the multiple instructions

in the testcase are impacted by the defect and these instruc-

tions fail to stably reproduce errors (i.e., in one run of a

testcase, some of them fail but others succeed), which causes

different combinations of error instructions to generate dif-

ferent bitflip patterns. Figure 6 shows the proportion of SDC

records with bitflip patterns in some settings. One potential

explanation for bitflip patterns is that the hardware defect of

specific faulty processor causes deterministic influence and

thus these bitflips tend to occur at fixed position(s).

We further analyze the number of flipped bits within SDCs

belonging to some bitflip pattern across different data types

in Figure 7. As shown in this figure, in most cases, only one
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Figure 4. Bitflips and precision losses of data with different numerical types.
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Figure 5. Bitflips of different non-numerical types.

bitflips, but there is also a considerable number of SDCs with

two or even more flipped bits.

Deficiencies on current failure models. Current failure
models, such as models based on irradiation, often assume

that every bitflip on every position is independent and iden-

tically distributed (IID) [26]. Another assumption made by

current SDC failure models is that multiple flipped bits are

unlikely events [8]. Our observations challenge current SDC

failure models, and suggest areas for improvement:

• Location preference: Our study has shown that bitflips tend

not to occur in the most significant bits in some datatypes

(Observation 7).

• Correlation between bitflips: Our study has revealed that

there exists a correlation between bitflips, causing some

SDCs to have multiple bits flipped (Observation 8).

Further research is necessary to study the application

implication of this model. Although floating-point numbers

seems to incur less accuracy loss, some cases, such as finance

data management and autonomous vehicles, advocate more

reliable data [54]. It may also be possible to promote data

reliability by designing encoding standards in consideration

of these bitflip patterns.
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5 Reproducibility of SDCs
After we identify that a CPU can fail in a testcase, we repeat-

edly run the failed testcase to understand the reproducibility

of the problem. Since the length (i.e., number of loops) of

each testcase is configurable and the chance of triggering an

222



error depends on the length of the testcase, we use occur-

rence frequency, which is defined as the number of errors

per minute, to quantitatively measure reproducibility. Since

the occurrence frequency depends on both the CPU and the

workload (i.e., testcase), we record the occurrence frequency

per setting.

Observation 9. Some SDCs are highly reproducible, resulting
in large impact on applications.

We find that SDC occurrence frequency varies signifi-

cantly across different settings, from as low as 0.01 times per

minute to as high as hundreds of times per minute. In 51.2%

of the settings, the occurrence frequency is higher than once

per minute.

The high reproducibility of certain SDCs and the fact that

existing systems are not designed to tolerate SDCs mean that

these SDCs can manifest quickly and repeatedly in produc-

tion, which is confirmed by our case studies as discussed in

Section 2.2. For example, a service in Alibaba Cloud falsely

reported 26 invalid-data errors in approximately 4.5 hours

because of one faulty processor, which impacted the system

performance. This suggests that, although the failure rate

of processors is low, SDCs could potentially have a large

impact, especially if they are not detected promptly.

Observation 10. Among those less reproducible SDCs, tem-
perature serves as an important SDC triggering condition. In
some settings, the occurrence frequency of SDCs demonstrates
exponential growth in response to increasing temperatures.
Furthermore, the occurrence frequency is associated with the
minimum triggering temperature across different faulty pro-
cessors and workloads.

It is well-known that temperature impacts the functioning

of semiconductors [13, 22]. Processors have allowable range

for their working temperature, and datacenters strive to min-

imize temperature influence through cooling systems. How-

ever, we observe that even when temperature remains within

the allowable range during workload execution, the rising

temperature can still increase the occurrence frequency of

SDCs.

We investigate the quantitative relationship between SDC

occurrence frequency and temperature. We monitor the pro-

cessor temperature during testcase execution by reading

cooling device monitor data from system kernel file. Some

settings can naturally reach a temperature that is close to the

upper bound of the processor’s working temperature, which

allows us to collect adequate testcase execution information

with different temperatures. Some settings cannot reach a

high temperature naturally. For these settings, before testing,

we use stress toolchains (e.g., Linux “stress” cmd tool) to

preheat the processor to the desired temperature.

By taking the base-10 logarithm value of the SDC occur-

rence frequency, we find that this value has a linear depen-

dence on core temperature, based on the least square method,

on six out of our 27 processors.

Figure 8(a)- 8(c) display this relation for some faulty pro-

cessors, and their Pearson correlation coefficients are big-

ger than 0.75, which confirm the exponential correlation

between temperature and SDC occurrence frequency.

