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Abstract—Disk-based graph systems store part or all of graph data on external devices like hard drives or SSDs, achieving scalability

without excessive hardware. However, massive expensive disk I/Os remain themajor performance bottleneck of disk-based graph

processing. In this paper, we propose Redio, a new approach to accelerating disk-based graph processing by reducing disk I/Os. First,

Redio observes that it is feasible to accommodate all vertex states in mainmemory and this can eliminate almost all vertex-related disk I/

Os. Second, Redio introduces a dynamic selective scheduling scheme to identify inactive edges in each iteration and skip themwhen

and only when such skipping can bring performance benefit. To improve its effectiveness, Redioin corporates a compact edge storage to

improve data locality and an indexed bitmap tominimize its memory and computation overheads.We have implemented a single-node

prototype for Redio under the edge-centric computationmodel. Extensive experiments show that Redio consistently outperformswell-

known edge-centric disk-based systems in all experiments, delivering an average speedup of 4:33� on HDDs and 5:33� on SSDs over

the fastest among them (i.e., GridGraph). Experimental results also show that Redio delivers an average speedup of 3:13� on HDDs and

1:28� on SSDs over the fastest among representative vertex-centric disk-based systems (i.e., FlashGraph).

Index Terms—Disk I/O, edge-centric, graph processing, large graph, vertex-centric
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1 INTRODUCTION

AS graph analysis is gaining increasing attentions in both
academia and industry, researchers have made a great

effort to develop specialized systems for scalable graph com-
puting. These systems can be broadly categorized into two
types: in-memory systems that store all data in main mem-
ory [1], [2], [3], [4], [5], [6], [7], [8], and disk-based systems that
store part or all of graph data on external storage devices [9],
[10], [11], [12], [13]. In-memory systems require that the main
memory is big enough to hold thewhole graph, and thus they
are often designed to work on a cluster of machines, and
further require fast networks to achieve good performance.
On the other hand, most of the disk-based graph systems are
designed to work on a single machine, achieving scalability
without excessive hardware. Previous works show that on
many workloads, single-node disk-based graph systems can
often achieve comparable or even better performance than
distributed in-memory systems [9], [10], [11], [12].

At a high level, graph processing systems work in itera-
tions: in eachiteration,the system needs to compute updates
to vertices, usually based on updates in the last iteration,

and applies those updates to vertex states at the end of the
iteration.To do so,the system needs to first identify vertices
updated inthe last iteration Blparcalled an active set in the
rest of the paper). Then the system identifies all edges
whose sources are in the active set: the destinations of these
edges should be updated accordingly. For many algorithms,
it is incorrect to apply updates in place on the vertices
during the iteration (see an example in Section 2) and thus
the system needs to first record those updates, either in
memory or on disks, and apply them when all updates are
generated. An algorithm terminates after a given number of
iterations or when it converges.

In a disk-based graph system, all three operations—
accessing vertices, accessing edges, and recording and
applying updates—may incur disk I/Os. Such massive disk
I/Os are the major performance bottleneck in disk-based
systems [10], [14], even when using faster devices such as
SSDs [10]. This paper proposes Redio, a new approach to
reducing disk I/Os for graph processing.

To achieve our goal of reducing disk I/Os, we care-
fully analyze the I/O pattern of disk-based graph systems.
Our analysis first reveals a significant discrepancy between
vertex-related accesses and edge-related accesses: on the one
hand, vertex-related accesses, including both direct accesses
to vertices and accesses to record and apply updates, account
for more than half of the total accesses. On the other hand, the
number of vertices in a graph is usually one or two orders
of magnitude smaller than that of edges. Such discrepancy
suggests that it is beneficial to buffer all vertex data in main
memory. Our analysis of real graph datasets and hardware
trend has confirmed its feasibility. Fully buffering vertices
allows our system to almost eliminate I/Os incurred for
accessing vertices and for recording and applying updates.
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Next we focused on edge-related I/Os. Our analysis,
similar to previous works [11], [14], [15], has observed an
opportunity for further I/O optimization: in each iteration, a
number of edges can be inactive, because their sources are not
in the active set, and thus it is not necessary to read them.
Exploiting this opportunity, however, is not simple: while
reading all edges [10] is certainly a waste of disk bandwidth,
skipping all inactive edges will generate a large number of
random I/Os and can significantly degrade disk performance.

Existing systems exploit this opportunity either by stati-
cally partitioning a graph before computation and skipping
fully inactive partitions during computation [11], or by esti-
mating the future active edge set and repartitioning graph
data on disks [14], [15] during computation. Both these
approaches may miss opportunities to skip edges or intro-
duce additional overhead when their partitioning or estima-
tion deviates from real I/O patterns. For example, if we
use the static partitioning approach but a large partition
contains only a few active edges, the system cannot skip
any edges in the partition.

Fully buffering vertices allows our approach to have
accurate information about which edges are active in each
iteration. By utilizing such information, we propose dynamic
selective scheduling: at the beginning of each iteration, our
approach identifies all inactive edges and determines
whether it is worthwhile to skip these edges. To realize this
idea, we need to address two challenges:

The first challenge is how to maximize the benefit of skip-
ping, given the fact that skipping may incur random I/Os.
Our analysis reveals that both disk characteristics and graph
data format may affect the answer: for disks, our system
cleverly skips a number of consecutive inactive edges
(called an inactive chunk) only if transferring these edges
takes longer than skipping them as a whole. For graph data,
if inactive edges are randomly scattered inside the raw
graph file, then skipping them may incur a lot of random
I/Os, which is certainly bad for performance. To improve
locality for active edges, our system stores graph edges as
an adjacent list [12] (i.e., place the out-edges of a vertex at
adjacent positions), so that out-edges of an inactive vertex
can be skipped as a whole.

