
Lazy Means Smart: Reducing Repair Bandwidth Costs in
Erasure-coded Distributed Storage

Mark Silberstein1, Lakshmi Ganesh2, Yang Wang3, Lorenzo Alvisi3, Mike Dahlin3,4

1Technion, 2Facebook, 3The University of Texas at Austin, 4 Gooogle

ABSTRACT
Erasure coding schemes provide higher durability at lower
storage cost, and thus constitute an attractive alternative
to replication in distributed storage systems, in particular
for storing rarely accessed “cold” data. These schemes, how-
ever, require an order of magnitude higher recovery band-
width for maintaining a constant level of durability in the
face of node failures. In this paper, we propose lazy re-
covery, a technique to reduce recovery bandwidth demands
down to the level of replicated storage. The key insight
is that a careful adjustment of recovery rate substantially
reduces recovery bandwidth, while keeping the impact on
read performance and data durability low. We demonstrate
the benefits of lazy recovery via extensive simulation us-
ing realistic distributed storage configuration and published
component failure parameters. For example, when applied
to the commonly used RS(14,10) code, lazy recovery re-
duces repair bandwidth by up to 76% even below replica-
tion, while increasing the amount of degraded stripes by 0.1
percentage points. Lazy recovery works well with a variety
of erasure coding schemes, including the recently introduced
bandwidth efficient codes, achieving up to a factor of 2 ad-
ditional bandwidth savings.

1. INTRODUCTION
Erasure coding schemes, e.g. Reed-Solomon (RS) codes,

are an attractive alternative to replication in distributed
storage systems (DSS) as they enable an optimal balance
between storage cost and data durability. They are consid-
ered a particularly good fit for storing rarely accessed “cold”
data [3, 15], which constitutes an increasingly large fraction
of the data in large-scale storage systems [21, 24].

However, broader adoption of erasure codes in cold-storage
DSS is hindered by their excessive network demands when
recovering data after node failures – the well-known repair
bandwidth problem [25, 18, 27, 26]. Specifically, when a stor-
age node fails, due to a hardware failure, for example, its
contents must be promptly restored on another node in or-
der to avoid data loss. Recovery of a single data block in an
RS(n,k) erasure coded storage entails transferring k blocks
from k surviving nodes over the network. In comparison,
only one block is transferred to recover a single block in
replication-based systems. This k-fold increase in recovery
traffic results in sharp growth of the background steady-
state network load, in particular in large-scale data centers
where failure rates are high. For example, in a real Facebook
DSS, up to 3% of all the storage nodes fail each day [27].
Using RS(14,10)-encoded storage in this system results in
hundreds of terabytes of daily recovery traffic through Top-
Of-Rack (TOR) switches [26]. Thus, the network is busy
even when the DSS itself is idle and does not serve any

external users (as is usually the case for a cold-storage sys-
tem), which increases its power consumption and prevents
the nodes to enter sleep mode. Further, this traffic consti-
tutes a significant portion of the total network volume, and
grows with system scale and hard disc capacity. All these
factors imped the adoption of standard erasure codes.

A common practice to cope with the growing network traf-
fic is by throttling the network bandwidth available for re-
covery tasks. Doing so, however, increases the number of
degraded stripes in an uncontrolled manner (stripes with
one or more blocks lost or offline), which in turn dramati-
cally affects read performance and data durability. A popu-
lar policy to smoothen this negative effect is to prioritize the
recovery of the stripes with higher number of failed nodes [9,
26], thereby better utilizing the available limited bandwidth.
However in general, network throttling does not effectively
reduce the overall failure recovery traffic because the vast
majority of failures gets recovered promptly – it was found
that on average 98% of degraded stripes in the Facebook
DSS had only one failed block [26].

In this paper we propose lazy recovery, a technique to
reduce the volume of network recovery traffic in an erasure-
coded DSS to the level of 3-way replication but without
loosing the durability advantages of the former. The idea
is simple: the recovery of degraded stripes can be delayed as
long as the risk of data loss remains tolerable, thereby lever-
aging a non-linear tradeoff between recovery bandwidth and
the probability of data loss. The key challenge, however, is
to find a practical mechanism to put the system into the
desired operating point on the tradeoff curve. For example,
delaying the recovery until the number of alive nodes per
stripe falls below a certain recovery threshold as was first
suggested in TotalRecall peer-to-peer storage system [2], is
not effective in a large-scale DSS scenario. We suggest new
lazy recovery scheme which enables a fine-grain control of
the system behavior and achieves significant bandwidth re-
duction at the expense of relatively small decrease in data
durability and availability.

