
Finding Heterogeneous-Unsafe Configuration
Parameters in Cloud Systems

Sixiang Ma
The Ohio State University

Fang Zhou
The Ohio State University

Michael D. Bond
The Ohio State University

Yang Wang
The Ohio State University

Abstract
With the increasing prevalence of heterogeneous hardware

and the increasing need for online reconfiguration, there is

increasing demand for heterogeneous configurations. How-

ever, allowing different nodes to have different configurations

may cause errors when these nodes communicate, even if the

configuration of each node uses valid values.

To test which configuration parameters are unsafe when

configured in a heterogeneous manner, this work reuses ex-

isting unit tests but runs them with heterogeneous configura-

tions. To address the challenge that unit tests often share the

configuration across different nodes, we incorporate several

heuristics to accurately map configuration objects to nodes.

To address the challenge that there are too many tests to run,

we (1) “pre-run” unit tests to determine effective unit tests

for each configuration parameter and (2) introduce pooled

testing to test several parameters together. Our evaluation

finds 41 heterogeneous-unsafe configuration parameters in

Flink, HBase, HDFS, MapReduce, and YARN. We further

propose suggestions and workarounds to make a subset of

these parameters heterogeneous safe.

ACM Reference Format:
Sixiang Ma, Fang Zhou, Michael D. Bond, and Yang Wang. 2021.

Finding Heterogeneous-Unsafe Configuration Parameters in Cloud

Systems. In Sixteenth European Conference on Computer Systems
(EuroSys ’21), April 26–28, 2021, Online, United Kingdom. ACM,

New York, NY, USA, 16 pages. https://doi.org/10.1145/3447786.
3456250

1 Introduction
While many distributed systems were initially designed under

the assumption that all nodes share the same configuration,

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

EuroSys ’21, April 26–28, 2021, Online, United Kingdom
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8334-9/21/04. . . $15.00

https://doi.org/10.1145/3447786.3456250

heterogeneous configuration has become increasingly popu-

lar for two reasons. First, heterogeneous hardware naturally

calls for a heterogeneous configuration to achieve optimal

performance [7, 18, 26, 28, 47]. Second, even for a homo-

geneous system, sometimes we need to change its configu-

ration at run time to adapt to the workload, but rebooting

the whole system with a new configuration may be too dis-

ruptive [5, 39]. To solve this problem, several approaches

incrementally change the configuration of a subset of nodes,

either by rebooting these nodes [8, 30, 35] or by utilizing

application APIs [7, 14, 17, 27, 41], until all nodes have the

new configuration. Both of these cases may cause different

nodes to have different configurations, either in the long term

or in the short term.

Heterogeneous configuration, however, may cause the sys-

tem to fail if not used properly. For example, if one node is

configured to encrypt its communication channel while the

other node does not decrypt the messages, then unsurprisingly

the communication will fail. This type of errors is different

from the configuration errors caused by invalid configuration

values [3, 36, 42, 43, 46, 48]: in our case, both configuration

values (i.e., using and not using encryption) are valid; the

problem is caused by two nodes with different configurations

communicating with each other.

The goal of this paper is to investigate, in real-world ap-

plications, which configuration parameters cannot be set in a

heterogeneous manner. We call them heterogeneous-unsafe
configuration parameters in this paper. To achieve our goal,

we have developed an approach to identify such parameters.

At a high level, our approach is not much different from

classic program testing: we test the target application with

different heterogeneous configurations and different inputs to

see whether the application will fail. However, this method

also encounters the classic challenge of program testing: a

particular configuration parameter may only take effect when

a particular piece of code is executed; thus, to test whether

the parameter is heterogeneous-unsafe, we need to drive the

application to a potential corner case.

To address this challenge, we observe that mature appli-

cations usually have well-designed unit tests, which have

already considered this problem: to test the effects of a cer-

tain configuration parameter, some of these unit tests generate

inputs so that the particular parameter will take effect and

410

EuroSys ’21, April 26–28, 2021, Online, United Kingdom Sixiang Ma, Fang Zhou, Michael D. Bond, and Yang Wang

have rules to check whether the application is in a healthy

state. Following this observation, we utilize existing unit tests

to find heterogeneous-unsafe parameters by assigning differ-

ent configurations to different nodes in these tests.

We encounter two challenges when applying this idea. First,

to run a unit test with a heterogeneous configuration, we

need to be able to assign different configuration values to

different nodes. This is trivial in a real distributed setting

since we can give different configuration files to different

nodes. This task, however, is significantly more challenging

in unit tests, which often create nodes as threads within a

process: on the one hand, a unit test may create a configuration

object and share it with different nodes; on the other hand, a

node may have subcomponents, which may create their own

configuration objects. Both properties make it harder to map

a configuration object to a particular node. To address this

problem with minimal modification to the target application,

we incorporate several heuristics to identify configuration

sharing—in which case we clone the configuration object—

and infer the mapping from configuration objects to nodes.

The second challenge is the large number of tests to run.

To alleviate this problem, we incorporate several techniques:

1) we “pre-run” unit tests to identify which configuration

parameters are used by each node type in each unit test, to

avoid assigning a parameter to a node that will not use the

parameter; 2) under the assumption that most parameters

are safe, we introduce pooled testing, which tests several

parameters together with one unit test, and separates them

only if the pooled test fails.

Following these ideas, we have built ZebraConf, a frame-

work to reuse existing unit tests to find heterogeneous-unsafe

configuration parameters. We have applied ZebraConf to

Flink [1], HBase [2], HDFS [16], MapReduce [32], and

YARN [44]. Our evaluation yields the following results:

• ZebraConf reports a total of 57 heterogeneous-unsafe con-

figuration parameters in these applications. Our manual

analysis shows 41 of them are truly unsafe parameters, and

the remaining 16 are false positives. While many of these

unsafe parameters are expected (e.g., parameters related to

encryption, compression, and heartbeat), some of them are

more subtle. For example, we find setting a heterogeneous

bandwidth limitation on different DataNode instances in

HDFS can cause one DataNode with a high limit to over-

load a DataNode with a low limit, so that the latter cannot

send progress reports in time, causing timeout. We further

propose suggestions and workarounds to make a subset of

these parameters heterogeneous safe.

• With its heuristics, ZebraConf correctly maps configuration

objects to different nodes in 89.3% to 98.4% of the unit tests

for each application. Achieving this level of correctness

required adding or changing 21 to 38 lines of code to apply

ZebraConf to each application.

• Pre-running tests and pooled testing reduce the total number

of units tests to run by two to four orders of magnitude for

each application. As a result, all tests can finish within

4,652 machine hours. While this number is certainly not

small, it is affordable since we can run these tests in parallel

(we used up to 100 machines in our experiments) and they

do not need to be run frequently.

The rest of the paper proceeds as follows. Section 2 presents

related work, which motivates our work. Section 3 gives an

overview of our work. Sections 4–6 each introduce the design

of one key component of ZebraConf. Section 7 presents the

results of our evaluation and Section 8 concludes the paper.

2 Related Work and Motivation
Heterogeneous configuration. While many distributed sys-

tems were initially designed under the assumption that all

nodes have the same configuration (i.e., homogeneous con-

figuration), heterogeneous configuration has become increas-

ingly popular for several reasons.

First, heterogeneous hardware naturally calls for a hetero-

geneous configuration to achieve the best performance [7, 26,

28, 47]. For example, many systems allow the administrator

to configure the number of threads, the size of memory, or the

bandwidth limitation of each node, and such configurations

naturally depend on the hardware setting of each node.

Second, even for a homogeneous system, it is often bene-

ficial to reconfigure the system to adapt to the workload [7,

27, 30, 41]. While rebooting the whole system with a new

configuration is always possible [4, 10, 22, 29, 50], it is of-

ten too disruptive especially for a large cluster. To solve this

problem, recent works propose to incrementally reconfig-

ure a subset of nodes, either by rebooting these nodes (i.e.,

rolling restart) [5, 8, 30, 33, 35] or by utilizing application

APIs [12, 14, 17, 25, 38], until all nodes are reconfigured.

For both cases, since it is often hard to determine the opti-

mal configuration values when booting the system, a number

of systems (e.g., Kafka [24], HBase [2], HDFS [16], and Re-

dis [37]) provide APIs to allow the administrator to change

certain configuration parameters of a node at run time. For ex-

ample, HDFS parameter dfs.datanode.balance.bandwidth-
PerSec was made online reconfigurable starting from HDFS

0.20 [18]. The introduction of these APIs indicates a strong

motivation to reconfigure nodes at run time, presumably lead-

ing to more heterogeneous configurations in the future.

While heterogeneous configuration is beneficial and ar-

guably unavoidable, it may lead to correctness issues when

nodes with different configuration values communicate. Some

of these issues are obvious: if a node is configured to encrypt

its data and another node is not aware that data is encrypted,

they cannot communicate properly. Some of these issues are

more subtle and perhaps unexpected as shown in our evalua-

tion. A goal of this work is to find such heterogeneous-unsafe

configuration parameters in real-world applications.

411

Finding Heterogeneous-Unsafe Configuration Parameters in Cloud Systems EuroSys ’21, April 26–28, 2021, Online, United Kingdom

Finding configuration errors. A substantial amount of work

targets identifying configuration errors caused by invalid con-

figuration values (including but not limited to [3, 23, 36, 42,

43, 46, 48]). For example, ConfValley [23] defines a sys-

tematic way to validate configuration values. PCheck [43]

extracts application code that checks the validity of configu-

ration values and executes such code before deployment.

Our work is different from these prior works because a

parameter can be heterogeneous unsafe even if every value

at different nodes is valid (e.g., one node is configured to

encrypt data and another node is configured not to encrypt

data). Therefore, it is impossible to check such problems

locally at one node.