Furthermore, we observe that in some settings, SDCs only

occur when the temperature exceeds some threshold. For

example, we observe all the SDC records with testcase C

on MIX1 are generated with their temperature above 59℃,

which is much higher than its idle temperature (about 45℃),

but is still within the normal range. Tests below this temper-

ature threshold have been extensively conducted for several

days, but cannot reproduce errors.

In our large-scale tests, we experience several counter-

intuitive cases, which we later find to be caused by tempera-

ture issues:

• Other core behaviors: We observe one defective core only

produces errors when other cores are busy, with its occur-

rence frequency increasing as the number of busy cores

increases. It is surprising because the defective component

is not shared between cores. Upon further investigation,

we discover that the cores share cooling devices, which

results in the defective core reaching a higher temperature

when other cores are busy.

• Remaining heat: We observe one faulty processor gener-

ates errors depending on the test order. For example, errors

in testcase Y occur when testcase X is executed prior to

testcase Y, and fail to occur with reversed test order. We

later discover that testcase X exerts significant stress on

the processor and produces considerable amount of heat,

resulting in testcase Y being tested at a temperature that

is difficult to attain when solely executing testcase Y.

• Toolchain update. We observe that after updating to use a

higher version of the detection toolchain, the occurrence

frequency of some SDCs in a faulty processor decreased,

which was surprising as the update did not modify the

logic of the testcases and we had not changed any other

test configuration. Further investigation revealed that the

updated toolchain uses a more efficient framework, which

reduced the heat generated.

Besides temperature, there also exist other triggering con-

ditions. Recall that we have observed that many testcases do

not exhibit errors even when they utilize instructions identi-

fied as defective or suspected as discussed in Section 4.1. Our

run-time instrument study further reveals that instruction us-
age stress is one of the reasons behind this observation. Failed
testcases use this defective instruction several orders of mag-

nitude more frequently than other testcases, highlighting

the impact of instruction usage stress on error occurrence.

Since temperature is highly correlated with stress, we use
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Figure 8. SDC occurrence frequency (log scale) variation with temperature.

the following method to separate their effects: we use stress

toolchain on some cores that are not under test while execute

test workloads on target cores. In this experiment, since the

heat is mainly produced by stress toolchain and dissipated

by cooling devices, the tested workload has little impact

on temperature. With this approach, we can increase CPU

utilization in the faulty processor, with temperature almost

unchanged, and we observe a higher occurrence frequency

of SDCs with a high CPU utilization.

SDC Mitigation using multiple strategies. We further

explore the design space to mitigate SDCs by combining

multiple strategies in a coordinated and complementary

manner. Figure 9 illustrates the relationship between the

minimum triggering temperature for SDCs and their occur-

rence frequency under the minimum triggering temperature.

We perform a linear fit between the logarithmic values of

occurrence frequency and the values of minimum triggering

temperature, yielding a Pearson correlation coefficient of

-0.8272, which indicates a relatively strong correlation.

Motivated by this figure, we classify SDCs into two types

based on the occurrence frequency and minimum triggering

temperature: apparent and tricky. Different types of SDCs

are suitable for different mitigation strategies. “Apparent”

SDCs can be detected near idle temperature and exhibit high

occurrence frequency, making them suitable for SDC tests.

On the other hand, “tricky” SDCs have higher minimum

triggering temperature than “apparent” SDCs and tend to

have relatively low occurrence frequency. For these SDCs,

relying solely on SDC testing would require maintaining

processors at high temperatures for a long time, which can be

detrimental to processor health. Even worse, since we don’t

know whether a CPU has such tricky SDCs in the first place,

we will need to apply such long high-temperature tests to

all CPUs, which is inefficient. Instead of testing, we propose

to control the CPU temperature at run time to mitigate this

type of SDCs. We can control the temperature by either

controlling the cooling devices [7] or by limiting the CPU

utilization of the workloads (called “workload backoff” in the

rest of this paper). The former has no impact on application

performance, but unfortunately it is not widely applicable in

Alibaba Cloud yet, so this work explores the latter. Workload

backoff can also reduce instruction usage stress, known as

another triggering condition. Section 7.1 presents how to

apply this idea in detail, in particular how to adaptively

adjust the temperature threshold and test duration.
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Figure 9. Relation between occurrence frequency (log scale)
andminimum triggering temperature of different SDCs. Each

point in the figure stands for a SDC setting.

6 Performance of Existing Strategies
6.1 Proactive SDC Testing
Many cloud vendors, such as Alibaba Cloud, Meta [52] and

Google [50], conduct SDC tests to remove faulty processors

before SDC generation. However, SDC testing can be ineffi-

cient without guidance.