Realistic evaluation of our scheme requires estimating its
influence on durability, availability and recovery bandwidth
in a petabyte-scale DSS over several years of operation. Per-
forming such evaluation on a real system is unrealistic. There-
fore, we implemented a detailed distributed storage simula-
tor — ds-sim 1, which simulates long-term steady-state DSS
behavior. The simulator takes as an input a system config-
uration and a data encoding and recovery scheme, and runs
by simulating failures in major failure domains (disk, ma-
chine, rack), latent block failures, machine replacement, as
well as enforces a global network limit.

1ds-sim is available for download at
https://code.google.com/p/ds-sim

We simulate a 3PB system using failure and recovery dis-
tributions from real traces of the failures of large-scale com-
pute clusters [30] as well as publications characterizing pro-
duction environments [7, 9, 30, 31, 23]. We evaluate several
popular erasure coding schemes and show that our lazy re-
covery mechanisms are able to significantly reduce the repair
bandwidth. For example, the repair bandwidth of RS(14,10)
codes is reduced by a factor of 4, even below the level of
3-way replication. Furthermore, lazy recovery works well
in conjunction with recently introduced locally-repairable
(LRC) codes [25, 18], further reducing their repair band-
width by half.

The main contributions of this paper are:

• A new mechanism for enabling significant repair band-
width reduction in erasure coded storage and designed
for a large-scale DSS

• A detailed DSS simulator ds-sim for evaluating long-
term durability, availability and recovery bandwidth
requirements of various storage schemes. ds-sim sim-
ulates realistic failure scenarios such as correlated fail-
ures, latent disc block failures and hardware replace-
ment.

• Evaluation of the bandwidth requirements of different
storage schemes using long-term traces and failure dis-
tributions from production large-scale storage systems.

The rest of this paper is organized as follows. In the next
section, we provide an overview of erasure coding and the as-
sociated repair bandwidth problem. We describe the lazy re-
covery scheme in detail in section 3, present our distributed
storage simulator in section 4, and evaluate lazy recovery in
section 5. Section 6 describes related work, and section 7
concludes.

2. ERASURE CODES AND THE REPAIR
BANDWIDTH PROBLEM

In this section we briefly explain the use of erasure codes
in a DSS on the example of Reed-Solomon codes, and then
explain the repair bandwidth problem. In an RS(n,k) stor-
age system, each set of k data blocks of size b is encoded into
n blocks of size b, forming a single data stripe. Each stripe
comprises k systematic blocks, which store the original data
content, and n-k additional parity blocks. 3-way replica-
tion can be thought of as a trivial form of RS coding with
k = 1 and n = 3. The blocks in each stripe are distributed
across n different storage nodes to provide maximum failure
resilience. In a failure-free case, the original data can be
retrieved without additional decoding by reading the con-
tents of the respective systematic block. If, however, one
or more of the systematic blocks is unavailable, the stripe
is termed degraded. The contents of missing blocks can be
reconstructed from any k stripe blocks from the surviving
nodes.

As in replicated storage systems, the contents of failed
nodes must be recovered to avoid eventual data loss. Recov-
ery poses significant network bandwidth demands, and may
induce significant load even when there are no external I/O
requests. Reconstructing a single data block requires the en-
tire stripe’s worth of data (k blocks) to be read. This trans-
lates to a bandwidth inflation of k; i.e., repairing b bytes
requires b ∗ k bytes to be transfered. Compare this with

Figure 1: Theoretical tradeoff between durability
and recovery rate.

replication: repairing a lost block (replica) requires only one
other block (replica) to be read. Our goal is to make the
steady-state bandwidth requirements of erasure coded storage
commensurate with that of replicated storage, while preserv-
ing the failure resilience advantages of erasure coding.

In the rest of this paper, we define a stripe as durable if
enough of its blocks survive (even if not online) such that
the stripe data can be reconstructed. On the other hand,
a stripe is considered available if all its systematic blocks
are online, so that no reconstruction is required to read the
stripe.

In the next section, we show how lazy recovery limits re-
covery bandwidth while maintaining the high durability and
availability of erasure-coded storage.