3 Design Overview
3.1 Goal and Definitions
This work targets a distributed system, which is composed of

multiple nodes (i.e. processes). We assume each node can be

configured independently with its own configuration file.

To formally define heterogeneous-unsafe configuration pa-

rameters, we first introduce the following definitions:

• 𝐹 denotes a configuration file and 𝐹 (𝑝) denotes the value

of parameter 𝑝 in the configuration file.

• HomoConf (F) denotes a homogeneous configuration, in

which all nodes have the same configuration file 𝐹 .

• HeteroConf (F1, ..., Fn) denotes a heterogeneous configura-

tion, in which node 𝑖 has configuration file 𝐹𝑖 .
• 𝐼 denotes a sequence of inputs to the target application.

Inputs include explicit inputs through the application APIs,

as well as all nondeterministic factors, such as timing and

randomness, which are modeled as implicit inputs.

• A testing oracle can verify whether the application is in

a correct state given 𝐼 and either a HomoConf (F) or a

HeteroConf (F1, ..., Fn).

We assume that within any given node, all code always

sees the same configuration. In other words, issues caused

by incorrect implementation of online reconfiguration (e.g.,

missing updates to some variables depending on the parameter

to be reconfigured) are outside the scope of our work.

Definition 3.1 (Invalid heterogeneous configuration). We say
HeteroConf (F1, ..., Fn) is invalid if ∃𝐼 such that

¬oracle(𝐼 ,HeteroConf (𝐹1, ..., 𝐹𝑛)) ∧

∀𝑖∈{1,...,𝑛}oracle(I ,HomoConf (Fi))

Intuitively, this means that an invalid heterogeneous config-

uration is one that causes problems even if every configuration

file is individually valid.

Definition 3.2 (Heterogeneous-unsafe configuration parame-

ters). We say a set of parameters 𝑃 is heterogeneous unsafe
if

• there exists an invalid heterogeneous configuration
HeteroConf (F1, ..., Fn) in which for every parameter in

𝑃 , at least two configuration files have different values
of the parameter, and all other parameters have the
same value in all configuration files, i.e.,

∀𝑝
(
𝑝 ∈ 𝑃 ⇐⇒ ∃𝑖, 𝑗 𝐹𝑖 (𝑝) ≠ 𝐹 𝑗 (𝑝)

)

and
• 𝑃 is minimal, i.e., there does not exist 𝑃 ′

� 𝑃 that
satisfies the above condition.

Intuitively, this defines the minimal set of parameters that

may cause invalid heterogeneous configurations when given

different values. If parameters do not depend on each other,

this definition can further be simplified to be on individual

parameters. The goal of this work is to identify heterogeneous-

unsafe configuration parameters in real-world applications.

3.2 Our Approach
To understand whether certain configuration parameters are

heterogeneous unsafe, we use the traditional software testing

approach: we generate a number of heterogeneous configu-

rations, each with different values of the target parameters;

we then run the target application with these heterogeneous

configurations and different inputs, and check whether the

application encounters errors. However, the challenge of this

approach is that a particular configuration parameter may

only take effect when rarely executed code is executed, and

thus when testing the parameter, we need to generate specific

inputs to drive the application to the corner case.

To address this challenge, we utilize existing unit tests built

by the application developers: we run these unit tests with the

corresponding heterogeneous and homogeneous configura-

tions. Since the unit tests of a mature application should cover

most of an application’s code [40, 49], they naturally provide

the ability to drive the application to corner cases and test

whether the application is in a correct state. In other words,

we assume the unit tests can provide the input 𝐼 and approx-

imate the oracle in Definition 3.1. Following this idea, we

have built ZebraConf, a framework to generate heterogeneous

configurations, to run unit tests with these configurations, and

to modify the target application to facilitate such testing.

Unit tests and integration tests. Traditionally, “unit tests” re-

fer to tests that target individual functions or components of a

system, and thus cannot be used for our purpose since they do

not start multiple nodes. In contrast, “integration tests” refer

to tests that target the whole system. However, to simplify

testing, today’s open-source software often implements its

whole-system tests by running nodes as threads in one process

and managing these tests as unit tests (e.g., MiniDFSClus-

ter in HDFS, MiniCluster in Flink, etc). ZebraConf targets

reusing such whole-system unit tests. ZebraConf should be

able to reuse integration tests as well, since reusing integration

tests is simpler than reusing unit tests (Section 6.1), though

we have not done any experiments with integration tests.

412

EuroSys ’21, April 26–28, 2021, Online, United Kingdom Sixiang Ma, Fang Zhou, Michael D. Bond, and Yang Wang

Figure 1. Overview of ZebraConf.

3.3 System Architecture
As illustrated in Figure 1, ZebraConf consists of three key

components: TestGenerator, TestRunner, and ConfAgent.

At the top layer, TestGenerator determines which unit tests

to run and what heterogeneous configurations to use for each

unit test.

At the middle layer, given a unit test and a heterogeneous

configuration, TestRunner follows Definition 3.1 to test 1)

whether the unit test reports an error for the given heteroge-

neous configuration; and 2) whether the unit test reports an

error for any corresponding homogeneous configuration.

At the bottom layer, ConfAgent is responsible for running

a given unit test with a given configuration, either heteroge-

neous or homogeneous. The main task of ConfAgent is to

distribute different configurations to different nodes.

4 Design of TestGenerator
TestGenerator is responsible for generating all the test in-

stances. In the general case, a test instance is represented

by a tuple of a unit test and a heterogeneous configuration

HeteroConf (F1, F2, ..., Fn). Table 1 shows the number of unit

tests and parameters in different applications. As one can

imagine, enumerating the combination of all parameter values

and all unit tests will generate too many test instances Exac-

erbating this problem, we observe that many whole-system

unit tests can take a long time (e.g., several minutes), because

they need to wait for a cluster to be set up. To alleviate this

problem, we introduce a number of strategies and techniques:

Test parameters independently. We assume that whether a

configuration parameter is unsafe when set in a heteroge-

neous manner (i.e., different values on different nodes) does

not depend on the values of other parameters. This assumption

allows us to simplify Definition 3.2 to test each parameter indi-

vidually rather than testing their combinations, which greatly

reduces the number of test instances. With this strategy, Test-

Generator converts the representation of a test instance into

#Unit tests # App-specific parameters
Flink 26,226 447 [11]

Hadoop Tools 1,518 N/A

HBase 4,985 206 [15]

HDFS 6,445 579 [20, 21]

MapReduce 1,423 210 [31]

YARN 4,806 465 [45]

Table 1. Statistics for each application. Hadoop Tools provide

a number of tools to support other applications, but do not

have their own parameters. All other applications have their

own parameters (see table’s citations for details) and share

the Hadoop Common library (see [13] for details), which has

336 parameters.

a tuple of 1) a unit test, 2) the name of the parameter to test,

and 3) the parameter value at each node. All other parameters

will use the original values in the particular unit test.

Of course this assumption does not always hold, and Test-

Generator allows additional rules to specify that when testing

parameter 𝑝1 with value 𝑣1, we should set 𝑝2’s value to 𝑣2.
Currently TestGenerator requires the developer’s effort to

generate these rules and in our experiments, we manually

add rules for a few parameters which obviously depend on

others. For example, in HDFS there is a parameter to con-

figure whether to use the http or https protocol, and two

parameters to set the http and https addresses. Following the

HDFS documentation, we set the http address if using the

http protocol and set the https address if using the https pro-

tocol. Future work could extract the relationship between

different parameters automatically, by relying on parameter

dependence analysis [6].

Select parameter values to test. For boolean parameters, se-

lecting values is trivial since we only need to test true and

false values. For other types of parameters, we manually se-

lect a few values that we believe are representative based on

the documentation of the target application. For numerical val-

ues, apart from the default value, we select one that is much

larger than the default value, one that is much smaller, and

values that have specific meanings (e.g., 0 or -1 sometimes

means this feature is disabled). For string values, we select the

values listed in the documentation of the target application.

Select representative value assignment. If a unit test con-

tains 𝑛 nodes and we need to test a parameter with two differ-

ent values 𝑣1 and 𝑣2, then there are 2𝑛 ways to assign values to

nodes. To reduce this number, we select a few representative

assignment strategies, based on the observation that nodes of

the same type are executing the same piece of code and thus

are mostly symmetric. We first divide nodes into groups based

on their types and then test each group 𝐺 with the following

strategies: 1) assign 𝑣1 (𝑣2) to all nodes in𝐺 and assign 𝑣2 (𝑣1)
to all other nodes. This strategy tests heterogeneous config-

uration across different types of nodes; 2) assigns values in

413

Finding Heterogeneous-Unsafe Configuration Parameters in Cloud Systems EuroSys ’21, April 26–28, 2021, Online, United Kingdom

a round robin order to nodes within 𝐺 (i.e., assign 𝑣1 (𝑣2) to

the first node, assign 𝑣2 (𝑣1) to the second node, assign 𝑣1 (𝑣2)
to the third node, and so on), and assign 𝑣2 (𝑣1) to all other

nodes. This strategy further tests heterogeneous configuration

within nodes of the same type.

Pre-run unit tests. The previous step generates a list of test

instances, each specifying how to assign configuration val-

ues to different nodes in a unit test. However, not all these

test instances are effective to test a heterogeneous configura-

tion, and TestGenerator “pre-runs” all unit tests once to filter

ineffective test instances.

First, many unit tests do not create any nodes: as explained

in Section 3.2, the term “unit test” initially referred to tests

targeting individual functions and has changed recently to

include whole-system tests. Unit tests that do not create any

node are of course unable to test heterogeneous configurations.

During the pre-run of a unit test, if the test does not start any

node, then TestGenerator removes the test from its list.