Observation 11. In a production environment with tens of
thousands of CPUs, 560 out of the 633 testcases have not de-
tected any errors.

Unfortunately, we only have detailed test logs for a sub-

set of the CPUs we have tested (for others, we only know

whether the CPU is identified as faulty or not), but we believe

they can shed light on how to improve test efficiency.

In this production environment, although we allocate the

same test resources to all testcases, 560 of the 633 testcases

fail to detect any faults. Moreover, if we further look at each

CPU micro-architecture, the number of ineffective testcases

per micro-architecture is even higher. This is reasonable

since companies usually buy a specific type of CPUs in a
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batch, and a specific type or batch of CPUs may be vulnera-

ble in the same way. This motivates our following proposal

to prioritize tests, considering companies like chip manu-

facturers and cloud vendors may have a large amount of

history data to guide testing: in pre-production tests, since

test resources are adequate, every testcase can be fully tested;

in regular tests, during which test resources are limited, we

can give longer duration to testcases that have found SDCs

in either pre-production tests or earlier regular tests.

On the other hand, there exist cases where our toolchain

fails to detect faults. We observe that these faulty proces-

sors only manifest SDCs under some complex multi-thread

conflict scenarios that are difficult to be covered with ex-

isting testcases. We believe these issues will be addressed

in the future with more comprehensive and powerful test-

cases contributed by both academia and industry. Since our

toolchain is not publicly available, for those who are inter-

ested in this field, we recommend OpenDCDiag [60] since

we have validated that it can reach the same observations as

our toolchain. Another similar tool is SiliFuzz [50], but we

haven’t got the chance to try it.

6.2 SDC Detection and Tolerance
Unlike SDC testing, which performs proactive detection be-

fore SDC generation, there exist many approaches to detect

SDCs after their generation. This section discusses how our

observations challenge these approaches.

Observation 12. The effectiveness of existing fault tolerance
techniques is diminished when confronted with CPU SDCs.

Checksumandparity. End-to-end checksums arewidely

used to detect data corruptions and verify data integrity in

the datapath [20, 27, 47]. For example, Checksum calculation

algorithms, such as Cyclic Redundancy Check (CRC) and

hashing, derive the data to a smaller summary, which can be

used to check the integrity of the original data. Error Correct-

ing Code (ECC) can detect and correct errors in processor

cache and registers by leveraging parity bits [14, 59]; Erasure

Coding (EC) techniques apply parity information to recover

transferred or stored data when they are lost [2, 24].

However, we observe these techniques are often ineffec-

tive to detect CPU SDCs due to multiple reasons: 1) EC is

primarily used to recover lost data, but not used to detect

corrupted data. 2) ECC and CRC assume the data is correct

when computing the parity and afterwards can detect bitflips

in either the data or the parity bits, but CPU SDCsmay gener-

ate a wrong result before parity is computed and in this case

these techniques may generate a parity that matches with

the already corrupted data. 3) Even if the corruption happens

after parity is generated, standard ECC can correct only sin-

gle bitflip errors and detect two bitflip errors, but our study

shows multiple bitflip errors are possible (Observation 8).

Even worse, some of these checksum algorithms engage

vulnerable features heavily, which means they are more vul-

nerable to CPU SDCs. For example, both EC and CRC heavily

involve vector operations [21, 61], which is one of the vul-

nerable features (Observation 5), to accelerate computation.

For EC, this is particularly dangerous since EC itself does not

have the ability to detect corruptions, and thus a corrupted

data block may be used to construct a lost data block, causing

the corruption to propagate.

Redundancy. Some works apply redundancy to detect

and tolerate SDCs [3, 6, 11, 18, 19, 23, 25, 27, 55]: they execute

the same logic on multiple replicas and compare their results

to detect and even correct errors. The redundancy can also

be implemented by the hardware, such as using the DCLS

(dual-core lockstep) technique [39]. However, considering

the low failure rate of CPUs, such kind of techniques are too

costly to be applied to every application, though they may

be suitable for a small number of critical applications.

Prediction. Some works use machine learning models to

predict the appearances of SDCs [29–31, 40–42, 49]. Part of

them predict a range for the result and assert a silent error

when the real result is out of this range [29–31]. However,

real SDCs may have minor precision losses (Observation 7),

making it challenging for these methods to determine a nar-

row range for detecting SDCs. On the other hand, whether

such minor losses are acceptable is a topic requiring further

investigation.

On the other hand, our study shows some new opportu-

nities to detect and tolerate CPU SDCs: Considering only a

small number of features or instructions are vulnerable, can

we design techniques targeting those vulnerable features?

Considering temperature is a key factor, can we control the

temperature to mitigate SDCs? Considering bitflips have lo-

cation preference, can we design better coding techniques?