3. LAZY RECOVERY
The basic idea behind the lazy recovery scheme is to de-

crease the recovery rate, thereby reducing the required net-
work bandwidth, but without significant impact on durabil-
ity. Figure 1 provides intuition behind this approach. The
graph shows the probability of a single data block loss over
10 years — a quantitative measure of the durability of data
stored in a DSS – as a function of data recovery rate for the
RS(14,10) encoding scheme. We use Markov chain model as
in [12] to produce the graph. While it is well known that
Markov models inflate the values of Mean-Time-To-Data
Loss (MTTDL), they are still useful for qualitative analysis
of system behavior [12]. This simple experiment highlights
the diminishing returns of increasing recovery rate as the
system becomes more durable: a single block loss probabil-
ity of 10−19 over 10 years is, indeed, 10 times higher than
10−20, but it might save half of the recovery network traffic
while still being sufficient for practical purposes.

The main challenge, however, is to design a practical mech-
anism to exploit this tradeoff in a real system.

Scheme I: Lazy recovery for all.
One possible solution inspired by the work done in the con-

text of P2P storage networks [22, 2] is to postpone the recon-
struction of failed blocks until the number of available blocks
in a stripe reaches a given recovery threshold r. For exam-
ple, for RS(15,10) and r = 13, the system will wait for two
blocks in a stripe to fail before triggering the stripe recovery.
Intuitively, the probability of permanent data loss with lazy
recovery using RS(15,10) encoding should be roughly equiv-
alent to that of the original RS(14,10) with eager recovery,

Figure 2: Impact of lazy recovery on the average
amount of degraded chunks for RS(15,12). The
highlighted points denote the cases where recovery
is triggered only after r failures (lazy naive) and
when the permanent failures are always prioritized
(lazy prioritized).

since in both schemes recovery is triggered when 13 blocks
are still alive.

Delaying recovery yields two advantages: first, we can re-
cover two blocks for almost the same network cost as re-
covering one—to recover one block, one must read ten and
write one (a total of 11x bandwidth per recovery), while to
recover two, one still reads ten, but writes two (total 12×
bandwidth, or 6× amortized bandwidth per recovery); Sec-
ond, if a block is unavailable due to a transient event, such as
a network outage, delaying its recovery allows it more time
to come back on its own (e.g. when network connectivity is
restored), thus avoiding a redundant repair.

This basic lazy recovery scheme might seem similar to
the standard practice of delaying recovery of failed nodes by
a fixed amount of time, (usually 15 minutes [9]) to avoid
unnecessary repairs of short transient failures. The main
difference, however, is that the lazy scheme does not trans-
fer any data until the recovery is required regardless of how
much time passed after the failure, and then restores multi-
ple blocks in a batch, thereby transferring strictly less data
than the standard delayed recovery scheme.

Lazy recovery was originally proposed in the context of
TotalRecall peer-to-peer storage system, but it is not effi-
cient enough for a DSS. Our simulation shows (Figure 2)
that decreasing the recovery threshold by one may dramat-
ically increase the number of degraded stripes. For exam-
ple, for the RS(15,10) scheme, the recovery threshold r=12
results in about 30% of all stored stripes to be always de-
graded. On the other hand, increasing the repair threshold
to r = 13 helps to lower the number of degraded stripes, but
moves the system straight to the other extreme of the trade-
off function (Figure 2), losing all the bandwidth savings.

Scheme II: Lazy recovery only for transient failures.
The inefficacy of Scheme I stems from the fact that stripes

that become degraded through permanent failure events stay
degraded without being repaired for too long (since a crashed
hard disc will never recover on its own, whereas transient
failures eventually recover even without explicit recovery
procedure). Hence, we need to refine our scheme to dis-
tinguish between permanent disk failures and transient ma-

Hardware
Configuration

Failure Generation Data Distribution

Runtime Simulation

Figure 3: Distributed Storage Simulator

chine failures: permanent failures trigger repair process im-
mediately as they are detected, while transient failures are
handled lazily. In a controlled environment such as a data
center, enough information exists to distinguish between
permanent events such as hardware upgrades, and transient
events such as machine crash, restart, and software upgrade.

Separating recovery policies for permanent and transient
failures improves the efficacy of the original lazy approach.
However, as we see in Figure 2, this scheme is still not ca-
pable of providing fine-grained control over the choice of the
operating point of the tradeoff function.