Second, not all nodes in all unit tests use all parameters. If

we assign a parameter value to a node not using the param-

eter, then of course we are wasting time. This fact provides

an opportunity for us to further trim the number of tests to

run. To exploit this opportunity, during the pre-run TestGen-

erator records which node is using which parameter in each

unit test. When generating test instances, TestGenerator ap-

plies the following rule: for a unit test with nodes of type

𝐴 and a parameter 𝑝, TestGenerator will only generate test

instances to test 𝑝 on nodes of type 𝐴 if these nodes actu-

ally use 𝑝 in the pre-run. For example, in HDFS, TestGener-

ator will not test dfs.datanode.balance.bandwidthPerSec
on NameNode because NameNode never uses this parameter.

A challenge of this technique is how to determine whether

a node “uses” a parameter. In our current implementation, we

define “use” as reading a parameter, which is easy to imple-

ment but is conservative since a node may read a parameter’s

value during initialization and never use the value later. Future

work could explore using program analysis to improve the

accuracy of identifying whether a parameter’s value is used.

As shown in our evaluation (Table 5), pre-running unit tests

and filtering ineffective tuples allows us to reduce the number

of unit tests to run by up to three orders of magnitude.

Pooled testing. To further reduce testing time, we observe

that most configuration parameters are heterogeneous safe.

This motivates us to use a divide-and-conquer approach: in-

stead of testing only one parameter for heterogeneous safety

when running a unit test, we test multiple parameters (called

a “pool”) together. If the unit test does not report any errors,

then all of these parameters are assumed to be safe; otherwise,

we divide these parameters into two groups and test each

group recursively, until we can identify all unsafe parameters.

In our evaluation, we set the maximal pool size to be equal to

the number of parameters.

In order for this approach to be an effective optimization,

we need most pools of parameters to be error free. However,

we found that the efficiency of this approach is hampered by

a small number of heterogeneous-unsafe parameters that fail

almost every unit test. Examples include parameters related

to encryption and compression, which are used by most unit

tests. To solve this problem, if TestGenerator finds that a

parameter has failed many unit tests, TestGenerator will mark

the parameter as unsafe and avoid using it in future tests.

Test in parallel. Unit tests are independent from each other,

which provides a natural opportunity to run unit tests in par-

allel. In our experiments, we run unit tests on a cluster of

machines to reduce total wall-clock time.

5 Design of TestRunner
TestRunner is responsible for running a test instance (a unit

test and a heterogeneous configuration) generated by Test-

Generator. Based on Definition 3.1, TestRunner will test both

the heterogeneous configuration generated by TestGenerator

and all corresponding homogeneous configurations: if the

former one reports an error and the latter ones do not, then

TestRunner will report a heterogeneous-unsafe parameter.

TestRunner’s task is complicated by nondeterministic er-

rors in unit tests. For example, if a heterogeneous configura-

tion has a probability to fail but does not fail in one test, then

we may miss a heterogeneous-unsafe configuration parameter

(i.e., false negative). If one of the homogeneous configura-

tions has a probability to fail but does not fail in one test, then

we may report a heterogeneous-safe parameter as unsafe (i.e.,

false positive). In our experiments, we find that false positives

caused by nondeterministic errors are common.

To reduce false positives in the face of nondeterminism,

we run multiple trials of a test instance (both its heteroge-

neous configuration and corresponding homogeneous config-

urations) until we can be sure that the parameter is heteroge-

neous unsafe with high probability, according to hypothesis

testing using a significance level of 0.0001 (i.e., 1 − 99.99%).

To minimize run time, we run multiple trials of a test in-

stance only if its heterogeneous configuration fails and none

of its homogeneous configurations fail in the first trial. This

approach saves time but can result in false negatives due to

nondeterminism. To reduce false negatives, a developer would

need to run the test instances multiple times, which is not ideal

but is the standard solution for most nondeterministic errors.

On the other hand, although we run only one trial for most of

the test instances, most parameters are tested by multiple test

instances, reducing the chances of false negatives.

6 Design of ConfAgent
In ZebraConf, ConfAgent is responsible for running a unit

test with a given configuration. Since the major challenge

comes from heterogeneous configurations, our discussion

focuses on this context, using an example shown in Figure 2.

414

EuroSys ’21, April 26–28, 2021, Online, United Kingdom Sixiang Ma, Fang Zhou, Michael D. Bond, and Yang Wang

1 /* Blank constructor */
2 public Configuration() {
3 ConfAgent.newConf(this);
4 ...
5 }
6

7 /* Clone constructor */
8 public Configuration(Configuration other) {
9 ConfAgent.cloneConf(other, this);

10 ...
11 }
12

13 /* Get the value of name parameter */
14 public String get(String name) {
15 String value = properties.getProperty(name);
16 return value;
17 return ConfAgent.interceptGet(this, name);
18 }
19

20 /* Set the value of the name parameter */
21 public void set(String name, String value) {
22 ConfAgent.interceptSet(this, name, value);
23 ...
24 }

(a) Pseudocode of the Configuration class.

1 private Configuration conf;
2 private Component c;
3

4 public static void main() {
5 ...
6 /* create a blank config object */
7 Configuration conf = new Configuration();
8 Server server = Server(conf);
9 ...

10 }
11

12 /* Server init function */
13 public Server(Configuration conf) {
14 ConfAgent.startInit(this, ’Server’);
15 /* replace saving reference with refToClone

*/
16 this.conf = conf;
17 this.conf = ConfAgent.refToCloneConf(conf);
18 /* initialize this Server */
19 c = new Component();
20 ...
21 ConfAgent.stopInit();
22 }
23

24 protected void funA() { ...}

(b) Pseudocode of the Server class.

1 private Configuration conf;
2

3 /* Component init function */
4 public Component() {
5 this.conf = new Configuration();
6 ...
7 }

(c) Pseudocode of the Component class.

1 public void test () {
2 Configuration conf = new Configuration();
3 /* create servers */
4 Server server1 = new Server(conf);
5 Server server2 = new Server(conf);
6 ...
7 server1.funA();
8 System.out.println(conf.get(XXX));
9 }

(d) Pseudocode of a unit test.

Figure 2. An example of how an application and its unit tests may use configuration objects, and how to modify the application

to support ZebraConf with the ConfAgent API (lines with ConfAgent are added by the developer).

6.1 Challenges
To run a unit test with a heterogeneous configuration, Conf-

Agent needs to be able to control the configuration values at

each node. This would be trivial in a real distributed setting or

in an integration test, in which each node would be running

as a process: we could give each node a separate configura-

tion file. However, the context of unit tests is significantly

more challenging because unit tests often create nodes as

threads within a single process, and all nodes inherently share

the same configuration file, making it infeasible to assign

different configuration files to different nodes.

To address this problem, we observe that well-designed

applications usually keep track of configuration values in a

dedicated configuration object (e.g., Figure 2a). The config-

uration object usually provides a get function to retrieve a

certain configuration value and a set function to set the value.

Therefore, if we can modify the configuration objects to re-

turn different values to different nodes, we will achieve our

goal. This approach has the benefit that it only requires mod-

ifying a dedicated class. The challenge is how to determine

which node is calling the get function of a particular configu-

ration object. To illustrate the challenge, we describe a few

approaches we tried that failed.

Determine caller based on configuration object. Initially,

we thought that if each node uses one configuration object

internally, then our task would be trivial: we could annotate

the creation of each configuration object to connect it to a

node. However, when investigating real applications and their

unit tests, we found that this assumption was almost never

true, manifesting in two different ways. First, a unit test of-

ten creates a configuration object by itself and then shares

the object with different nodes. For example, as shown in

Figure 2d, the unit test creates a Configuration object, and

then uses the object to create two Server objects. In this case,

these two Server objects and the unit test (the unit test itself

is treated as a “client” node in ZebraConf) are sharing the

415

Finding Heterogeneous-Unsafe Configuration Parameters in Cloud Systems EuroSys ’21, April 26–28, 2021, Online, United Kingdom

Configuration object. In our experiments, we find configu-

ration object sharing occurs in 99.9%, 99.8%, 96.5%, 100%,

and 88.5% of the unit tests that involve configuration usage

in Flink, HBase, HDFS, MapReduce, and YARN respectively.

Second, sometimes a node creates multiple configuration ob-

jects, which violates our assumption as well. For example,

at line 19 in Figure 2b, a Server object creates a Component
object, which later creates its own Configuration object (line

5 in Figure 2c).

Determine caller based on object allocation chain. In our

second attempt, we tried to tie each Java object to a node.

Then if a Java object called Configuration.get, we could

know which node was making the call. To implement this

idea, we first annotated a few objects as roots, which are

typically the main object of a node (e.g., DataNode and Na-

meNode in HDFS). Then we applied the following rule: if

object A’s method creates object B, then A and B belong to

the same node. While we found no correctness problems in

this approach, it was too invasive: we needed to add a node
field to each object; we needed to modify the constructor of

each object to pass the node field from its creator; and we

needed to do this not only for the target application, but also

for any third-party libraries used by the application. As a

result, this approach incurred too much overhead, in terms

of both the effort to modify the application and the CPU and

memory usage at run time.

Determine caller based on calling thread. In the third at-

tempt, we implemented a simplified version of our second

attempt by only keeping track of which node each thread
belongs to. We annotated the main thread of a node as the

root and applied the following rule: if thread A creates thread

B, then A and B belong to the same node. Then whenever

Configuration.get was called, we could retrieve the thread

ID of the caller and infer which node was making the call.