The second challenge is how to minimize its memory and
computation overheads. Before each iteration, our system
needs to scan active vertices to identify active edges and com-
pute inactive chunks accordingly. Our analysis shows that for
algorithms which have only a few active edges in each itera-
tion,minimizing scanning overhead is particularly important,
because in this case, the scanning overhead is relatively high
compared to I/O overhead. Based on this observation, we
incorporate an indexed bitmap to address the challenge: the
bitmap keeps track of which vertices are active and is divided
into multiple partitions; the index identifies which partitions
have at least one active vertex. Using a bitmap can minimize
the memory consumption when there are many active verti-
ces, and the index can allow our system to quickly identify
and skip consecutive inactive vertices, which is particularly
beneficial for algorithms which have only a few active edges
in each iteration.

While part of the techniques used in this paper have been
explored in previousworks, the key contribution of this paper
is the analysis of the I/O patterns of graph processing and the

corresponding analysis-driven I/O optimizations, which
include both invention of novel techniques (e.g., clever
skipping) and appropriate application of existing techniques
(e.g., vertex buffering, storing edges as an adjacent list).

We have implemented a single-node prototype for Redio-
under the edge-centric computation model (see Section 2),
although we believe its ideas are also applicable to systems
using vertex-centric model. Extensive experiments with
three algorithms on five real-world graphs show that Redio-
consistently outperforms well-known edge-centric disk-
based systems (e.g., X-Stream [10], and GridGraph [11]) in all
experiments, delivering an average speedup of 4:33� on
HDDs and 5:33� on SSDs over the fastest among them (i.e.,
GridGraph). Our detailed measurement shows that the total
data size that Redio accessed from disk(s) is significantly
smaller than that of GridGraph, which confirms the reason
of Redio’s performance improvement.

We also compared Redio with vertex-centric disk-based
systems (e.g., GraphChi [9], and FlashGraph [12]). Experi-
mental results show that Redio delivers an average speedup
of 3:13� on HDDs over the fastest among them (i.e., Flash-
Graph). Even when running on SSDs, which is the case Flash-
Graph is specifically optimized for, Redio can still outperform
FlashGraph by 28 percent.

2 BACKGROUND

Working Process Overview. We first present how disk-based
graph systems work in general, using Breadth First Search
(BFS) as an example.

At a high level, disk-based graph systems work in
iterations: in each iteration, the system needs to compute
updates to vertices, usually based on updates in the last itera-
tion, and applies those updates at the end of iteration. Taking
BFS as an example, in each iteration, the algorithm needs to
1) find vertices that are marked in last iteration (active set),
2) identify edges whose sources are in the active set, and
3) mark destinations of these edges, if they have not been
marked yet. Note that for BFS, step 2) and step 3) cannot be
overlapped, because marking vertices in step 3) may affect
identifying edges in step 2) and overlapping themmay violate
the definition of BFS. To prevent such overlap in each itera-
tion, graph systems usually first record updates to vertices in
a separate space, and apply such updates at the end of the
iteration.

As a result, disk-based graph systemsmay need to perform
I/Os to access vertices, to access edges, and to record and
apply updates. Based on their computation model, they can
be classified into two major categories: vertex-centric and
edge-centric, although recent works often incorporate ideas
fromboth categories.

Vertex-centric Computation Model. Vertex-centric computa-
tion model iteratively executes a user-defined program over
vertices of a graph [16]. In each iteration, it contains two main
phases, scatter phase and gather phase. Fig. 1a demonstrates
the pseudo-code of vertex-centric graph processing. In the
scatter phase, an active vertex (i.e., a vertex that was
updated in the last iteration) propagates its state to neighbors
along its outgoing edges. The scatter phase performs sequen-
tial reads to vertices, random reads to edges, and random
writes to updates. In the gather phase, a vertex accumulates
updates from neighbors along its incoming edges to
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recompute the vertex state. The gather phase performs ran-
dom reads to edges, random reads to updates, and sequential
writes to vertices.

Edge-Centric ComputationModel. In the edge-centric compu-
tationmodel [10], each iteration also consists of a scatter phase
followed by a gather phase. As shown in Fig. 1b, the scatter
phase iterates over all edges and applies the user-defined scat-
ter method to each edge. According to the state of the source
vertex of a given edge, the scatter method computes and
determines whether an update value needs to be sent to its
destination vertex. If so, an update is produced. The scatter
phase performs sequential reads to edges, random reads to
vertices, and sequential writes to updates. The gather phase
iterates over all updates and applies the user-defined gather
method to each update. The gather method uses the value of
an update to recompute the state of the destination vertex
of the corresponding edge. The gather phase performs
sequential reads to updates and randomwrites to vertices.

Comparison and Optimizations. As shown above, vertex-
centric and edge-centric models have different access pat-
terns and thus their performance depends on the algorithm.
For example, vertex-centric model reads only active edges
but may incur random I/Os, while edge-centric model reads
all edges sequentially. As a result, vertex-centric model may
perform better if the algorithm reads only a few edges in
each iteration, and edge-centric model may perform better
if the algorithm readsmany edges.

Later works try to further optimize I/Os by taking ideas
from both models: for example, GridGraph adopts the edge-
centric model but it avoids reading all edges by dividing the
whole graph into a 2D grid: in each iteration, if all edges in one
cell is inactive, GridGraph will skip them; FlashGraph adopts
the vertex-centric model but it makes I/Os as sequential as
possible by re-ordering I/Os in its own local file system. Their
experiments have shown that, despite these optimizations,
disk I/O is still the major bottleneck of disk-based graph systems.

3 THE REDIO APPROACH

Redio accelerates disk-based graph processing by optimizing
disk I/Os. First, we observe that, for most graphs we are
aware of, it is feasible to accommodate all vertices in main
memory, which leads to obvious performance benefit because
vertices are usually accessed much more frequently than
edges. Second, to strike a balance between avoiding reading
inactive edges and incurring random I/Os, Redio introduces
a dynamic selective scheduling scheme to cleverly skip inac-
tive edges during computation, when and only when such
skipping is beneficial for performance.

3.1 Fully Buffering Vertices in Main Memory

Our design is driven by the insights we gain from analyzing
existing datasets and algorithms. From our analysis on five
typical graph datasets and three typical algorithms, we
draw some beneficial observations as follows.

Observation 1. In a disk-based graph processing system, the
total number of vertex-related accesses, including both
direct accesses to vertices and accesses to record and apply
updates, is larger than that of edge-related accesses.