Scheme III: Dynamic recovery threshold.
Scheme II can be improved by dynamically adjusting the

recovery policy depending on the state of a whole system.
We introduce a system-wide limit on the number of de-
graded stripes with permanently lost blocks. Whenever a
permanent failure event causes the limit to be exceeded, we
temporarily raise the system-wide recovery threshold until
the number of such stripes is reduced. Note that enforc-
ing system-wide limits and applying global policy changes
such as the one used in this scheme can be efficiently carried
out in a centrally-managed well-maintained DSS but might
be unrealistic in a much less controlled peer-to-peer storage
environment.

In what follows, we first describe our evaluation method-
ology, and then present results to demonstrate the efficacy
of this enhanced lazy recovery scheme.

4. EVALUATION METHODOLOGY
Evaluating the efficacy of lazy recovery in reducing repair

bandwidth and its implications on availability and durability
poses a challenge. It is not practical to run a prototype and
measure those metrics, since it requires a large number of
machines to run for years to get a statistically meaningful
result.

As is common in other studies of storage systems [20,
9, 25], we use a combination of simulation and modeling:
on the one hand, we build a distributed storage simulator
ds-sim to estimate how repair bandwidth and availability
are affected by a combination of failure events, hardware
configuration, coding scheme and recovery strategy. On the
other hand, to capture unrecoverable data loss events, which
are extremely rare especially for erasure codes, we use a
Markov chain model to compare the durability of different
coding schemes.

4.1 Simulation For Bandwidth And Availabil-
ity Estimation

ds-sim simulates the system behavior over several years.
For example, in our simulations we used one decade. The

inputs include hardware configuration specifications, such
as disk sizes and global network capacity, statistical proper-
ties of the failure and recovery distributions of the storage
system components, and the data encoding scheme. The
simulator returns steady-state and instantaneous values of
network bandwidth utilization, number of degraded stripes,
number of permanently lost blocks, as well as various other
dynamic system properties.

ds-sim consists of four main building blocks (Figure 3):

Storage system configuration.
ds-sim simulates a commonly used 3-tier tree structure

of the storage components, including racks, machines, and
disks. Each higher-level component can have multiple lower-
level components as its children. If a parent component fails,
all its children are marked unavailable, effectively simulating
failures in a single failure domain.

Storage scheme simulation.
As in real systems, the data is stored in blocks [10, 28,

3]. Multiple blocks form a stripe. Data within each stripe
is either replicated or erasure-coded: for n-way replication,
a stripe comprises all replicas of a block; for for RS(n, k)
encoding scheme, a stripe comprises k original blocks and
n−k parity blocks. ds-sim randomly chooses n racks to store
n blocks of a stripe in different failure domains, following the
standard practices in production settings [9].

Failure events generation.
ds-sim generates failure and recovery events for each hard-

ware component using either synthetic probability distribu-
tions or failure traces. Some events, e.g. machine failures,
are generated offline before the simulation, but others, such
as lazy recovery events, depend on the dynamic system be-
havior and are created during the runtime simulation.

We incorporate separate failure and recovery distributions
for each storage component: disk, machine, and rack.

• Disk Failures: These include both latent failures and
permanent disk failures. Latent failures damage ran-
dom disk sector affecting a single data block. They are
detected and recovered during periodic reads of the en-
tire disk content, a technique called scrubbing [7, 9].
Permanent disk failures are assumed to be unrecover-
able, permanently damaging all blocks on the disk.

• Machine Failures: These include transient failures (which
do not damage the component disks), and permanent
failures (which also take down the component disks).
Transient failures are commonly attributed to network
slowdown or maintenance. Permanent failures repre-
sent server hardware upgrades, which reportedly occur
once in three years [8]. Consequently, recovery from
permanent machine failures is assumed to start imme-
diately after failure. However, recovery from tempo-
rary machine failures begins after a specified timeout,
e.g. 15 minutes [9], if the lazy policy dictates it.

• Rack Failures: Rack failures are assumed to be tran-
sient (that is, they do not damage the component servers).

While we do not explicitly simulate correlated failures for
each component in isolation, the dominant failure domains
are simulated via higher-level components inducing failures
on all the components they contain.

F" 4" 3" 2" 1" 0"

λ4" λ3" λ2" λ1" λ0"

μ3"μ4"

Figure 4: Markov model for evaluating durability of
lazy recovery, permitting three unrecovered failures.

Note that ds-sim allows users to specify different models
or parameters for different groups of components. For ex-
ample, one groups of disks can be configured as 2-year old
and another group can be configured as new, so they can
have different failure rates.