Compared to the second attempt, this approach was simpler

since getting the thread ID whenever Configuration.get
was called did not require tracking the object allocation chain

from the thread to Configuration.get. However, this ap-

proach relied on the assumption that a node’s code is only

executed by its own threads, and once again, we found that

the design of unit tests violates this assumption: for testing

convenience, it is common for a unit test to directly call nodes’

internal functions for various purposes, such as stopping a

node, adding data, checking status, and injecting faults. As a

result, a node’s code may be called by the unit test thread (i.e.,

main thread), and thus we cannot determine which node is

calling Configuration.get. For example, in Figure 2d, line

7, the unit test calls an internal function funA of server1. In

this case, funA should use the configuration object of server1,

but determining the caller based on the calling thread would

instead use the configuration object of the unit test.

Application Types of nodes
Flink JobManager, TaskManager

HBase
HMaster, HRegionServer, ThriftServer, REST-

Server

HDFS
NameNode, DataNode, SecondaryNameNode,

JournalNode, Balancer, Mover

MapReduce MapTask, ReduceTask, JobHistoryServer

Yarn
ResourceManager, NodeManager, Application-

HistoryServer

Table 2. The types of nodes we investigated.

6.2 ConfAgent’s Solution
ConfAgent’s solution is based on our first attempted solution

(determining the caller based on the configuration object). To

achieve high accuracy and to minimize the modification to

the target application despite the two challenges (i.e., con-

figuration object sharing across different nodes and multiple

configuration objects within a node), ConfAgent incorporates

several heuristics, based on our observation of how configura-

tion objects are used in the unit tests and the applications.

Observation 1: the number of types of nodes is small. As

discussed previously, for all methods, we need to define cer-

tain “root” classes or objects to separate different nodes at

run time. Fortunately we find this is a simple task: all the ap-

plications we investigated have a well-defined node class for

each type of node, e.g., NameNode and DataNode in HDFS.

The number of types of nodes is small, which means man-

ual annotation is feasible. Table 2 records the node types we

picked in our work.

Observation 2: flow of configuration objects. We observe

that information about configuration objects can flow in three

ways, providing hints about how to track them.

• Observation 2.1: creating a new blank configuration ob-
ject. Both the unit test itself and a node may create new

configuration objects (e.g., line 2 in Figure 2d and line 5

in Figure 2c). We observe that a node usually creates its

configuration objects in an initialization function, typically

the constructor function or another init function in the

node class. This means we can annotate the initialization

function to map a configuration object to its node. Note that

sometimes the object is created by a function called by the

initialization function, instead of by the initialization func-

tion itself (e.g., line 19 in Figure 2b calls the constructor of

the Component class, which creates a new Configuration
object). And sometimes a node may create multiple config-

uration objects, usually for its subcomponents. To capture

such relationships, ConfAgent adds the following rule: if a

configuration object is created at time 𝑡 on thread A, and

thread A executes the initialization function of a node be-

tween 𝑡1 and 𝑡2, and 𝑡1 < 𝑡 < 𝑡2, then the configuration

object belongs to the particular node.

416

EuroSys ’21, April 26–28, 2021, Online, United Kingdom Sixiang Ma, Fang Zhou, Michael D. Bond, and Yang Wang

• Observation 2.2: cloning a configuration object. Both the

unit test and the application may clone a configuration

object by creating an object with a constructor that copies

values from an existing object. We observe that the original

object and the cloned object usually belong to the same

entity (i.e., a node or the unit test itself).

• Observation 2.3: creating a new reference to a configu-
ration object. This will not create a new object, and thus

will not affect the mapping from configuration objects to

nodes, except in the following case: we observe a node’s

initialization function often takes a configuration object as

an argument and assigns it to an internal reference (line 16

in Figure 2b). In a real distributed setting, the main function

of the node class will create the configuration object and

use it to create the node class (lines 7–8 in Figure 2b), but

in the unit test, the unit test itself replaces the main function

and may share the configuration object with many nodes

(lines 2–5 in Figure 2d). To solve this problem, we require

the developer to replace such a configuration object refer-

ence in the initialization function with a clone (lines 16–17

in Figure 2b).

Observation 3: exceptions to the previous observations could
lead to a high false positive rate. Exceptions to the previous

observations may cause ConfAgent to fail to assign proper

values to different configuration objects, leading to false pos-

itives. In particular, if ConfAgent assigns different values

to configuration objects within the same node, it may cause

errors that will not happen in a real distributed setting, since

a node in a distributed setting will read the same value for

the same parameter from a configuration file. Although the

total number of exceptions is small compared to the total

number of unit tests, the number of heterogeneous-unsafe

configuration parameters is small as well, so these exceptions

would lead to a high false positive rate if they were not filtered

properly. ConfAgent tries to identify such cases during the

pre-run: for each unit test, it tries to map each configuration

object to either a node or the unit test itself; if it ultimately

finds that a configuration object is mapped to no entity, then

for this unit test, ZebraConf avoids testing any parameters

used by the unidentifiable configuration object.

Based on such observations, ConfAgent works as follows:

first, the developer needs to annotate the node initialization

and configuration object creation with the API provided by

ConfAgent (see Section 6.3). Then at run time, ConfAgent

follows the following rules (based on the observations above)

to determine the mapping from configuration objects to nodes:

Rule 1.1: Configuration object creation (Observation 2.1).
If a configuration object is created at time 𝑡 on thread A,

and thread A executes the initialization function of a node

between 𝑡1 and 𝑡2, and 𝑡1 < 𝑡 < 𝑡2, then the configuration

object “belongs to” the particular node.

Rule 1.2: Configuration object creation. If a configuration

object is created when no node has initialized, then we say

that this object “belongs to the unit test.”

Rule 2: Configuration object reference (Observation 2.3).
If the developer replaces a configuration object reference with

a clone during initialization, then the object to be cloned

belongs to the unit test, and the cloned object belongs to the

node that executes the initialization function.

Rule 3: Configuration object clone (Observation 2.2). If a

configuration object is cloned from another configuration

object but not by Rule 2, then these two objects belong to the

same entity.

As mentioned previously, if ConfAgent fails to map a con-

figuration object in a unit test with these rules during the

pre-run, ConfAgent excludes the test instances that combine

the unit test and the parameters used by the unidentifiable

configuration object from further testing, since they may gen-

erate false positives. Our evaluation shows that for four out of

the five target applications, less than 5% of the test instances

are excluded; for the remaining one, about 10% of the in-

stances are excluded. Such numbers indicate that these rules

accurately cover a high percentage of unit tests.

6.3 ConfAgent API and Implementation
To implement the aforementioned rules, ConfAgent provides

an API for the developer to annotate the source code of the

target application:

• startInit(node, nodeType) and stopInit(). The devel-

oper should use these two methods to annotate the start and

the end of the initialization function (e.g., lines 14 and 21

in Figure 2b). They serve to implement Rule 1.1.

• newConf(conf), cloneConf(origConf, newConf), and ref-
ToCloneConf(origConf). These three methods are for track-

ing configuration objects, which are used to implement all

of the rules mentioned above. The developer can annotate

the constructor of the configuration class with newConf or

cloneConf (e.g., lines 3 and 9 in Figure 2a). The devel-

oper should use refToCloneConf to replace a reference to a

configuration object with a clone in the node initialization

function (e.g., lines 16–17 in Figure 2b).

• interceptGet(conf, paraName) and interceptSet(conf,
paraName, paraValue). These two methods are for inter-

cepting the get and set functions of configuration objects,

in order to implement the heterogeneous configuration. The

developer can place these two methods in the get and set

functions of the configuration class (e.g., lines 17 and 22 in

Figure 2a).

To implement these API methods, ConfAgent maintains

the following data structures:

• A nodeTable object records the following for each node:

nodeID is the hashCode of the corresponding node; node-
Type is the type of the node (e.g., NameNode or DataNode);

417

Finding Heterogeneous-Unsafe Configuration Parameters in Cloud Systems EuroSys ’21, April 26–28, 2021, Online, United Kingdom

nodeIndex is 𝑖 if the node is the 𝑖th node of nodeType,

which is used by the TestGenerator to assign a configu-

ration value to a particular node (note that TestGenerator

cannot use nodeID for this purpose since nodeID may not

be consistent across multiple runs); confIDs is an array

recording the hashCode of all configuration objects be-

longing to this node; parentConfID records the hashCode

of the configuration object passed as the argument to the

initialization function, if any.

• A unitTestConfIDs list records configuration objects be-

longing to the unit test. An uncertainConfIDs list records

configuration objects that cannot be mapped to anywhere.

• The parentTochild<childConfID, parentConfID> map

keeps track of all cloning relationships.

• The threadContext<ThreadID, nodeID> map keeps track

of whether an initialization function of a particular node is

executing on a thread.

When startInit(node, nodeType) is called, ConfAgent

puts a new entry in nodeTable (confIDs is empty and parent-

ConfID is null). It further puts the current thread ID and node

ID in threadContext. When stopInit is called, ConfAgent

removes the current thread ID from threadContext.

When newConf, cloneConf, or refToCloneConf is called,

ConfAgent updates the information based on the rules men-

tioned previously:

• When newConf(conf) is called, if no node has initialized

yet, ConfAgent puts conf in unitTestConfIDs (Rule 1.2).

If threadContext has a pair of <ThreadID, nodeID> for

the current thread, ConfAgent puts conf into nodeTable
(Rule 1.1); otherwise, ConfAgent puts conf in uncertain-
ConfIDs.

• When cloneConf(origConf, newConf) is called, ConfAgent

searches if either origConf or newConf already belongs to a

node (i.e., in nodeTable) or the unit test (i.e., in unitTest-
ConfIDs): if so, ConfAgent puts the other one in the same

group (Rule 3); otherwise, ConfAgent puts both configu-

ration objects in uncertainConfIDs. In either case, Conf-

Agent puts the pair in the parentToChild map.