Analysis. In a vertex-centric system, an access to an edge
is always associated with an access to an update (i.e., write
an update in the scatter phase and read the update in the
gather phase). In an edge-centric system, an access to an
edge is always associated with at least one direct access to a
vertex (i.e. access only the source vertex if the edge is inac-
tive and access both source and destination vertices if the
edge is active). Therefore, the total number of vertex-related
accesses is larger than that of edge-related accesses.

Observation 2. For many graphs, it is feasible to hold all
vertex state in memory.

Analysis. On the one hand, most real-world graphs follow
the power law [17]. That is to say, the number of vertices in
a graph is usually one or two orders of magnitude less than
that of edges. Table 1 demonstrates the obvious difference

Fig. 1. Pseudo-codes of computation models used in disk-based
systems.

TABLE 1
Properties of Different Graphs

Dataset Vertices Edges Average Degree
Vertex Set Size

PageRank1 PageRank2 BFS WCC

Twitter [22] 61.6 M 1.47 B 23.86 469.81 MB 712.05 MB 249.58 MB 249.58 MB

UK [23] 106 M 3.74 B 35.28 815.33 MB 1.21 GB 433.15 MB 433.15 MB

Yahoo [24] 1.41B 6.64 B 4.71 10.53 GB 15.96 GB 5.59 GB 5.59 GB

GSH [25], [26] 988 M 33.87 B 34.28 7.36 GB 11.16 GB 3.91 GB 3.91 GB

Clueweb12 [25], [26] 978 M 42.57 B 43.51 7.29 GB 10.93 GB 3.87 GB 3.87 GB

Columns PageRank1, PageRank2, BFS (Breadth First Search), and WCC (Weakly Connected Component) represent the size of vertex data when running
the corresponding algorithm.
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between the numbers of vertices and edges. Large average
degrees show that the number of edges in a graph is usually
much larger than that of vertices. It also illustrates the sizes
of vertex attribute subsets used in different algorithms. Run-
ning the PageRank2 algorithm on the Yahoo dataset has the
largest vertex state subset, whose size is 15.96 GB.

On the other hand, it is not uncommon for a today’s server
to have 32 GB of memory or more. Furthermore, the growth
rate ofmemory capacity is similar to or higher than the growth
rate of popular vertex entities: between 2011 and 2015, mem-
ory capacity per dollar has increased by about five times [18],
while in the same period, number of active Facebook users
has increased by about 2.3 times [19], and number of Google
indexed pages has increased by about 4.2 times [20], [21].1

These two observations suggest that buffering all vertex
data in main memory is both beneficial and feasible. There-
fore, we decide to buffer all vertex data in the memory to achieve
high performance, and to store edge data on the storage for high
scalability.

Since Redio accommodates all vertex data in memory, its
computation in each iteration can be simplified into a scatter-
apply operation: in each iteration, Redio computes updates
for each vertex, usually based on updates in the last iteration,
and accumulates the generated updates onto a temporary
copy of the corresponding vertex. At the end of the iteration,
the system applies the values in the temporary copies directly
to the corresponding vertices in main memory with the given
accumulation operation. In Redio, such temporary copies are
counted as vertex state and thus is stored in memory. Note
that the size of vertex data in Table 1 already include size of
temporary copies.

Benefits. Compared with traditional disk-based graph
systems, Redio obtains obvious performance benefits.

� Redio almost eliminates disk I/Os to access vertices. To
compute large graphs, the traditional disk-based
computation systems often split a graph into multiple
subgraphs. In each iteration, they read a subgraph’s
vertex states once at a time from storage and writes
them to storage after computation of the subgraph.
This requires to read and write the whole vertex once
in an iteration. Conversely, Redio reads vertex states
into memory before the first iteration and writes their
final states to storage after termination.

� Redio eliminates disk I/Os for maintaining updates. The
traditional disk-based computation model often
requires disk I/Os to write temporary updates to
storage and later to load these updates from storage
for the apply operation. Redio accumulates and
applies updates in memory, eliminating disk I/Os
for maintaining update values.

Discussion. While fully buffering vertices is certainly not
a novel idea [12], the key point of our analysis is that, since
buffering all vertices becomes feasible even for large graphs,
graph systems could take this as a premise and focus on
edge-related accesses, as we will discuss next.

A system can certainly support partial buffering by either
mmaping the vertex file into memory [11] or designing an

internal cache, but it then needs to pay the overhead (e.g.,
index for in-memory vertices and metadata for replacement
algorithm), even when the memory is enough. Moreover, if
Redio needed to read a significant portion of vertices from
the disk, it would not be efficient because vertex accesses
would be mostly random accesses in Redio. Therefore, to
answer the question about how to handle larger graphs: we
do not think extending Redio to support partial buffering is
a good idea. Instead, our answer is that if possible, the user
can try to rent a machine with sufficient memory. If renting
is not an option or if even the best machine cannot hold all
vertices in memory, the user should consider distributed
graph systems.

3.2 Dynamic Selective Scheduling

Edges and their edge attributes are stored on storage, and are
loaded into main memory during computation. As shown
above, in each iteration, it is possible that only part of the
edges are active. For disk-based systems, reading only active
edges may incur a large number of random I/Os, which is
certainly bad for performance. Reading all edges, on the
other hand, may waste disk bandwidth, especially when
there are only a few active edges in each iteration. Redioin-
troduces a dynamic selective scheduling scheme to skip
inactive edges when and only when skipping is beneficial.
To make it efficient, Redio incorporates a compact edge stor-
age to improve data locality and an indexed bitmap to reduce
computation andmemory overheads.

Skip Inactive Edges Cleverly. In each iteration, Redio traver-
ses over the vertex set to identify active edges: adjacent active
edges become an active subblock. As shown in Fig. 2, if the
total storage size of all inactive edges between two adjacent
active subblocks is smaller than a threshold, l, they aremerged
into a larger active subblock. Finally, those active subblocks
that cannot be merged further become active chunks. When
streaming graph data in, Redio just loads those active chunks
and skips inactive ones.