The next section explores some of these ideas.

7 Farron: An Efficient SDC Mitigation Tool
To illustrate how our observations assist in SDC mitigation,

we propose a concrete strategy called Farron by improving

Alibaba Cloud strategies based on observations aforemen-

tioned. Farron is able to protect applications from CPU SDCs

with low overhead and high testing efficiency.

Baseline. Existing strategies used by Alibaba Cloud mit-

igate SDC impacts by conducting proactive SDC testing,

which helps prevent SDC impacts by identifying and remov-

ing faulty processors before they generate SDCs. In summary,

SDC tests are conducted both in pre-production and every

three months during production, and in every round of tests,

all testcases are executed sequentially and allocated with

equal testing resources. As for one processor whose core(s)

are detected as defective, Alibaba Cloud deprecates the entire

processor.
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7.1 Design
Due to the limitation of SDC testing, Farron uses tempera-

ture controls as a complement to SDC testing, based on our

insight from Observation 10. To determine when to activate

temperature controls and when to apply SDC testing, Farron

establishes a temperature boundary, which is adaptive to

actual run-time conditions of the application. Farron further

performs efficiency-focused SDC tests, especially in regu-

lar SDC tests. Moreover, Farron employs the fine-grained

processor decommission (Observation 4) and maintains a

reliable resource pool to manage unaffected cores [56].

Figure 10 illustrates the Farron workflow, which operates

in three states: pre-production, online, and suspected. SDC

tests with adequate resources will be performed during the

pre-production state. During the online state, user appli-

cation is executed on cores that have been proven reliable

through SDC testing and operates under the triggering con-

dition controlled by Farron. Regular SDC tests are conducted

in this state for long-term protection. In the event that SDC

tests fail, Farron performs in-depth SDC tests targeted at the

suspected processor, and adjusts the reliable resources based

on the analysis of test results.

Adaptive temperature boundary. As mentioned in Ob-

servation 10, different SDCs can be divided by a temperature

boundary, which decides when to perform triggering con-

dition controls and how long SDC testing needs to execute.

The primary challenge Farron faces is how to determine the

boundary. If the boundary is set too high, long SDC test-

ing duration is required to guarantee reliability under high

temperature (Observation 10). Conversely, if the boundary

is set too low, some triggering condition controls, such as

workload backoff, will be frequently activated, leading to

impacts on application performance.

Farron assigns the highest priority to application perfor-

mance, thereby minimizing the frequent use of workload

backoff. To accomplish this, Farron differentiates the temper-

ature boundary for cooling device operation and workload

backoff, and makes the boundary for workload backoff adap-

tive. Farron employs a window to track recent temperature

monitoring records, raising the temperature boundary for

workload backoff if more than a half of temperature records

within the window exceed current boundary, indicating that

the temperature is within normal working range for the ap-

plication in the given situation. By iteratively increasing the

temperature threshold, Farron autonomously learns the stan-

dard working temperature, thereby preventing the excessive

use of workload backoff. If less than half of the temperature

records exceed current boundary, workload backoff will be

triggered, until the temperature is below the boundary.

Farron further adjusts regular test duration based on this

adaptive temperature boundary, adhering to the patterns

outlined in Observation 10 (i.e. lower temperature boundary

condition will be allocated less test duration).

Efficiency-focused SDC testing. Due to the constraints

of online test resources, regular tests are conducted with

an emphasis on testing efficiency. However, given the lim-

ited guidance available for SDC tests, achieving efficiency

in existing testing procedures proves challenging (Observa-

tion 11). Farron seeks to enhance SDC testing efficiency by

drawing on insights related to testcase prioritization, tar-

geted features and testing environments (Observation 5, 10

and 11).

We designate targeted features and priorities for testcases,

establishing three distinct priority levels: basic, active, sus-

pected. The “basic” priority is assigned to testcases that,

despite being designed for a particular feature, fail to detect

faults in our large-scale tests. The “active” priority is desig-

nated for testcases with proven track records of successfully

identifying defective features. Lastly, the “suspected” priority

is only assigned to testcases that have detected errors on the

core(s) of the current processor.

Farronmainly allocates testing resources to testcaseswhose

targeted feature is utilized by the protected application, fo-

cusing on those marked as “suspected” (if any) and “active”.

Remaining testcases are tested in a best-effort mode, ensur-

ing a comprehensive but efficient testing approach.

Additionally, we place a strong emphasis on the testing

environment. Farron initiates the testing by running burn-in

workloads and tests every core in a processor simultaneously

to increase core temperature while testing (Observation 10).