Runtime simulation.
Finally, by combining all the above information, ds-sim

performs a runtime simulation, recording all instantaneous
properties of the system including repair bandwidth and the
number of degraded stripes. Note that ds-sim is not de-
signed to estimate the read or write performance of the sys-
tem. The simulator tracks every block in the system. A
stripe to which the block belongs is marked as available, un-
available, degraded, or lost, depending on the state of its
respective blocks and the simulated storage scheme. For
n-way replication schemes, the degraded state is irrelevant
because a stripe is either available when at least one of its
block is online, or unavailable otherwise. For an RS(n, k)
erasure-coding scheme, a stripe is marked as degraded if
there are less than n blocks, and as unavailable or lost if
there are less than k blocks.

4.2 Markov Model For Durability Estimation
ds-sim can be used to estimate the durability of the sys-

tem. However, it has been observed [12] that for erasure-
coding schemes, durability loss events happen so rarely that
the simulation requires a very large number of iterations to
get a statistically meaningful result. Therefore, we resort
instead to a Markov model to obtain durability results [13].
Compared to simulation, Markov models are known to in-
flate the absolute values of durability, but they are useful
for comparison purposes [14].

We use standard parallel repair model for replication and
erasure codes [12]. Lazy recovery is modeled by removing
the recovery transition from states that have more available
chunks than the recovery threshold. Figure 4 presents the
model for the lazy recovery scheme with four parity nodes
and the recovery delayed until three nodes fail. The state
labels represent the number of failed nodes. Note that this
approach ignores the dynamic recovery threshold increase in
our actual scheme.

Armed with ds-sim and the Markov model, we now pro-
ceed to evaluate the efficacy of our lazy recovery scheme.

5. RESULTS
We simulate a DSS storing 3PB of data, running for one

decade. Figure 6 describes each type of failure we simu-
late, and lists our failure model parameter choices and their
sources. W (γ, λ, β) refers to a Weibull distribution, while
Exp(λ) refers to an exponential distribution. Figure 5 lists

Parameter Value
Total data 3 PB
Disk cap 750 GB

Disks/machine 20
Machines/rack 11
Bandwidth cap 650 TB/

for repair day [5]
Duration 10 yrs

Num iterations 25,000

Figure 5: Simulation Parameters

the storage system parameters we used. We ask the follow-
ing questions: How effective is our lazy recovery scheme in
controlling repair bandwidth? and what is its impact on data
availability and durability?

Figures 7 and 8 answers both questions. It compares sev-
eral representative storage schemes along the dimensions of
interest. The label for the lazy schemes is constructed as n-
k-r, where (n, k) identifies the encoding scheme, and r is the
recovery threshold. The candidate schemes we evaluate are:
3-way replication, the original RS(14,10), RS(14,10) with
lazy recovery (14-10-12), and RS(15,10) with lazy recovery
(15-10-12).

We also compare lazy recovery with two recently intro-
duced repair-efficient erasure coding schemes:
Xorbas(16,10,12) [27] and Azure(16,12,14) [18]. Finally, we
combine these repair efficient codes with lazy recovery (Xor-
bas+LAZY), (Azure+LAZY), setting the repair threshold
to 12 and 14 respectively.

All the results are normalized against 3-way replication.
The data label at the top of each bar group shows the actual
value of the replication data point.

 0

 0.5

 1

 1.5

 2

 2.5

 3

Storage Repair BW

N
o
rm

a
liz

e
d
 C

o
s
t

1
0
.8

 P
B

2
2
 T

B
/d

a
y

Replication
RS(14,10)
Xorbas(16,10,12)
Azure(16,12,14)

14-10-12
15-10-12
Xorbas+LAZY
Azure+LAZY

Figure 7: The storage requirements and repair
bandwidth of lazy recovery versus non-lazy schemes

We see from Figure 7 that the lazy recovery schemes yield
a 4x reduction in repair bandwidth compared to basic era-
sure coding, with 70% of this savings coming from mask-
ing of transient failures, while the remaining 30% is from
block recovery amortization (this breakup is not shown in
the graph). We outperform repair-efficient Azure and Xor-
bas coding schemes in this respect by more than a factor of

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 10000

P(Lost) P(Unavail) P(Degraded)

N
o
rm

a
liz

e
d
 C

o
s
t

9
.1

e
-7

6
.5

e
-6

6
.5

e
-6

Replication
RS(14,10)
Xorbas(16,10,12)
Azure(16,12,14)

14-10-12
15-10-12
Xorbas+LAZY
Azure+LAZY

Figure 8: The probability of data loss, unavailable
data and the portion of degraded stripes of lazy re-
covery versus non-lazy schemes

2. In fact, we even outperform full replication, which, being
less reliable (and non-lazy), experiences a larger number of
recovery events. We note that the average repair bandwidth
computed by the simulator is lower by about a factor of 4
than that reported by Facebook [26], in part because the size
of the Facebook DSS is by 50% larger than that of size of
the simulated DSS. However the exact DSS size is not spec-
ified in the paper, and we deduce it using other publications
about Facebook DDS [27].