• When refToCloneConf(origConf) is called, ConfAgent

firsts clones origConf into a new object newConf. Conf-

Agent then puts newConf in nodeTable with the nodeID
retrieved from threadContext, and puts origConf in unit-
TestConfIDs (Rule 2). Furthermore, ConfAgent recursively

searches origConf’s parent in the parentToChild map to

move them from uncertainConfIDs to unitTestConfIDs
(Rule 3). Finally, ConfAgent returns newConf.

As mentioned previously, if uncertainConfIDs is not empty

at the end of a unit test during the pre-run, meaning that

ConfAgent cannot properly map certain objects to a node,

ConfAgent excludes the test instances that combine this unit

test and any parameters used by the configuration objects in

uncertainConfIDs from further testing.

When interceptGet(conf, paraName) is called, ConfAgent

first searches whether conf is in nodeTable: if so, Conf-

Agent can retrieve its corresponding nodeType and nodeIndex
and check whether TestGenerator has assigned a particular

value to <nodeType, nodeIndex, paraName>, in which case

interceptGet returns the assigned value. If conf is not in

nodeTable or if TestGenerator has not assigned a particular

value, ConfAgent returns the original value in conf.

ConfAgent utilizes interceptSet to solve the following

problem: sometimes the unit test creates a configuration ob-

ject with empty values, then creates a node with this config-

uration object, expecting the node to fill the empty values,

and later retrieves these values (e.g., line 8 in Figure 2d).

Since we replace the reference with a clone, the unit test

is unable to get the correct values after node initialization.

To solve this problem, ConfAgent adds the following logic

to interceptSet(conf, paraName, paraValue): if conf be-

longs to a node in nodeTable and the parentConfID of the

particular node is not empty, then ConfAgent updates the

corresponding value of the parent conf as well.

To illustrate the whole workflow, we next present how

ConfAgent works on the example shown in Figure 2.

Step 1: When the unit test starts, it creates a new blank con-

figuration (line 2 in Figure 2d), which triggers ConfAgent’s

newConf function at line 3 of Figure 2a. At this moment, since

no node has been initialized yet (i.e., nodeTable is empty),

ConfAgent marks this configuration object as belonging to

the unit test (Rule 1.2).

Step 2: The unit test creates server1: the constructor of

the Server class triggers ConfAgent’s startInit function

(line 14 in Figure 2b). This function generates a nodeID for

this Server object and then registers a new node with type

“Server” and its nodeID in the nodeTable; it also registers

nodeID (i.e., server1) in threadContext, indicating that the

code of server1 is running on the main thread.

Step 3: The Server constructor triggers the refToClone func-

tion of ConfAgent (line 17 in Figure 2b). This function first

clones the object. Then it tries to assign the cloned configura-

tion object to a node by searching the threadContext to find

which node is running on the current thread. In our example,

it finds server1 is running, so it marks the cloned configura-

tion object as belonging to server1 (Rule 2). It also marks

the configuration object to be cloned as belonging to the unit

test, but since that object was already marked in Step 1, this

step does not change anything.

Step 4: The Server constructor creates a component object,

which creates its own blank configuration (line 5 in Figure 2c).

It triggers ConfAgent’s newConf function. In this case, since

ConfAgent finds server1 is running on the current thread

from threadContext, it marks the new configuration object

as belonging to server1.

418

EuroSys ’21, April 26–28, 2021, Online, United Kingdom Sixiang Ma, Fang Zhou, Michael D. Bond, and Yang Wang

Step 5: The Server constructor triggers ConfAgent’s stop-
Init function (line 21 in Figure 2b), which unregisters ser-
ver1 from the threadContext.

Step 6: The unit test creates server2 (line 5 in Figure 2d),

which repeats Steps 2–5 and marks the corresponding config-

uration objects as belonging to server2.

Step 7: When the unit test calls funA (line 7 in Figure 2d),

if this function calls Configuration.get, ConfAgent can in-

tercept this function (line 17 in Figure 2a) and know that

the configuration object belongs to server1. ConfAgent can

manipulate the return value here to allow server1 and other

nodes to have different configuration values.

6.4 Assumptions
Although we have tried to make our implementation general-

ize to different applications, it does rely on a few assumptions:

1) the application should have whole-system unit tests; 2) the

application should have a well-defined configuration class,

which contains all the configuration parameters used by the

application; 3) for each type of node, a well-defined initial-

ization function will initialize all its configuration objects,

either by creating a new configuration object or by storing

a reference to an argument of the function; 4) configuration

objects are not stored as global variables, because that would

prevent ConfAgent from classifying configuration objects;

and 5) different nodes should not share any object that needs

to read configuration values, since we cannot determine what

value to give to a shared object.

A violation of assumption 2, 3, 4, or 5 does not completely

prevent ConfAgent from working: we can always modify

the source code to handle these violations, or skip certain

parameters if they are shared. Of course the more violations

the application has, the less effective ZebraConf becomes.

In the evaluation section, we discuss our experience with

violations of these assumptions in real-world applications.

7 Experimental Evaluation
We implemented ConfAgent with 641 lines of Java code,

TestRunner with 610 lines of Java Code and 1,285 lines of

shell script, and TestGenerator with 133 lines of Java code

and 327 lines of shell script. We also have 227 lines of shell

script to run tests with Docker containers [34].

Our evaluation tries to answer two questions:

• How many heterogeneous-unsafe configuration parameters

can ZebraConf find in real-world applications? (§7.1)

• How can the individual techniques of ZebraConf help to

improve its accuracy and reduce its running time? (§7.2)

To answer these questions, we have applied ZebraConf to

Flink, HBase, HDFS, MapReduce, and YARN. We manually

analyzed all the reported problems to understand whether

they are true problems or false positives. Our principles for

separating true problems and false positives are as follows.

1) To check whether a failed unit test may happen in a real

distributed setting to be a true problem, we check two proper-

ties: first, a client should not need to manipulate the private

data of a server, which is only possible in a unit test, not in a

real distributed setting; second, the error should not be caused

by an inconsistent configuration within one node, which will

not happen in a real distributed setting; 2) If the failed test

causes an error in the application code, we classify it as a real

problem. 3) If the failed test does not cause any errors in the

application code, but violates some assertion in the unit test,

we try to understand the assertions and make a best-effort

determination whether the assertion would be meaningful in

a realistic setting: if yes, we classify it as a real problem;

otherwise, we classify it as a false positive.

Testbed. We run all experiments on CloudLab [9]. Each ma-

chine is equipped with two Intel Xeon 10-core CPUs, 192 GB

DRAM, 480 GB SATA SSD (where we run experiments),

and 1 TB SAS HD. We use up to 100 physical machines and

allocate 20 Docker containers on each physical machine to

run unit tests in parallel.

7.1 Heterogeneous-Unsafe Configuration Parameters
in Real-World Applications

ZebraConf reports a total number of 57 heterogeneous-unsafe

parameters in the five target applications, and our manual

analysis reveals 41 of them are true problems. We list all true

problems in Table 3.

We categorize the true problems as follows, and we discuss

them in the contexts of both long-term heterogeneous con-

figuration and short-term heterogeneous configuration (i.e.,

partial reboot in a homogeneous system).

• Compression-, encryption-, authentication-, or transport-

protocols-related parameters. These parameters affect the

data format in a file or in a network communication, and

thus if two nodes have different parameter values, one node

will not be able to read data correctly. For a pair of nodes

transferring data to each other, there is no reason to use

heterogeneous values for these parameters in the long term.

Reconfiguring these nodes may create a heterogeneous

configuration in the short term, and a possible solution is

to store the parameter value for each file or communication

channel, so that a reconfiguration will not affect files or

channels created before reconfiguration.

• Heartbeat-related parameters. If a heartbeat sender has a

large interval value but the receiver has a small value, the

sender may not send heartbeats in time, so that the re-

ceiver may decide the sender has died. While there is no

good reason to use heterogeneous heartbeat intervals in

the long term, it may happen in the short term due to the

demand to reconfigure such values at run time. For exam-

ple, since version 2.9.0, HDFS has supported reconfiguring

dfs.heartbeat.interval at run time with its reconfigura-

tion interface hdfs dfsadmin -reconfig namenode [17].

419

Finding Heterogeneous-Unsafe Configuration Parameters in Cloud Systems EuroSys ’21, April 26–28, 2021, Online, United Kingdom

Parameter Why parameter is heterogeneous unsafe
Flink
akka.ssl.enabled TaskManager fails to connect to ResourceManager.

taskmanager.data.ssl.enabled TaskManager fails to decode peer message due to invalid SSL/TLS record.

taskmanager.numberOfTaskSlots JobManager fails to allocate slot from TaskManager.

Hadoop Common
hadoop.rpc.protection RPC client fails to connect to RPC servers.

ipc.client.rpc-timeout.ms Socket connection timeouts.

HBase
hbase.regionserver.thrift.compact Thrift Admin fails to communicate with Thrift Server.

hbase.regionserver.thrift.framed Thrift Admin fails to communicate with Thrift Server.