Here, the threshold, l, is set according to the performance
feature of storage devices. The rule of choosing the l value
for a hard drive is that the time of reading a l-length data
block sequentially from a disk should be longer than one
disk seek time. Therefore, we have l=bseq ¼ tseek. Further, we
get l ¼ bseq � tseek. In this way, Redio has the ability to skip
inactive edges when and only when such skipping can
bring performance benefit. The l value for an SSD is more
difficult to estimate because of SSD’s internal mechanism,
and we set it based on experiments.

Compact Edge Storage. To improve the performance of
dynamic selective scheduling, Redio applies a compact data
format, similar to an adjacency list, to on-disk edge data to
enhance data locality. This is because if a vertex becomes

Fig. 2. Dynamic chunking for an iteration. Gray blocks represent inactive
edges. If the interval between two adjacent active subblocks is smaller
than the threshold, l, they are merged into a larger active subblock.

1. It is common that a company in the early phase can grow faster,
but after reaching a certain scale, the growth rate usually drops.
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active, all its edges become active and thus storing them
together can naturally create active subblocks.

Fig. 3 shows the data representation of a graph in Redio. In
this format, edges with the same source vertex are put into
adjacent positions. Then, we use an ID value to represent the
source vertex of those edges with the same source vertex.
Edge attributes of an edge come after its destination vertex.
All the edges are ordered by their source vertex IDs. A graph
in this format is stored in a single file. In addition, to know the
number and the storage position of out-edges of a source
vertex, Redio records the out-degree of each vertex in another
file. It should be noted that as a byproduct, compact edge stor-
age can reduce edge data by 34 to 50 percent compared to one
that stores edges in the format of ðsource; destination; valueÞ
(cf. Table 4), and thus may increase the speed of streaming
in edges accordingly.

While such compact format has already been used in
existing systems [12], Redio incorporates the same idea to
improve the effectiveness of dynamic selective scheduling.

Indexed Bitmap. Dynamic selective scheduling needs to
scan active vertices to identify active edges. Our analysis
shows that depending on algorithms and graphs, the number
of active vertices in each iteration can be drastically different.
For example, some iterative algorithms, e.g., BFS and WCC,
often access only a few active vertices in some iterations,
especially when processing a sparse graph like the Yahoo
graph. In these cases, it is important to minimize the time of
scanning, because the I/O overhead is relatively low.

To achieve fast scanning with low memory overhead,
we incorporate an indexed bitmap: the bitmap records
whether a vertex is active or not and it is divided intomultiple
partitions with the size of p bits; the index, which is a much
smaller bitmap, records whether a partition contains at least
one active vertex. Given the number of vertices v, the memory
overhead of an indexed bitmap is ðvþ v=pÞ=8 bytes.

During each iteration, Redio builds the indexed bitmap
for the next iteration. When scanning the bitmap, Redio first
scans the index and skips partitions without active vertices
entirely. This can significantly reduce the scanning time for
algorithms which have only a few active edges in each itera-
tion, because the index will allow Redio to skipmost inactive
bits in the bitmap. When most vertices are active, however,
the index cannot reduce the scanning time, but this is fine
because this means that Redio needs to read many edges in
this iteration and thus the scanning time is relatively short
compared to the I/O time.

Benefits. Existingworks either blindly partitions graphs [11],
expecting some partitions will become inactive during com-
putation, or try to estimate the active edges during com-
putation and repartition graph data on disks [14], [15].
These approaches often miss opportunities to skip edges or

introduce additional overhead when the actual I/O pattern
deviates from expectation. For example, with the static parti-
tioning approach, if a large partition contains a few active
edges, then all inactive edges in the partition must be loaded.
If partitions are over-small, the incurred random access to
skip a partition may not be worth the data reduction we gain.
Redio benefits from dynamic selective scheduling and thus
canmakemore accurate decisions adaptively.

4 IMPLEMENTATION

We implement Redio by modifying the source code of
GridGraph [11]. GridGraph is an open-sourced graph system,
which has its own selective scheduling mechanism. Imple-
menting Redio based on GridGraph makes it convenient to
make a performance comparison between Redio and Grid-
Graph. Redio preprocesses rawdata once to generate compact
edge data for all following computation. When executing an
algorithm, Redio first creates arrays for vertex data, which
will be buffered in main memory during the whole computa-
tion. After that, Redio performs computation for each itera-
tion, accelerated by a dynamic selective scheduling scheme.

Preprocessing. Most raw graph data we are aware of are a
long list of data items in the format of (source, destination,
value). To generate compact edge data format, Redio per-
forms data preprocessing by an external sort of records,
whose keys are source vertices and values are destination
vertices and edge attributes.

Vertex Data Buffering. If a vertex is attached with more
than one attributes (e.g., PR value, degree, and partial sum
for PageRank algorithm), Redio stores each attribute in a
separate array. This design is based on the observation that,
for most algorithms, only one or a subset of these values
will be used at a time [27], and thus storing them separately
can improve cache efficiency.

Redio first allocates an amount of memory for vertex
buffering, while the rest of main memory are available for
the OS page cache to buffer edge data. If the active edge
data in this iteration can fit in the page cache, Redio uses the
buffer I/O mode to read edge data. Otherwise, it uses
the direct I/O mode to read edge data.

Computation. Fig. 4 demonstrates the architecture andmain
workflowof Redio. The overall graph processing is structured

Fig. 3. Compact format of edge storage.

Fig. 4. The architecture and workflow of Redio. Vertex data are accom-
modated in main memory while edge data are stored on the storage.
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as a loop, in which each iteration performs a scatter-apply
operation. In an iteration, as shown in Fig. 4, the task sched-
uler first generates a number of tasks, each corresponding to
a partition of edges (Step 1), and assigns them to different
worker threads (Step 2). Then, each worker thread issues I/O
requests to stream the corresponding active chunks in from
the storage (Steps 3 and 4). For each active edge, the worker
thread reads its source vertex value from main memory
(Step 5), computes its update value and accumulates the
generated update onto the temporary copy of the destination
vertex (Step 6). At the end of this iteration, worker threads
apply values in the temporary copies to destination vertices
with the corresponding accumulation operation (Step 7).