The impact of lazy recovery on durability and availabil-
ity is shown in Figure 8. First, we compare the fraction of
degraded data in each of the candidate schemes. We see
that lazy recovery increases this fraction by over 2 orders
of magnitude compared to 3-way replication. When com-
pared to RS(14,10), however, we only increase this fraction
by a factor of 2, from 0.1%, to 0.2%. Arguably, negligible
availability loss should result from 0.2% of the cold data be-
ing degraded. We observe a more significant impact on the
probability of data loss. Yet, it is still about two orders of
magnitude better than in replicated storage. Further, the
actual change in durability depends on the coding scheme.
For example, Xorbas+LAZY is only 6× more likely to loose
data than the original Xorbas scheme.

Figure 9 shows that the bandwidth savings we predict
using our failure models are even more modest that what
we obtain with actual failure traces [30]. We used trace 19
and 20 from the CFDR repository to inform ds-sim’s failure
events generator. Each row in the figure represent one trace.
As we can see, here lazy recovery achieves significant repair
bandwidth savings, up to 20× for the (15-10-12) scheme,
with only twice higher number of degraded stripes.

6. RELATED WORK
Erasure coding in general, and repair bandwidth optimiza-

tion in particular, both have a rich literature; we provide a
brief overview of each here, and explain how our solution fits
in their context. We then close this section with a descrip-
tion of previous uses of lazy recovery in storage systems.

Erasure coding in storage systems..

Failure Type Implication MTBF MTTR
Latent error Chunks corrupted Exp(1

1yr
) [7] W (6, 1000, 3) [7] (scrubs)

Disk Failure Chunks lost W (0, 52yrs, 1.12) [7] W (36s, 108s, 3) [31]
Machine Failure Chunks unavailable Exp(1

0.33yr
) [9],traces [30] GFS traces [23]

Machine Loss Chunks lost 0.008%/month [31] Based on spare b/w
Rack Failure Chunks unavailable Exp(1

10yrs
) [9] W (10hrs, 24hrs, 1) [23]

Figure 6: Storage Component Failure Models

14-10-13 14-10-12 15-10-12
P(Degraded) 0.006 0.011 (x1.6) 0.012 (x1.8)

0.005 0.010 (x1.9) 0.011 (x2.2)
Repair b/w 51 4.1 (x12) 2.5 (x20)
TB/day 43 3.2 (x13) 2.3 (x18)

Figure 9: Lazy Recovery Evaluation Using Traces.
The number in braces is the improvement over
RS(14,10)

Erasure coding schemes have been adopted in both in-
dustrial and research storage systems [23, 18, 17, 22, 2, 16,
1], due to their provably optimal storage-durability tradeoff.
Among them, Reed-Solomon codes are widely used; how-
ever, in the presence of node failures, they require an order
of magnitude higher recovery bandwidth compared to repli-
cation schemes. To address this problem, recent systems [5,
18, 26] turn to bandwidth-efficient erasure coding as we will
describe next.

Bandwidth-efficient erasure coding..
New erasure coding schemes have been proposed to opti-

mize repair bandwidth: Regenerating codes [6] achieve the-
oretically optimal recovery bandwidth for a given storage
footprint, but they are currently impractical since they re-
quire splitting data into an exponential number of chunks [29].
Recent work [19] describes the application of bandwidth effi-
cient codes for distributed storage, but they require twice as
much storage, and reduce the bandwidth only by half. An-
other set of codes being adopted at Facebook (Xorbas) [5,
27] reduces bandwidth demands by half for the first failure,
with about 15% extra storage cost. Local Reconstruction
Codes [18] (LRC) in Windows Azure Storage uses additional
parity blocks constructed using subsets of the systematic
blocks, which allows repair to be accomplished using fewer
block reads on average. Piggiback codes [26] suggest an el-
egant scheme that reduces the repair bandwidth by 25%.