We believe this testing method can cover the application

execution temperature, since testcases in the toolchain are

stressful and effectively generate heat.

Fine-grained processor decommission. Identifying all
defective cores in a faulty processor can prove difficult, as

some defects may be challenging to detect (Observation 4).

Initially, Farron accumulates testcases with the “suspected”

priority by performing adequate testing on the cores identi-

fied with defects. By conducting adequate SDC tests targeted

on these “suspected” testcases, Farron can efficiently validate

the function of the remaining cores (Observation 4). If more

than two cores within a processor are found defective, Far-

ron deprecates the entire processor in line with the pattern

presented in Observation 4. Conversely, Farron masks that

particular defective core and continues utilizing the other

cores as normal.
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Figure 11. Regular testing coverage for faulty processors.

7.2 Evaluation
We implement and evaluate Farron on our faulty processors,

and measure Farron’s efficiency and overhead.

Figure 11 shows the coverage of SDCs in one round of

tests, which is defined as the ratio of detected errors to the

total known errors in the faulty processor. As shown in the

figure, the coverage of Farron is higher than the baseline.

In terms of overhead, the average one-round regular test

duration of Farron is 1.02 hours, whereas in baseline, it is

10.55 hours. Both improvements stem from the prioritization

strategy, which gives more resources to testcases that are

likely to find errors.

Note that in some processors, there exist cases that are

difficult to cover in one round of tests, since these errors

need both high temperature and long-term testing. Farron

mitigates themwith temperature controls.We simulate work-

loads affected by these errors using our toolchain for hours

and find these workloads do not trigger SDCs with the pro-

tection of Farron. During the procedure, Farron’s workload

backoff was triggered 0.864 seconds per hour on average,

keeping the temperature under 59℃. Owing to the adap-

tive temperature boundary, the workload backoff strategy

is triggered infrequently, resulting in minimal performance

impact.

Table 4 presents the overhead of Farron and the baseline on

different faulty processors. For Farron, the overhead includes

the testing overhead and the temperature control overhead.

The testing overhead is equal to the duration of one round of

test over three months since regular tests are performed ev-

ery three months. The temperature control overhead is equal

to the backoff duration over the total duration of the simula-

tion. The baseline only includes testing overhead. Note that

for Farron, the testing overhead can vary across CPUs due to

its adaptive choice of tesetcases to run and adaptive balance

of testing duration and temperature control threshold.

8 Related Work
Section 6 has discussed SDC testing, detection, and tolerance

in detail, so this section discussed other related works.

SDC analysis. Prior works have studied silent errors

caused mainly by radiation rays, which are transient and

hard to capture [10–12, 44]. Some cloud service providers

Overhead: Farron Baseline

Test Control Total Test

MIX1 0.051% 0.049% 0.100%

0.488%

SIMD1 0.115% 0.031% 0.145%

FPU1 0.017% 0 0.017%

FPU2 0.017% 0 0.017%

CNST1 0.033% 0.013% 0.046%

CNST2 0.027% 0 0.027%

Table 4. Farron overhead for different faulty processors.

have noticed SDCs caused by faulty processors in recent

years [46–48, 50–52]. For example, Meta provides a case

study on a SDC debugging process in the production en-

vironment [46]. Our work is a systematic study on such

processor-caused SDCs in the production environment. Be-

sides CPUs, SDCs can be produced by other system com-

ponents, such as disks, memory, and TPUs [10, 33, 44, 54].

Silent errors can also be produced by software, like bugs in

corner cases [47, 53].

SDC triggering conditions and fault injection. Envi-
ronmental factors, e.g., temperature and humidity, can influ-

ence the working of electronic devices [13, 22, 28, 34, 37, 43],

and we confirm that core temperature is one of triggering

conditions. Modern systems use fault tolerance techniques

to prevent the impact of SDCs to applications [27, 35, 45,

47, 51]. To evaluate the reliability and performance of these

systems, fault injection is widely used. Some injectors use

neutron beam to create SDCs according to the irradiation

model [5, 44, 54], and others use the simulator or specific

experimental devices to inject synthetic faults [4, 10, 32, 36].

Our observations can help improve the injector designs so

as to better evaluate the solutions to SDCs in production

environments.

9 Conclusion
In this research paper, we undertake a comprehensive in-

vestigation of CPU SDC phenomena with measurement and

analysis in a large production environment. Our research

involves multiple perspectives, including fleet maintenance,

software symptoms, occurrence patterns and current prac-

tices on SDCs. We further present 12 observations, eluci-

dating their implications on systems. Subsequently, we pro-

pose a concrete mitigation approach named Farron, which

illustrates how to leverage our study to improve existing

mitigation strategies.
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