Dynamic Selective Scheduling. At the beginning of an itera-
tion, Redio identifies new active chunks and generates index
information for active chunks. Such identification is based on
the logic described in Section 3.2, and requires scanning the
indexed bitmap, which is built when applying updates in the
last iteration. To accelerate this procedure, Redio parallelizes
its work by assigning a subset of vertices to eachCPU core.

5 EVALUATION

The goal of Redio is to enhance the performance of disk-based
graph processing systems by optimizing their disk I/Os.
To assess whether Redio achieves its goal, we evaluate the
performance of Redio using various datasets and algorithms,
and compare it to those of state-of-the-art graph processing
systems. In particular, our evaluation answers the following
questions:

� What is the performance gain of Redio over state-of-
the-art graph processing systems? (cf. Section 5.2)

� Why can Redio achieve such performance gain?
(cf. Section 5.3)

� How well does Redio’s performance scale with the
number of disks, number of CPU cores, and size of
memory? (cf. Section 5.4)

� How long does Redio need to preprocess its data?
(cf. Section 5.5)

5.1 Methodology

To answer those questions, we evaluate Redio with various
datasets, algorithms, and hardware settings, and compare
Redio to state-of-the-art graph systems:

Datasets. We use five real-world graphs as the datasets:
Twitter [22], UK [23], Yahoo [24], GSH [25], [26], and Clue-
web 12 [25], [26], in which Twitter represents social relation-
ships and UK, Yahoo, GSH, and Clueweb12 represent links
among web pages. Table 1 lists the number of vertices and
edges in each graph. The Yahoo dataset is more sparse than
others.

Algorithms. We run three popular algorithms—PageRank,
Breadth First Search, and Weakly Connected Component
(WCC)—on these graphs. PageRank first assigns a value to
each vertex, then recomputes the value of each vertex based
on the values sent from their neighbors in each iteration, and
terminates after a given number of iterations (20 in our experi-
ments) or when the mean difference between two iterations
is small enough. In our experiments, we implemented both
versions as PageRank1 [28] and PageRank2 [29]. BFS first puts

a given vertex in the active vertex set, expands the active set
to include its neighbors in each iteration, and terminates
when no new vertex can be included. WCC first puts each
vertex into a separate component, merges adjacent vertices
into the same component in each iteration, and terminates
when no newmerging happens.

Comparison. We compare the performance of Redio to
that of X-Stream, GridGraph, Graphchi, and FlashGraph,
among them X-Stream and GridGraph are two edge-centric
graph processing sytems and GraphChi and FlashGraph are
two vertex-centric systems. Note that these systems all sup-
port buffering vertices when the capacity of memory is suffi-
cient. For other system parameters, such as the partition
parameter P in GridGraph, we have selected them with
the approach recommended by the authors. The skipping
thresholds of Redio are 1 MB for HDDs, and 64 KB for SSDs.
For PageRank, we run PageRank2 for FlashGraph, and Pag-
eRank1 for other systems, because these are the algorithms
used in the corresponding papers. We run both versions in
Redio for comparison.

Hardware Setting.Our testbed uses a SuperMicro 2U server
with two 4-core 2.50 GHz Intel XEON E5-2609 V2 processors
and 32 GB DDR3 memory, running Ubuntu 14.04 with Linux
kernel v3.13.0-32. The machine is equipped with eight 2TB
HDDs, and two 500 GB SSDs, on them running EXT4 file
systems. In the default setting, our experiments use all eight
cores, 30 GB of memory (this includes both the memory used
by the graph system and the memory used by OS file system
buffer), a RAID-0 array of two HDDs, and a RAID-0 of two
SSDs. In Section 5.4, we investigate how changing hardware
resource affects the performance of Redio.

5.2 Performance

Our first set of experiments compares the performance of
Redio to other disk-based systems with different datasets
and algorithms. Tables 2 and 3 present the performance
of different systems on HDDs and SSDs respectively. We
category existing systems into vertex-centric and edge-cen-
tric ones. As shown in these tables, GridGraph and Flash-
Graph achieve the best performance respectively among
edge-centric systems and vertex-centric ones. The last col-
umn of each type gives the speedup ratio of Redio over the
best among edge-centric ones, and vertex-centric ones.

Redio consistently outperforms GridGraph in all experi-
ments, with an average speedup of 4:33� on HDDs and
5:33� on SSDs. For each algorithm, we calculate a geometric
mean of speedups of Redio over GridGraph on HDDs across
five graphs. Redio provides an average speedup of 2.39×,
5.78×, and 5.90× for PageRank1, BFS, and WCC respectively.
In particular, Redio’s speedup is higher when running BFS
and WCC on large graphs. This is because these algorithms
take a large number of iterations to converge, while in most
iterations, only a small number of edges are active. In this
case, the benefits of Redio’s dynamic selective scheduling
are significant. Redio has the least speedup, 2.39× on average,
when running PageRank1. This is because PageRank1
updates all vertices in each iteration and thus all edges are
active. In this case, selective scheduling schemes of Grid-
Graph and Redio do not take effect. Redio’s improvement
mainly comes from compact edge data, which reduces I/Os
on streaming graph file.
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TABLE 2
Runtime (in seconds) on 2 HDDs and Improvement of Redio Over Other Systems

Edge-centric SpeedUpe Vertex-centric SpeedUpv

Redio X-Stream GridGraph (× times ) GraphChi FlashGraph (× times )

Twitter
PageRank1 213.85 2194.49 428.52 2.00 1833.47
PageRank2 192.20 180.92 0.94
BFS 52.01 539.91 136.40 2.62 179.05 180.35 3.44
WCC 53.89 1777.3 140.13 2.60 1393.18 76.90 1.43

UK
PageRank1 267.52 5424.28 735.53 2.75 2068.81
PageRank2 204.62 224.08 1.10
BFS 143.21 9922.83 364.22 2.54 8243.35 703.94 4.92
WCC 142.76 15546.3 370.98 2.60 3505.99 221.44 1.55