HDFS
dfs.block.access.token.enable DataNode fails to register block pools.

dfs.bytes-per-checksum Checksum verification fails on DataNode.

dfs.blockreport.incremental.intervalMsec End users may observe inconsistent number of blocks.

dfs.checksum.type Checksum verification fails on DataNode.

dfs.client.block.write.replace-datanode-on-failure.enable NameNode reports Exception when Client tries to find additional DataNode.

dfs.client.socket-timeout Socket connection timeouts.

dfs.datanode.balance.bandwidthPerSec Balancer timeouts because DataNode fails to reply in time.

dfs.datanode.balance.max.concurrent.moves Balancer becomes 10x slower due to DataNode congestion control.

dfs.datanode.du.reserved End users may observe inconsistent size of reserved space.

dfs.data.transfer.protection Sasl handshake fails between Client and DataNode.

dfs.encrypt.data.transfer DataNode fails to re-compute encryption key as block key is missing.

dfs.ha.tail-edits.in-progress JournalNode declines NameNode’s request to fetch journaled edits.

dfs.heartbeat.interval NameNode falsely identifies alive DataNode as crashed.

dfs.http.policy Tool DFSck fails to connect to HTTP server.

dfs.namenode.fs-limits.max-component-length Length of component name path exceeds maximum limit on NameNode.

dfs.namenode.fs-limits.max-directory-items Directory item number exceeds maximum limit on NameNode.

dfs.namenode.heartbeat.recheck-interval End users may observe inconsistent number of dead DataNodes.

dfs.namenode.max-corrupt-file-blocks-returned End users may observe inconsistent number of corrupted blocks.

dfs.namenode.snapshotdiff.allow.snap-root-descendant NameNode declines Client’s request to do snapshot.

dfs.namenode.stale.datanode.interval End users may observe inconsistent number of stale DataNodes.

dfs.namenode.upgrade.domain.factor Balancer hangs because of block placement policy violation on NameNode.

MapReduce
mapreduce.fileoutputcommitter.algorithm.version Different Mapper/Reducer output commit dirs cause Hadoop Archive error.

mapreduce.job.encrypted-intermediate-data Reducer fails during shuffling due to checksum error.

mapreduce.job.maps Reducer fails when copying Mapper output.

mapreduce.job.reduces Reducer fails when copying Mapper output.

mapreduce.map.output.compress Reducer fails during shuffling due to incorrect header.

mapreduce.map.output.compress.codec Reducer fails during shuffling due to incorrect header.

mapreduce.output.fileoutputformat.compress End users may observe inconsistent names of output files.

mapreduce.shuffle.ssl.enabled NodeManager’s Pluggable Shuffle fails to decode messages.

Yarn
yarn.http.policy Client fails to connect with Timeline web services.

yarn.resourcemanager.delegation.token.renew-interval End users may observe newer tokens expire earlier than prior tokens.

yarn.scheduler.maximum-allocation-mb ResourceManager disallows value decreasement.

yarn.scheduler.maximum-allocation-vcores ResourceManager disallows value decreasement.

yarn.timeline-service.enabled Client fails to connect to Timeline Server.

Table 3. The 41 true heterogeneous-unsafe configuration parameters found by ZebraConf.

Such an online reconfiguration will create a short-term

invalid heterogeneous configuration.

We propose the following workaround: if the administrator

needs to decrease the heartbeat interval, she should change

the value at the heartbeat sender first, and then change the

value at the receiver; if the administrator needs to increase

the interval, she should change it at the receiver first and

then at the sender. This strategy ensures that the sender

interval is always less than or equal to the receiver interval,

so that the receiver will not miss heartbeats. However, this

420

EuroSys ’21, April 26–28, 2021, Online, United Kingdom Sixiang Ma, Fang Zhou, Michael D. Bond, and Yang Wang

workaround may not always work, since sometimes a node

can act as both the sender and the receiver.

• Max-limit-related parameters. These parameters can en-

counter problems if we reconfigure a node’s max limit to

be smaller, while the state of the node already exceeds the

smaller limit. The administrator should simply not try to

reconfigure a node to decrease the max limit. In contrast,

increasing the limit causes no problems in our experiments.

• Counts of tasks. Nodes with inconsistent values of these pa-

rameters will have problems retrieving data. These parame-

ters should not be configured in a heterogeneous manner.

• Others. This group contains some interesting parameters

that we did not expect to be unsafe. We provide details

about some of them as follows.

dfs.datanode.balance.bandwidthPerSec . This parameter is

used to specify the maximum amount of bandwidth that each

HDFS DataNode can utilize for balancing. Starting in HDFS

0.20, developers made this parameter online reconfigurable

with a new dfsadmin command, because administrators found

“the optimal value of the bandwidthPerSec parameter is not al-

ways (almost never) known at the time of cluster startup” [18].

Setting bandwidthPerSec either too low or too high may bring

the cluster into a “maintenance window,” which is expensive

for large clusters. Making this parameter reconfigurable at

run time would help to avoid or alleviate this issue.

However, when setting this parameter in a heterogeneous

manner, we observe the following problem: a DataNode with

a high bandwidth limit may send many packets to a DataNode

with a low limit so that the latter may run out of its quota. In

this case, the latter will throttle its network traffic, which is

expected. However, such throttling may prevent the DataNode

from sending progress report to the Balancer, which is a tool

to balance data in the cluster. As a result, the Balancer times

out eventually. To solve this problem, we propose that each

node should reserve a small fraction of bandwidth for critical

traffic like heartbeats or progress reports.

dfs.datanode.balance.max.concurrent.moves . A unit test

reports timeout (100 s) when this parameter is configured to

be 1 on DataNodes and 50 on the Balancer. The default value

for this parameter is 50, which allows 50 threads on a Data-

Node to transfer blocks for balancing.

We checked the average balancing time for several con-

figurations in the unit test: the time for (DataNode:50, Bal-

ancer:50) was 14 seconds and for (DataNode:1, Balancer:1)

was 16.7 seconds—but the time for (DataNode:1, Balancer:50)

was 154 seconds. While it made sense that (DataNode:50, Bal-

ancer:50) was faster than (DataNode:1, Balancer:1), it was

initially unclear why (DataNode:1, Balancer:50) was signifi-

cantly slower than (DataNode:1, Balancer:1).

Our further investigation showed that in (DataNode:1, Bal-

ancer:50), because Balancer is unaware of the 1-thread ca-

pacity on DataNodes, it still sends block transfer requests

to DataNodes concurrently. However, a DataNode declines

requests when its thread is already performing block transfer

for balancing. When the request is declined, the correspond-

ing Balancer dispatcher thread triggers a congestion control

mechanism, which sleeps for 1100 ms before it retries. Since

the DataNodes usually can finish usually can finish a block

transfer request within 1100 ms, such congestion control adds

an extra delay to the whole procedure.

The reader may wonder why we want to set this parameter

differently on Balancer and on DataNodes in the first place.

Indeed, if all DataNodes have the same value, there is no good

reason for the Balancer to use a different value. However, if

different DataNodes have different values, then it is inevitable

that the Balancer’s configuration will be different from some

of the DataNodes. Because of the reported problem, it seems

like a bad idea for the Balancer to use one value for this

parameter. Instead, the Balancer should retrieve this value

from different DataNodes, and accordingly send different

numbers of tasks to different DataNodes. We observe that the

community is already discussing this solution [19].

dfs.namenode.upgrade.domain.factor . This parameter is

in effect when HDFS’s block placement policy is set to Block-
PlacementPolicyWithUpgradeDomain. Upgrade domain is a

feature to support rolling upgrade, which upgrades a subset of

DataNodes at a time. To minimize the chance of data unavail-

ability, a rolling upgrade should affect at most one replica of

a data block at a time. To satisfy this property, HDFS allows

the administrator to divide DataNodes into groups, called

upgrade domains, and HDFS ensures the replicas of a data

block are placed into different upgrade domains.

A unit test that tests whether data rebalancing still honors

a domain-aware block placement policy fails when Balancer

and NameNode are configured with different numbers of

upgrade domains. The rebalancing task never finishes be-

cause some block transfer requests are always declined by

NameNode, which identifies the block transfer as an action

that results in a violation of the placement policy being used.

Similar to the previous problem, if different NameNodes1

have the same number of UpgradeDomains, there is no good

reason for the Balancer to use a different value. If differ-

ent NameNodes have different numbers of UpgradeDomains,

however, it is inevitable for Balancer’s configuration to be

different from some HDFS NameNode’s configuration. A pos-

sible solution for this issue is to let Balancer fetch the value of

the domain factor from the corresponding NameNode, instead

of reading from its local configuration file.

dfs.blockreport.incremental.intervalMsec . This param-

eter determines whether, if a DataNode deletes a data block,

the NameNode will receive the update immediately or whether

the update can be delayed. If the DataNode is configured to

use the delayed mode and the client’s configuration file says

a block deletion is reported immediately, a user may issue a

1Multiple NameNodes have been supported by HDFS since version 0.23.

421

Finding Heterogeneous-Unsafe Configuration Parameters in Cloud Systems EuroSys ’21, April 26–28, 2021, Online, United Kingdom

delete command, expecting the block to disappear immedi-

ately, yet later find the block is still present (HDFS has one

unit test simulating this case).

It is debatable whether this parameter presents a true prob-

lem. On the one hand, it does not cause any explicit errors in

the application; on the other hand, it does expose an incon-

sistency to the user since the application’s behavior does not

match the configuration value. We find a total of 16 parame-

ters having similar problems in our study. Our principle for

separating true problems and false positives is that if the user

can observe an inconsistency through the application’s public

APIs, then we mark the corresponding parameter as a true

problem. If an inconsistency can only be observed through the

application’s private functions, we mark it as a false positive.

For the 16 parameters that cause similar issues, this principle

separates them into 7 true problems and 9 false positives.

Such problems show that it is often risky for an application

user to make assumptions about the internal implementation

of the application, and thus it may be better not to expose

internals-related parameters to the application users.

Causes of false positives. We summarize the top causes of

false positives as follows:

• The setting does not happen in a real distributed system.

Some tests check or manipulate the private data of a node,

which cannot happen in a real system. For example, an

HBase test directly opens a new region on HRegionServer

by calling HRegionServer.openRegion, with the client’s

configuration object. In a real distributed setting, an HBase

client can only do so through an RPC, in which case the

server will use its own configuration object.