Instead of designing new coding schemes, our work seeks
to reduce repair bandwidth by delaying repair to the time
when it is really necessary. We believe that this approach
is orthogonal to the choice of the coding scheme and can
be combined with any scheme to provide better bandwidth
usage. For example, as we have shown in evaluation, it is ef-
fective for both Reed-Solomon codes and bandwidth efficient
codes like the Xorbas(16,10), and Azure(16,12) codes.

Another idea complementary to our work is to optimize
recovery by minimizing the amount of redundant informa-
tion read from different nodes [20].

Lazy recovery in storage systems.
Lazy recovery is not a new idea in storage systems. Total-

Recall [2] introduced the idea of lazy recovery in peer-to-peer

storage. Giroire et al. [11] show how to tune the frequency of
data repair for peer-to-peer storage systems. Chun et al.[4]
show the efficacy of tuning the recovery rate in replicated
storage systems in wide area network settings.

As far as we know, our work is the first to apply this idea
to erasure coding schemes in data centers, and evaluate it
with realistic failure models for this setting.

7. CONCLUSION
In this paper, we show that our refined lazy recovery helps

amortize repair bandwidth costs, making erasure coding a
viable alternative for cold data storage. Further, we demon-
strate the inherently non-linear relationship between repair
bandwidth needs and number of degraded stripes, and show
that this curve needs to be carefully straddled to achieve
the desired reduction of bandwidth overhead while retain-
ing control over degraded stripes (and hence data durabil-
ity). Our lazy recovery scheme achieves this by dynamically
adjusting the recovery threshold for permanent failures de-
pending on the whole system state, while performing lazy
recovery of transient ones. We show through simulations
that this scheme reduces repair bandwidth by a factor of
4 for the popular Reed Solomon 10-of-14 code—making it
comparable to 3-way replication overheads—while retaining
high levels of durability and availability.

8. REFERENCES
[1] M. Abd-El-Malek, W. V. C. II, C. Cranor, G. R.

Ganger, J. Hendricks, A. J. Klosterman, M. Mesnier,
M. Prasad, B. Salmon, R. R. Sambasivan,
S. Sinnamohideen, J. D. Strunk, E. Thereska,
M. Wachs, and J. J. Wylie. Ursa minor: Versatile
cluster-based storage. In FAST, 2005.

[2] R. Bhagwan, K. Tati, Y.-C. Cheng, S. Savage, and
G. M. Voelker. Total recall: System support for
automated availability management. In NSDI,
volume 4, pages 25–25, 2004.

[3] B. Calder, J. Wang, A. Ogus, N. Nilakantan,
A. Skjolsvold, S. McKelvie, Y. Xu, S. Srivastav,
J. Wu, H. Simitci, J. Haridas, C. Uddaraju, H. Khatri,
A. Edwards, V. Bedekar, S. Mainali, R. Abbasi,
A. Agarwal, M. F. u. Haq, M. I. u. Haq, D. Bhardwaj,
S. Dayanand, A. Adusumilli, M. McNett, S. Sankaran,
K. Manivannan, and L. Rigas. Windows azure storage:
a highly available cloud storage service with strong
consistency. In Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, SOSP
’11, pages 143–157, New York, NY, USA, 2011. ACM.

[4] B.-G. Chun, F. Dabek, A. Haeberlen, E. Sit,
H. Weatherspoon, M. F. Kaashoek, J. Kubiatowicz,
and R. Morris. Efficient replica maintenance for
distributed storage systems. In NSDI, 2006.

[5] A. Dimakis. Technical talk. http://ita.ucsd.edu/
workshop/12/files/abstract/abstract_764.txt.

[6] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J.
Wainwright, and K. Ramchandran. Network coding
for distributed storage systems. IEEE Trans. Inf.
Theor., 56(9):4539–4551, Sept. 2010.

[7] J. Elerath and M. Pecht. A highly accurate method
for assessing reliability of redundant arrays of
inexpensive disks (raid). Computers, IEEE
Transactions on, 58(3):289 –299, march 2009.

[8] Erasure Coding for Distributed Storage Wiki. http:
//csi.usc.edu/~dimakis/StorageWiki/doku.php.

[9] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A.
Truong, L. Barroso, C. Grimes, and S. Quinlan.
Availability in globally distributed storage systems. In
OSDI, pages 61–74, 2010.