Yahoo
PageRank1 1637.68 10681.3 5812.25 3.55 10205.0
PageRank2 1522.89 4994.38 3.28
BFS 668.05 - 19551.93 29.27 33625.2 3199.21 4.79
WCC 748.95 - 23225.57 31.01 - 6942.48 9.27

GSH
PageRank1 7671.33 - 20356.54 2.65 -
PageRank2 7625.81 74830.1 9.81
BFS 3550.23 - 21521.54 6.06 - 11666.9 3.29
WCC 2916.05 - 16175.91 5.55 - 19810.2 6.79

Clueweb12
PageRank1 15891.73 - 23837.6 1.50 -
PageRank2 15551.29 76583.6 4.92
BFS 10361.97 - 56569.71 5.46 - 12750.8 1.23
WCC 9281.83 - 56978.01 6.14 - 33233.3 3.58

GEOMEAN 4.33 3.13

“-”: fails to get the result in 48 hours. SpeedUpe is Redio’s speedup over the best of edge-centric systems, while SpeedUpv is Redio’s speedup over the best of
vertex-centric systems.

TABLE 3
Runtime (in seconds) on 2 SSDs and Improvement of Redio Over Other Systems

Edge-centric SpeedUpe Vertex-centric SpeedUpv

Redio X-Stream GridGraph (× times ) GraphChi FlashGraph (× times )

Twitter
PageRank1 175.81 1010.60 209.92 1.19 1817.67
PageRank2 155.44 114.71 0.74
BFS 13.54 254.15 26.98 1.99 161.6 14.41 1.06
WCC 15.00 826.582 31.66 2.11 1404.07 16.33 1.09

UK
PageRank1 164.09 2611.44 273.42 1.67 1871.28
PageRank2 102.19 102.72 1.01
BFS 25.15 4667.94 155.1 6.17 1996.41 34.06 1.35
WCC 37.52 7347.23 149.81 3.99 3317.76 103.53 2.76

Yahoo
PageRank1 639.26 5803.13 1753.42 2.74 7556.26
PageRank2 525.24 866.58 1.65
BFS 126.82 - 5562.17 43.86 16691.1 127.34 1.00
WCC 161.07 - 6851.41 42.54 - 529.27 3.29

GSH
PageRank1 2918.63 * 7110.22 2.44 *
PageRank2 2867.19 5533.78 1.93
BFS 763.61 * 6358.98 8.33 * 581.30 0.76
WCC 856.94 * 4949.57 5.78 * 1633.29 1.91

Clueweb12
PageRank1 5151.24 * 10687.6 2.07 *
PageRank2 5053.37 4369.55 0.86
BFS 1134.85 * 21410.23 18.86 * 734.61 0.64
WCC 1326.95 * 21677.21 16.34 * 2008.9 1.51

GEOMEAN 5.33 1.28

“-”: fails to get the result in 48 hours, and “*”: fails to run due to the limited capacity of SSDs in our experiments. SpeedUpe is Redio’s speedup over the best of
edge-centric systems, while SpeedUpv is Redio’s speedup over the best of vertex-centric systems.
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On two HDDs, Redio outperforms FlashGraph in all the
experiments, except running PageRank2 on Twitter, with an
average speedup of 3:13�. Even when running on SSDs,
which is the case FlashGraph is specifically optimized for,
Redio can still outperform FlashGraph by 28 percent. This
is because reads of FlashGraph to edge data are random,
although some I/Os are merged by the underlying file
system specially designed for FlashGraph. However, it
should be noted that because the edge-centric model and
the vertex-centric model have intrinsic differences, the per-
formance comparison of Redio to vertex-centric systems
like FlashGraph may not be able to accurately measure the
improvement of Redio’s ideas: when applying Redio’s ideas
to a vertex-centric system, the actual improvement could be
different. This set of experiments just serve a sanity check
that Redio’s performance is at least comparable to vertex-
centric systems.

5.3 Disk I/O Analysis

To answer why Redio can achieve such performance gain,
our second set of experiments compares the total disk I/O
size of Redio to that of GridGraph with the GSH graph,
since GridGraph is the best system that follows the same
model of Redio in our experiments.

Redio optimizes disk I/Os by using vertex buffering and
dynamic selective scheduling. As shown in the analysis
in Section 3.1, vertices’ accesses account for more than half
of all accesses in a disk-based system and buffering all verti-
ces can completely eliminate these I/Os. Unfortunately, it is
impossible to quantitatively measure such improvement in
experiments because disabling or shrinking the buffer
requires a significant re-design of Redio. Dynamic selective
scheduling reduces I/Os in two ways: its clever skipping
can skip inactive edges when there is a benefit to do so; its
compact edge format, which stores edges as an adjacent list,
can reduce the size of the graph compared to GridGraph’s
format, which uses binary edge list to store edge data. Next,
we measure the data reduction Redio gains from compact
edge format and dynamic selective scheduling.

Table 4 compares the size of Redio’s compact edge file to
the size of graph file used in GridGraph. As shown in the
table, compaction can reduce graph size by 34 to 50 percent.
This is because in these graphs, the number of vertices is usu-
ally much smaller than that of edges, indicating that many
edges share same source vertices. Therefore, by compacting
common source vertices IDs into one ID, Redio can greatly
reduce graph size. Since all the graphs in the experiments
are unweighted, Redio can gain a compaction ratio of up to
50 percent, while on weighted graphs, the compaction ratio
may be smaller, unless weights can also be compressed.

To understand the effectiveness of dynamic selective
scheduling, we compare the amount of data, accessed from
the disk by Redio, to that of GridGraph, which has its own
selective scheduling mechanism. Because GridGraph does
not compact edge data, for fairness, we also run Redio with-
out compaction, though out-edges of a vertex are still placed
at adjacent locations.

We collected disk I/O size with the iostat tool, and
showed data size accessed from the disk in Fig. 5a. For BFS
and WCC, the total amount of data Redio accesses from the
disk is about one fifth (i.e., 18 and 22 percent) of that of
GridGraph: this explains the over five times speedup Redio
gains over GridGraph. Even if Redio does not incorporates
compaction, Redio-w/o-cmp is still over 2.18× more effec-
tive. For PageRank1, since the algorithm accesses all edges
in every iteration, dynamic selective scheduling does not
take effect. As a result, Redio-w/o-cmp and GridGraph
have almost the same accessed data size and runtime.
However, compacting edge data reduces data accessed by
over 50 percent. This once again explains the 2:65� speedup
Redio gains over GridGraph.