• Violating assumptions. In the unit tests of Hadoop projects,

different nodes share the InterProcess Communication (IPC)

component, which has its own configuration object. How-

ever, the IPC component sometimes reads configuration

values from external configuration objects as well. The

combination of sharing the IPC component and the IPC

component reading values from different places causes the

IPC component to read different values in a heterogeneous

test, which leads to false alarms for four IPC-related config-

uration parameters. After we modified one line of code in

Hadoop to disable the sharing, the false alarms disappeared.

• Overly strict assertions. Many unit tests use assertions to

check the state of the target application. While many of

them are meaningful and reveal real problems, we find that

a few are overly strict. For example, one test compares

the image files of different NameNodes to ensure they are

the same, which is meaningful, but it first unnecessarily

compares the lengths of the two files. In a heterogeneous

setting in which one NameNode compresses the image but

the other NameNode does not, their image file lengths are

different but their actual contents are still the same.

In our experiments, we find that false positives are usu-

ally not hard to identify, since unrealistic settings and strict

Application Modified LOC
Flink 30 + 8

Hadoop Common 0 + 6

HBase 16 + 7

HDFS 24 + 6

MapReduce 12 + 6

Yarn 12 + 6

Table 4. Modified lines of code to apply ZebraConf to each

application. The first number is lines related to modifying

the node classes, and the second number is lines related to

modifying the configuration class.

assertions are usually explicit in the unit test code, which is

usually short and easy to understand. The one exception is

false alarms caused by IPC sharing, which took us one day to

figure out. Understanding the reasons for true problems, on

the other hand, is a lot harder, since they often require a deep

understanding of how the whole system works.

7.2 Effects of Individual Techniques
Effort to modify the applications. As discussed in Section 6.3,

to use ZebraConf, the user needs to use ConfAgent’s API to

modify two types of class files: the node class and the config-

uration class. Table 4 shows the lines of code we needed to

modify in each application. As the table shows, the modifica-

tions to support ZebraConf required low effort.

Among these applications, we find all applications have

well-defined configuration objects. HDFS, HBase, MapRe-

duce, and YARN have well-defined initialization functions

for each type of node. Flink is more complicated: its node

class has initialization functions, which are used in a real

distributed setting, but its unit tests do not invoke the initial-

ization functions directly and instead copy the initialization

code into the unit test code. It is unclear to us why Flink uses

such a design; in any case, it required additional effort on our

part to identify and annotate the copied initialization code.

Reduction of number of tests to run. Table 5 presents the

effects of individual techniques incorporated by ZebraConf.

The first row is the number of test instances ZebraConf

would run assuming the user has the same level of expertise

as us but does not pre-run those unit tests as ZebraConf does.

In particular, it assumes that the user tests each parameter

independently, selects parameter values in the same way as

us, and selects value assignment in the same way as us (Sec-

tion 4). It also assumes the user knows which types of nodes

the corresponding application includes, so she will not test

nodes or parameters not included in the application. For ex-

ample, for HDFS, she will not test RegionServer and related

parameters, which belong to HBase; for HBase, however, she

will test HDFS NameNode or DataNode and related param-

eters, because HBase depends on HDFS. As one can see in

the table, even with these strategies, ZebraConf needs to run

a large number of tests.

422

EuroSys ’21, April 26–28, 2021, Online, United Kingdom Sixiang Ma, Fang Zhou, Michael D. Bond, and Yang Wang

Flink Hadoop-Tools HBase HDFS MapReduce YARN
Original 7,193,881,080 373,850,400 557,761,680 387,499,008 284,486,160 705,346,824

After pre-running unit tests 2,019,422 356,016 6,145,374 10,404,952 482,272 668,020

After removing uncertainty 1,972,278 346,588 6,033,174 10,242,886 430,800 640,338

After pooled testing 259,573 89,744 1,438,929 1,968,218 104,588 312,726

Table 5. The number of test instances generated after successively applied methods.

The second row reports the number of test instances after

we pre-run the unit tests to filter ineffective ones. By looking

at the test information, we observe that 1) many unit tests,

which are designed to test individual data structures, do not

even start any nodes, and thus are completely filtered by this

step; 2) almost no unit tests use all parameters; 3) even for unit

tests that use a certain parameter, in many cases the parameter

is only used by a subset of nodes. Together these reasons

allow us to reduce the number of test instances to run by up

to three orders by magnitude.

The third row computes the number of test instances after

we remove those with uncertain configuration objects (Sec-

tion 6). As one can see, most of the test instances do not

encounter uncertain configuration objects, confirming the ac-

curacy of ZebraConf’s approach to map configuration objects

to nodes. Note however that although the percentage of tests

with uncertainties is small, if we did not remove them, they

would yield a high false positive rate, because the percentage

of unsafe parameters among all parameters is small as well.

The last row records the number of test instances Zebra-

Conf actually runs after applying pooled testing, including

both the executed pooled tests and individual tests (when a

pooled test fails). As the table shows, pooled testing further

reduces the number of tests ZebraConf needs to run.

These techniques reduce the number of tests to run by two

to four orders of magnitude. With their help, ZebraConf is

able to finish all tests within 4,652 machine hours. While this

number is not small, it is affordable considering that an appli-

cation does not need to be tested by ZebraConf frequently.

Effects of hypothesis testing. In our experiments, ZebraConf

reported 2,167 test instances as failed in the first trial (i.e.,

the heterogeneous configuration test failed but all correspond-

ing homogeneous tests succeeded), and hypothesis testing

filtered 731 of the tests as false positives. These numbers have

confirmed the necessity of hypothesis testing.

7.3 Lessons Learned
Our overall conclusion is that, to support heterogeneous con-

figuration in a large system, we need to rethink how config-

uration should be used and tested. First, the existing para-

digm, in which each node reads configuration values from

its configuration file, is not sufficient anymore, since a node

may need to communicate with nodes with different con-

figurations. Instead, a node may need to ask for configura-

tion values from other nodes. Therefore, it may be neces-

sary to split parameters that are local to a node and those

that must be agreed upon by different nodes. Embedding

parameter values in the communication or in the file, in-

stead of relying on configuration files, may be a good prac-

tice to solve this problem. Applying these techniques would

prevent about 20 unsafe parameters in Table 3, including

dfs.datanode.balance.max.concurrent.moves ,

dfs.namenode.upgrade.domain.factor , and those related

to compression, encryption, and similar.

Second, we find that several problems are caused by ex-

posing unnecessary parameters to end users, since these pa-

rameters may serve as a side channel for the end users to rely

on the implementation details of the application. Following

general software engineering principles, an end user should

not be allowed to read the value of a parameter if the pa-

rameter is solely used internally by the application. This rule

would prevent seven parameters from causing inconsistencies

between the end user and the application as listed in Table 3.

Finally, whole-system unit tests provide a convenient and

efficient solution compared to integration tests, but to support

them, both the application code and the unit test code should

follow a style that is friendly to whole-system unit tests, e.g.,

they should not use global variables or share objects across

different nodes. These changes will not only reduce false neg-

atives and false positives in ZebraConf, but also make those

unit tests more closely resemble a real distributed setting.

8 Conclusion
ZebraConf is a framework for utilizing existing unit tests

to identify heterogeneous-unsafe configuration parameters.

ZebraConf provides an API to modify the target application

with minimal effort and a number of strategies to reduce

the number of tests to run. Our evaluation on five popular

open-source applications finds 41 heterogeneous-unsafe con-

figuration parameters, which implies that an administrator

should be careful when applying heterogeneous configura-

tions. The source code of ZebraConf is publicly available:

https://github.com/StarThinking/ZebraConf/.

Acknowledgments
We thank all reviewers for their insightful comments, espe-

cially our shepherd Pedro Fonseca for his guidance during

camera-ready preparation. This material is based in part upon

work supported by the National Science Foundation under

Grant Numbers CNS-1908020 and XPS-1629126.

423

Finding Heterogeneous-Unsafe Configuration Parameters in Cloud Systems EuroSys ’21, April 26–28, 2021, Online, United Kingdom

References
[1] Apache Flink. https://flink.apache.org.

[2] Apache HBASE. http://hbase.apache.org.

[3] Mona Attariyan and Jason Flinn. Automating Configuration Trou-

bleshooting with Dynamic Information Flow Analysis. In Proceedings
of the 9th USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI’10), Vancouver, BC, Canada, October 2010.

[4] Liang Bao, Xin Liu, Ziheng Xu, and Baoyin Fang. Autoconfig: Auto-

matic configuration tuning for distributed message systems. In 33rd
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE’18), Montpellier, France, September 2018.

[5] Dhruba Borthakur, Jonathan Gray, Joydeep Sen Sarma, Kannan

Muthukkaruppan, Nicolas Spiegelberg, Hairong Kuang, Karthik Ran-

ganathan, Dmytro Molkov, Aravind Menon, Samuel Rash, et al. Apache

Hadoop Goes Realtime at Facebook. In Proceedings of the 2011
ACM SIGMOD International Conference on Management of data (SIG-
MOD’11), Athens, Greece, June 2011.

[6] Qingrong Chen, Teng Wang, Owolabi Legunsen, Shanshan Li, and

Tianyin Xu. Understanding and Discovering Software Configuration

Dependencies in Cloud and Datacenter Systems. In 2020 ACM Joint
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE’20), Virtual Event,

November 2020.

[7] Dazhao Cheng, Jia Rao, Yanfei Guo, Changjun Jiang, and Xiaobo Zhou.

Improving Performance of Heterogeneous MapReduce Clusters with

Adaptive Task Tuning. IEEE Transactions on Parallel and Distributed
Systems, 28(3):774–786, 2016.

[8] Cloudera Documentation - Rolling Restart. https://docs.cloudera.
com/documentation/enterprise/6/6.3/topics/cm_mc_rolling_
restart.html.