[10] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google
file system. In Proceedings of the nineteenth ACM
symposium on Operating systems principles, SOSP
’03, pages 29–43, New York, NY, USA, 2003. ACM.

[11] F. Giroire, J. Monteiro, and S. Perennes. Peer-to-peer
storage systems: a practical guideline to be lazy. In
GlobeCom, 2010.

[12] K. Greenan. Reliability and power-efficiency in
erasure-coded storage systems. PhD thesis, UCSC,
2009.

[13] K. Greenan, E. L. Miller, and J. Wylie. Reliability of
xor-based erasure codes on heterogeneous devices. In
Proceedings of the 38th Annual IEEE/IFIP
International Conference on Dependable Systems and
Networks (DSN 2008), pages 147–156, June 2008.

[14] K. M. Greenan, J. S. Plank, and J. J. Wylie. Mean
time to meaningless: Mttdl, markov models, and
storage system reliability. In Proceedings of the 2nd
USENIX conference on Hot topics in storage and file
systems, HotStorage’10, pages 5–5, Berkeley, CA,
USA, 2010. USENIX Association.

[15] Hadoop Scalability at Facebook. http://download.
yandex.ru/company/experience/yac/Molkov.pdf.

[16] A. Haeberlen, A. Mislove, and P. Druschel. Glacier:
Highly durable, decentralized storage despite massive
correlated failures. In Proceedings of the USENIX
Symposium on Networked Systems Design and
Implementation (NSDI), 2005.

[17] HDFS RAID .
http://wiki.apache.org/hadoop/HDFS-RAID.

[18] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder,
P. Gopalan, J. Li, and S. Yekhanin. Erasure coding in
windows azure storage. In USENIX ATC, 2012.

[19] Y. HuâĂă, H. C. H. ChenâĂă, P. P. C. Lee, and
Y. Tang. Nccloud: Applying network coding for the
storage repair in a cloud-of-clouds. In FAST, 2012.

[20] Y. HuâĂă, H. C. H. ChenâĂă, P. P. C. Lee, and
Y. Tang. Rethinking erasure codes for cloud file
systems: Minimizing i/o for recovery and degraded
reads. In FAST, 2012.

[21] R. T. Kaushik and M. Bhandarkar. Greenhdfs:
towards an energy-conserving, storage-efficient, hybrid
hadoop compute cluster. In Proceedings of the 2010
international conference on Power aware computing
and systems, HotPower’10, pages 1–9, Berkeley, CA,

USA, 2010. USENIX Association.

[22] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski,
P. Eaton, D. Geels, R. Gummadi, S. Rhea,
H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao.
OceanStore: An Architecture for Global-Scale
Persistent Storage. In Proceedings of the International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2000.

[23] Large-Scale Distributed Systems at Google: Current
Systems and Future Directions.
http://www.cs.cornell.edu/projects/ladis2009/

talks/dean-keynote-ladis2009.pdf.

[24] A. W. Leung, S. Pasupathy, G. Goodson, and E. L.
Miller. Measurement and analysis of large-scale
network file system workloads. In USENIX 2008
Annual Technical Conference on Annual Technical
Conference, ATC’08, pages 213–226, Berkeley, CA,
USA, 2008. USENIX Association.

[25] D. S. Papailiopoulos, J. Luo, A. G. Dimakis,
C. Huang, and J. Li. Simple regenerating codes:
Network coding for cloud storage. CoRR,
abs/1109.0264, 2011.

[26] K. Rashmi, N. B. Shah, D. Gu, H. Kuang,
D. Borthakur, and K. Ramchandran. A solution to the
network challenges of data recovery in erasure-coded
distributed storage systems: A study on the facebook
warehouse cluster. In USENIX HotStorage 2013, 2013.

[27] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos,
A. G. Dimakis, R. Vadali, S. Chen, and D. Borthakur.
Xoring elephants: Novel erasure codes for big data.
Proceedings of the VLDB Endowment (to appear),
2013.

[28] K. Shvachko, H. Kuang, S. Radia, and R. Chansler.
The Hadoop Distributed File System. In MSST, 2010.

[29] I. Tamo, Z. Wang, and J. Bruck. Mds array codes with
optimal rebuilding. In ISIT, pages 1240–1244, 2011.

[30] The computer failure data repository.
http://cfdr.usenix.org.

[31] The Hadoop Distributed File System.
http://www.aosabook.org/en/hdfs.html.