The inefficiency of selective scheduling in GridGraph
comes from the imbalance among the partitions GridGraph
generates for scheduling: its 2-dimensional edge partition-
ing has produced some over-large partitions and many
over-small partitions. For example, in all the 512� 512 par-
titions GridGraph generated for the GSH graph, there are

Fig. 5. Disk I/O size and runtime of GridGraph, Redio-w/o-cmp (Redio
without compacting edge data), and Redio on GSH graph.

TABLE 4
Comparison of Edge Data Size between Binary Edge

List and Redio’s Compact Edge Storage

Dataset Original Compact # %

Twitter 11 GB 5.8 GB 47.27%
UK 29 GB 15 GB 48.28%
Yahoo 50 GB 33 GB 34%
GSH 253 GB 134 GB 47.04%
Clueweb12 318 GB 162 GB 49.05%
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77 partitions larger than 500 MB, and 2,334 partitions smaller
than 10 KB. Since a partition is the minimal unit for schedul-
ing, GridGraphwill load a partition, as long as one of its edges
is active, even if all its other edges are inactive. Therefore,
over-large partitions tends to miss many opportunities to
skip inactive edges.Moreover, over-small partitionswill incur
many randomaccesses to edge data. Redio, on the other hand,
exploits dynamic selective scheduling to skip edges when
skipping can bring performance benefit. On the GSH graph,
Redio can skip more edges than GridGraph, and introduces
very low randomaccess overhead.

Fig. 6 compares Redio and GridGraph in read bandwidth
during the execution of BFS on GSH graph. The results
are reported by the iostat tool, with the sampling interval at
60 seconds. Since GridGraph buffers vertex data when the
memory capacity is sufficient, the write bandwidth of Redio
and GridGraph is almost 0, so we do not show the compari-
son of the write bandwidth here. From Fig. 6, we can see that
Redio’s read throughput is obviously higher than that of
GridGraph. This indicates that Redio is more I/O efficient,
which enhances the performance of graph processing.

5.4 Scalability

We evaluate the scalability of Redio in terms of number of
disks, number of CPU cores, and size of memory.

Scalability inDisk Counts. Fig. 7a presents howperformance
scales with the number of hard disks. The disks are organized
as a RAID-0 array.We choose GSH as the dataset, because it is
large enough and thus tends to incur more disk I/Os. We use
eight cores and 30 GB of memory in this experiment.
As shown in the figure, Redio’s performance scales linearly
with disk bandwidth.

Scalability in Core Counts. Fig. 7b shows how performance
scales with the number of cores. We use eight HDDs in this
experiment to avoid I/O bottleneck. We again choose GSH as
the dataset because algorithms running on this dataset has
long execution time. As shown in the figure, the performance
of PageRank1 scales linearly with the number of CPU cores,
while for BFS and WCC, the performance enhancement
is smaller when the number of CPU cores is increased to 4 or
more. The reason is that 8 HDDs provide sufficient I/O band-
width, so that when more cores are used, Redio can get better
performance, but Redio needs to pay a synchronization over-
head for each iteration (e.g., schedule work at the beginning
and wait for barrier at the end): PageRank1 requires more

CPU resources when doing computation and will load all
edge data, while BFS and WCC require reading a compara-
tively small part of the graph data in each iteration and cost
less CPU resources, so the overhead becomes significant and
it limits the CPU scalability of Redio.

Comparing Fig. 7b to Fig. 7a, one can observe that in
Redio, both the number of disks and the number of cores
have impacts on performance. This demonstrates the effec-
tiveness of Redio: comparing to previous systems that
spend most time on I/Os, Redio has reached a point that
I/O and CPU overheads are comparable.

Scalability in Memory Size. In order to measure how the
performance of Redio scales with memory size, we change
the memory size seen by the system by modifying the
booting parameter—“mem”. To provide a fair performance

Fig. 6. Comparison of read bandwidth between Redio and GridGraph.

Fig. 7. Scalability with hardware resource.
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comparison, we ensure that Redio and the counterparts use
the same amount ofmainmemory. Fig. 7c shows howperfor-
mance scales withmemory size.We use twoHDDs and eight
cores in this experiment. We choose a small dataset UK for
this experiment because we hope to explore both the case
that memory size is close to dataset size and the case that
memory size is much smaller than dataset size. While in gen-
eral, Redio can provide better performance with more mem-
ory, such performance improvement does not grow linearly
with memory size. For example, when running PageRank1
on UK, increasing memory size from 4 GB to 12 GB does not
improve system performance, but increasing it from 12 GB
to 16 GB can provide a significant improvement. This is actu-
ally a classic behavior of a buffering system: Redio explicitly
uses memory to buffer all vertices. Besides that, OS buffers
edge data. If OS buffer is smaller than a threshold, its buff-
ered edges will be evicted before they can be used again and
thus buffering has no benefit. We will investigate how to
buffer edges efficiently in the future.

5.5 Preprocessing Time

Our last set of experiments compares the preprocessing
time of different systems. Most graph systems need such
preprocessing phase to convert raw graph data into the for-
mat that can be utilized by the graph system. Since prepro-
cessing only needs to be performed once for all future
computations, its overhead will be amortized if the graph is
used in computation multiple times.

X-Stream’s preprocessing time is almost negligible
because it actually merges preprocessing into the first itera-
tion of computation. Even so, because of X-Stream’s long
computation time (see Table 2), when considering prepro-
cessing time and computing time together, Redio is still sig-
nificantly faster, even if preprocessing must be executed
once for every computation.