[9] CloudLab. https://www.cloudlab.us.

[10] Songyun Duan, Vamsidhar Thummala, and Shivnath Babu. Tuning

Database Configuration Parameters with iTuned. Proceedings of the
VLDB Endowment, 2(1):1246–1257, 2009.

[11] Apache Flink Documentation: Configuration. https://ci.apache.org/
projects/flink/flink-docs-stable/deployment/config.html.

[12] Allow Configuration Changes without Restarting Configured Nodes.

https://issues.apache.org/jira/browse/HADOOP-7001.

[13] Hadoop Hadoop Common Configuration File. https:
//hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-
common/core-default.xml.

[14] HBase-8544. Add a Utility to Reload Configurations in Region Server.

https://issues.apache.org/jira/browse/HBASE-8544.

[15] HBase Configuration File. https://hbase.apache.org/book.html#
hbase_default_configurations.

[16] Hadoop HDFS Project. https://hadoop.apache.org/docs/current/
hadoop-project-dist/hadoop-hdfs/HdfsDesign.html.

[17] HDFS-1477. Support Reconfiguring ‘dfs.heartbeat.interval‘ and

dfs.namenode.heartbeat.recheck-interval without NN Restart. https:
//issues.apache.org/jira/browse/HDFS-1477.

[18] HDFS-2202. Changes to Balancer Bandwidth Should Not Require

Datanode Restart. https://issues.apache.org/jira/browse/HDFS-
2202.

[19] HDFS-7466. Allow Different Values for

‘dfs.datanode.balance.max.concurrent.moves‘ per Datanode.

https://issues.apache.org/jira/browse/HDFS-7466.

[20] Hadoop HDFS Configuration File. https://hadoop.apache.org/docs/
stable/hadoop-project-dist/hadoop-hdfs/hdfs-default.xml.

[21] Hadoop HDFS RBF Configuration File. https://hadoop.apache.
org/docs/stable/hadoop-project-dist/hadoop-hdfs-rbf/hdfs-rbf-
default.xml.

[22] Herodotos Herodotou and Shivnath Babu. Profiling, What-If Analysis,

and Cost-based Optimization of MapReduce Programs. Proceedings of
the VLDB Endowment, 4(11):1111–1122, 2011.

[23] Peng Huang, William J. Bolosky, Abhishek Singh, and Yuanyuan Zhou.

ConfValley: A Systematic Configuration Validation Framework for

Cloud Services. In Proceedings of the 10th European Conference on
Computer Systems (EuroSys’15), Bordeaux, France, April 2015.

[24] Apache Kafka. https://kafka.apache.org.

[25] Confluent Documentation: Dynamic Configurations. https://docs.
confluent.io/platform/current/kafka/dynamic-config.html.

[26] Palden Lama and Xiaobo Zhou. AROMA: Automated Resource Allo-

cation and Configuration of Mapreduce Environment in the Cloud. In

Proceedings of the 9th International Conference on Autonomic Com-
puting (ICAC’12), San Jose, California, USA, September 2012.

[27] Min Li, Liangzhao Zeng, Shicong Meng, Jian Tan, Li Zhang, Ali R.

Butt, and Nicholas Fuller. MRONLINE: MapReduce Online Perfor-

mance Tuning. In Proceedings of the 23rd International Symposium
on High-Performance Parallel and Distributed Computing (HPDC’14),
Vancouver, BC, Canada, 2014.

[28] Ashraf Mahgoub, Alexander Michaelson Medoff, Rakesh Kumar, Sub-

rata Mitra, Ana Klimovic, Somali Chaterji, and Saurabh Bagchi. OP-

TIMUSCLOUD: Heterogeneous Configuration Optimization for Dis-

tributed Databases in the Cloud. In 2020 USENIX Annual Technical
Conference (USENIX ATC’20), Virtual Event, July 2020.

[29] Ashraf Mahgoub, Paul Wood, Sachandhan Ganesh, Subrata Mitra, Wolf-

gang Gerlach, Travis Harrison, Folker Meyer, Ananth Grama, Saurabh

Bagchi, and Somali Chaterji. Rafiki: A Middleware for Parameter

Tuning of NoSQL Datastores for Dynamic Metagenomics Workloads.

In Proceedings of the 18th ACM/IFIP/USENIX Middleware Conference
(Middleware’17), Las Vegas, Nevada, USA, December 2017.

[30] Ashraf Mahgoub, Paul Wood, Alexander Medoff, Subrata Mitra, Folker

Meyer, Somali Chaterji, and Saurabh Bagchi. SOPHIA: Online Recon-

figuration of Clustered NoSQL Databases for Time-Varying Workloads.

In 2019 USENIX Annual Technical Conference (USENIX ATC’19),
Renton, WA, USA, July 2019.

[31] Hadoop MapReduce Configuration File. https://hadoop.apache.
org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-
client-core/mapred-default.xml.

[32] Hadoop MapReduce Project. https://hadoop.apache.org/docs/
current/hadoop-mapreduce-client/hadoop-mapreduce-client-
core/MapReduceTutorial.html.

[33] MAPREDUCE-442. Ability to Re-configure Hadoop Daemons Online.

https://issues.apache.org/jira/browse/MAPREDUCE-442.

[34] Dirk Merkel. Docker: Lightweight Linux Containers for Consistent

Development and Deployment. Linux journal, 2014(239):2, 2014.

[35] MySQL 8.0 Reference Manual - Performing a Rolling Restart of an

NDB Cluster. https://dev.mysql.com/doc/refman/8.0/en/mysql-
cluster-rolling-restart.html.

[36] Ariel Shemaiah Rabkin. Using Program Analysis to Reduce Misconfig-
uration in Open Source Systems Software. PhD thesis, UC Berkeley,

2012.

[37] Redis. https://redis.io.

[38] Redis Commands: CONFIG SET Parameter Value. https://redis.io/
commands/config-set.

[39] Daniel Sun, Alan Fekete, Vincent Gramoli, Guoqiang Li, Xiwei Xu,

and Liming Zhu. R2C: Robust Rolling-Upgrade in Clouds. IEEE
Transactions on Dependable and Secure Computing, 15(5):811–823,

2016.

[40] Xudong Sun, Runxiang Cheng, Jianyan Chen, Elaine Ang, Owolabi Le-

gunsen, and Tianyin Xu. Testing Configuration Changes in Context to

Prevent Production Failures. In Proceedings of the 14th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI’20),
Virtual Event, November 2020.

[41] Shu Wang, Chi Li, Henry Hoffmann, Shan Lu, William Sentosa,

and Achmad Imam Kistijantoro. Understanding and Auto-Adjusting

424

EuroSys ’21, April 26–28, 2021, Online, United Kingdom Sixiang Ma, Fang Zhou, Michael D. Bond, and Yang Wang

Performance-Sensitive Configurations. In Proceedings of the Twenty-
Third International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS’18), Williamsburg,

VA, USA, March 2018.

[42] Chengcheng Xiang, Haochen Huang, Andrew Yoo, Yuanyuan Zhou,

and Shankar Pasupathy. PracExtractor: Extracting Configuration Good

Practices from Manuals to Detect Server Misconfigurations. In 2020
USENIX Annual Technical Conference (USENIX ATC’20), pages 265–

280. USENIX Association, July 2020.

[43] Tianyin Xu, Xinxin Jin, Peng Huang, Yuanyuan Zhou, Shan Lu, Long

Jin, and Shankar Pasupathy. Early Detection of Configuration Errors

to Reduce Failure Damage. In Proceedings of the 12th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI’16),
Savannah, GA, USA, nov 2016.

[44] Hadoop YARN Project. https://hadoop.apache.org/docs/current/
hadoop-yarn/hadoop-yarn-site/YARN.html.

[45] Hadoop YARN Configuration File. https://hadoop.apache.org/docs/
stable/hadoop-yarn/hadoop-yarn-common/yarn-default.xml.

[46] Ding Yuan, Yinglian Xie, Rina Panigrahy, Junfeng Yang, Chad Ver-

bowski, and Arunvijay Kumar. Context-based Online Configuration-

Error Detection. In 2011 USENIX Annual Technical Conference
(USENIX ATC’11), Portland, OR, USA, June 2011.

[47] Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin Cheng, Ji-

ashu Xing, Yangtao Wang, Tianheng Cheng, Li Liu, Minwei Ran, and

Zekang Li. An End-to-End Automatic Cloud Database Tuning Sys-

tem Using Deep Reinforcement Learning. In Proceedings of the 2019
International Conference on Management of Data (SIGMOD’19), Am-

sterdam, Netherlands, June 2019.

[48] Jiaqi Zhang, Lakshminarayanan Renganarayana, Xiaolan Zhang, Niyu

Ge, Vasanth Bala, Tianyin Xu, and Yuanyuan Zhou. Encore: Exploiting

System Environment and Correlation Information for Misconfigura-

tion Detection. In Proceedings of the 19th International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS’14), Salt Lake City, Utah, USA, March 2014.

[49] Yongle Zhang, Kirk Rodrigues, Yu Luo, Michael Stumm, and Ding

Yuan. The Inflection Point Hypothesis: a Principled Debugging Ap-

proach for Locating the Root Cause of a Failure. In Proceedings of
the 27th ACM Symposium on Operating Systems Principles (SOSP’19),
Huntsville, Ontario, Canada, October 2019.

[50] Yuqing Zhu, Jianxun Liu, Mengying Guo, Yungang Bao, Wenlong Ma,

Zhuoyue Liu, Kunpeng Song, and Yingchun Yang. BestConfig: Tapping

the Performance Potential of Systems via Automatic Configuration

Tuning. In Proceedings of the 2017 Symposium on Cloud Computing
(SoCC’17), Santa Clara, California, September 2017.

425