Table 5 shows the preprocessing time of GraphChi, Grid-
Graph, FlashGraph and Redio on 2 HDDs. One can observe
that Redio’s preprocessing time is less than those of other
systems. Our investigation shows that such difference is
due to various reasons. For example, Redio’s assumption
that all vertices can be buffered allows more efficient exter-
nal sorting. FlashGraph’s raw input is in text format, which
needs more time to parse than one in binary format. Since
some of these reasons are not fair across different systems
(e.g., FlashGraph’s text input), we cannot draw conclusions
on preprocessing times but simply use this experiment to
show that Redio will not incur a long preprocessing time
that negates its benefit in computation.

6 RELATED WORK

So far, a number of graph systems have been developed,
including in-memory systems and disk-based ones, which
inspire the design of Redio in several aspects.

6.1 In-memory Graph Systems

While in-memory systems usually require a cluster of
machines to process large graphs, single-node systems are
also developed to handle smaller graphs efficiently.

Single-node Systems. Ligra [2] is a graph processing frame-
work, specifically optimized for graph traversal algorithms.
Ligra+ [3] compresses graph representation to save memory

space, and hence improve scalability. Galois [4] is a light-
weight infrastructure for graph analytics, on which existing
graph systems can be implemented efficiently. GRACE [5]
provides an asynchronous computation model to speed up
processing. Polymer [8] optimizes in-memory graph systems
onmulticore byNUMA-aware designs. It differentially places
various kinds of data to minimize remote accesses. The obvi-
ous limitation of in-memory graph systems on a single server
is their poor scalability: they can process only small-scale or at
most medium-scale graphs. Redio buffers all the vertex data
in the memory to achieve high performance, and stores edge
data on the storage for high scalability.

Distributed Systems. Distributed graph processing systems
can process large-scale graphs efficiently. Pregel [16] exploits
bulk-synchronous processing (BSP) [30] and runs algorithms
in a vertex-centric way. Giraph [31] and Hama [32] are the
open-source clones of Pregel. GraphLab [33] processes large
graphs asynchronously, making it a good fit for machine
learning and data mining graph algorithms. PowerGraph [6]
addresses the problems of graph placement and applies effi-
cient optimization for graphs that follow the power law [17].
PEGASUS [34] is built on MapReduce [35], and expresses
graph algorithms in the form of sparse matrix-vector multi-
plication. GraphX [7] is built upon Spark [36], and supports
Pregel and GraphLab abstractions by using dataflow opera-
tors provided by Spark. Trinity [37] extracts the online and
offline graph access patterns, and optimizes memory access
andmessage passing. Gemini [38] appliesmultiple optimiza-
tions targeting computation performance to build scalability
on top of efficiency. Those optimizations include a sparse-
dense signal-slot abstraction, a chunk-based partitioning
scheme, a dual representation scheme, NUMA-aware sub-
partitioning, plus locality-aware chunking and fine-grained
work-stealing.

6.2 Disk-based Graph Systems

According to computation styles, disk-based graph systems
are classified into vertex-centric and edge-centric.

Vertex-centric Systems. To reduce random I/Os, Graph-
Chi [9] partitions graph into equal-sized shards and intro-
duces a parallel sliding window mechanism to process each
shard in turn. TurboGraph [39] is designed for SSDs, and
extracts more parallelism than GraphChi by overlapping
CPU processing and disk I/Os. VENUS [40] splits a graph
into g-shards and the corresponding v-shards, which ena-
bles streamlined processing to overlap disk I/Os and com-
putation. FlashGraph [12] stores vertex states in memory
and edges on SSDs. It uses a user-space file system to merge
I/Os and improve the locality of page cache. Although
Redio also buffers vertex in memory, Redio introduces opti-
mization techniques for hard disks and SSDs.

TABLE 5
Preprocessing Time (in seconds) for GraphChi,

GridGraph, FlashGraph and Redio

Twitter UK Yahoo GSH Clueweb12

GraphChi 303 1,009 2,839 11,203 16,851
GridGraph 187 756 2,935 8,303 18,644
FlashGraph 1,220 3,427 6,235 23,966 24,570
Redio 114 478 911 4,563 6,652
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Edge-Centric Systems. X-Stream [10] reads all the edges
in each iteration, which results in massive disk I/Os.
Chaos [13] is a distributed graph system, which utilizes the
disks of the computing machines to scale to very large
graphs. GridGraph [11] constructs 2-dimensional edge
blocks and adopts selective scheduling to skip unnecessary
edge grids. However, its scheduling granularity is a grid
partition, whose size is sometimes over-large or over-small,
which will lead to reading many unnecessary edges or incur
random I/Os respectively. Redio’s dynamic selective sched-
uling can skip edges when the incurred random I/Os are
worth the amount of data reduction.

Optimizations. FastBFS [15] optimizes X-Stream for the BFS
algorithm by trimming the edges that have been accessed
in the last iteration. Vora et al. [14] mitigate edge I/Os for
disk-based systems by eliminating edges with zero new con-
tribution to create dynamic partitions before every iteration.
Theseworks reshape partitions in each iteration, which incurs
runtime overhead and extra I/O overhead. Redio’s dynamic
selective scheduling does not need extra disk I/Os since
Redio does not perform physical data partitioning. Further-
more, since these works’ reshaping is based on estimation of
future workload, their performance depends on the accuracy
of estimation, while Redio’s dynamic selective scheduling
is based on accurate runtime information of each iteration.

7 CONCLUSION

In this paper, we carefully analyze I/O patterns and propose
Redio, a new approach to reducing I/Os for disk-based graph
processing. First, fully buffering vertices allows Redio to
eliminate almost all vertex-related disk I/Os. Second, Redio
strikes a balance between avoiding reading inactive edges
and incurring random I/Os, with low computation andmem-
ory overheads. As a result, the total data size that Redio
accessed from storage is reduced significantly.

We have implemented a single-node prototype for Redio
under the edge-centric computation model. Extensive experi-
ments show that Redio consistently outperforms well-known
edge-centric disk-based systems in all experiments, delivering
an average speedup of 4:33� on HDDs and 5:33� on SSDs
over the fastest among them (i.e., GridGraph). We also com-
pared Redio with representative vertex-centric disk-based
systems. Experimental results show that Redio delivers an
average speedup of 3:13� on HDDs and 1:28� on SSDs over
the fastest among them (i.e., FlashGraph).
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